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Abstract 

Background:  Biomedical researchers use alignments produced by BLAST (Basic Local 
Alignment Search Tool) to categorize their query sequences. Producing such align-
ments is an essential bioinformatics task that is well suited for the cloud. The cloud can 
perform many calculations quickly as well as store and access large volumes of data. 
Bioinformaticians can also use it to collaborate with other researchers, sharing their 
results, datasets and even their pipelines on a common platform.

Results:  We present ElasticBLAST, a cloud native application to perform BLAST align-
ments in the cloud. ElasticBLAST can handle anywhere from a few to many thousands 
of queries and run the searches on thousands of virtual CPUs (if desired), deleting 
resources when it is done. It uses cloud native tools for orchestration and can request 
discounted instances, lowering cloud costs for users. It is supported on Amazon Web 
Services and Google Cloud Platform. It can search BLAST databases that are user pro-
vided or from the National Center for Biotechnology Information.

Conclusion:  We show that ElasticBLAST is a useful application that can efficiently per-
form BLAST searches for the user in the cloud, demonstrating that with two examples. 
At the same time, it hides much of the complexity of working in the cloud, lowering 
the threshold to move work to the cloud.

Keywords:  BLAST, Cloud computing, Alignment, Kubernetes, AWS Batch

Background
BLAST (Basic Local Alignment Search Tool) [1] is used by biomedical researchers 
to characterize sequences by identifying similar sequences, with the command-line 
BLAST+ package [2] used for pipelines as well as tasks with large numbers of searches 
or custom databases. The BLAST+ package supports all types of possible searches (e.g., 
nucleotide-nucleotide, protein–protein, protein-translated nucleotide, profile searches 
etc.), user-provided databases, a built-in limit by organism feature, and multiple report 
choices. BLAST + is supported on LINUX, Mac, and Windows.

The rapid growth of GenBank (see Table  1 in [3]) results in a continuing increase 
in the size of the most popular BLAST databases, requiring more effort to host them 
locally and more computational power to run searches. At the same time, cloud comput-
ing has become mature and offers an opportunity for Bioinformaticians [4]. It provides 
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infrastructure such as instances, which are virtual servers that can be started on-demand 
and can contain different numbers of virtual CPUs (vCPUs) and different amounts of 
memory. It also provides object storage (cloud buckets) that can hold large amounts 
of data independent of any server as well as advanced tools to help orchestrate work-
flows. Cloud computing supports collaboration, with researchers able to easily share 
data, workflows, and compute environments with colleagues at other institutions. [4]. To 
enable cloud computing, the NCBI is now hosting popular BLAST databases on Ama-
zon Web Servers (AWS) and Google Cloud Platform (GCP) [5], which users can easily 
download to their instance. The NCBI is also hosting 25.6 PB of SRA data in AWS and 
GCP (as of September 2021) [6]. The NIH Science and Technology Research Infrastruc-
ture for Discovery, Experimentation, and Sustainability (STRIDES) [7] initiative encour-
ages the use of the Cloud by biomedical researchers. The cost model for the cloud (pay 
for usage) can present difficulties, but authors [4, 8, 9] discuss best practices to minimize 
costs. Multiple groups have demonstrated that the cloud is a viable platform for bioin-
formatics [4, 10–12].

Scheduling BLAST+ searches on the cloud involves several steps which include bring-
ing up (possibly many) instances, populating them with databases and software, start-
ing the searches, checking the status of the searches, downloading the results, and then 
shutting down the instances. Accomplishing these tasks requires the user to answer 
questions such as what instance type is suitable for the BLAST search, whether to use an 
SSD or some less expensive disk, and where to save the results.

We present ElasticBLAST, a cloud native package that leverages the command-line 
BLAST+ package to run BLAST on the cloud. There are several reasons to use Elas-
ticBLAST. First, it automates setting up and tearing down instances for the BLAST 
search, which hides much of the complexity of the cloud and lowers the barrier to entry. 
At the same time, it makes use of cloud technology where appropriate, leading to a more 
reliable experience. Second, it can handle anywhere between a few and millions of que-
ries reliably. Third, it distributes the searches to as many instances as the user requests, 
accelerating the work. Finally, it is supported on AWS and GCP. Given the maturity 
of cloud technology and the decreasing cost of sequencing (and growing numbers of 
sequences), ElasticBLAST provides an ideal way to perform alignments in the cloud.

In this article, we describe how ElasticBLAST works, present its user interface, illus-
trate its use for identifying RNA contamination, and discuss how ElasticBLAST mini-
mizes costs, including using discounted instances, known as spot instances (at AWS) or 
preemptible instances (at GCP).

Implementation
Overall architecture and data flow

ElasticBLAST is a cloud-native, distributed system that runs on GCP and AWS. It uses a 
number of cloud technologies that include container orchestration (Kubernetes), batch 
compute frameworks (AWS Batch), serverless computing services (AWS Lambda), and 
object storage (also known as buckets, provided by S3 and GCS). To this end, Elas-
ticBLAST uses the Platform as a Service (PaaS) [13] cloud service model to facilitate 
resource management.
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ElasticBLAST uses managed services (e.g., Kubernetes and AWS Batch). Briefly, the 
cloud provider takes responsibility for maintaining managed services, which involves 
optimizing them, keeping them current and fixing security vulnerabilities.

ElasticBLAST uses two types of file storage. The first is object storage, which is the 
cloud bucket meant for longer term storage independent of an instance. The second is 
block storage, which is the POSIX compliant storage found on LINUX machines. It can 
be either SSD or spinning disk and can be mounted directly on the instance. Access to 
object storage is slow and through vendor specific interfaces. BLAST+ requires access to 
the database on a (block) file system to run.

Figure 1 is a schematic of the overall architecture in a cloud service provider agnos-
tic form. There are four primary software modules: query splitting, job submission, 
resource management, and BLAST. The query splitting and job submission modules can 
run either on the local machine or as remote jobs on the cloud. The resource manager 
module runs on the local machine, but some of its functionality can optionally run as a 
remote job on the cloud if the automatic shutdown feature is enabled. The BLAST mod-
ule runs only on the cloud.

The query sequence data can reside on the cloud or on the local machine. It is pro-
cessed by the query splitting module, which splits it into batches and saves these in 
cloud storage. Each of the query batches, the choice of BLAST database, and any BLAST 
parameters specified by the end user constitutes a job, which the job submission module 
sends to the appropriate managed service for processing. The BLAST module is respon-
sible for providing the query batches to the BLAST+ software [2] for comparison against 
a BLAST database, which must reside in cloud object storage. The BLAST module can 
access NCBI-maintained BLAST databases [5] already stored in the cloud as well as 

Fig. 1  High level ElasticBLAST schematic
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custom BLAST databases built and uploaded to the cloud by the end user. The BLAST 
module saves the result of each of its jobs into the cloud object storage specified by the 
end user. Figure 2 shows a schematic of the data flow in ElasticBLAST.

The resource manager module runs on the local machine to allocate cloud resources 
through a managed service supported by the cloud service provider. It also configures 
cloud resources to monitor and delete the cloud resources it allocated. The end user can 
still manually delete cloud resources.

The end user interacts with ElasticBLAST via a command-line application imple-
mented in Python (henceforth referenced as the client or elastic-blast). There are 
three primary subcommands supported by elastic-blast: submit, status and 
delete. The submit subcommand processes the ElasticBLAST configuration, cre-
ates resources on behalf of the end user and orchestrates query splitting and job sub-
mission. The status subcommand monitors the ElasticBLAST execution and reports 
on its progress. The delete subcommand initiates the shutdown and deletion of cloud 
resources allocated by the submit subcommand.

Among the critical issues in the ElasticBLAST development was the provisioning, 
management and efficient use of cloud resources, job orchestration, and query splitting.

Cluster construction and queuing with cloud native infrastructure

ElasticBLAST relies on managed services for cloud resource management and job 
orchestration: Google Kubernetes Engine (GKE) [14] in GCP and AWS Batch [15] in 
AWS. These services start up a pool of instances for ElasticBLAST, which we refer to as 
a cluster.

When configured to run on AWS, ElasticBLAST uses AWS CloudFormation [16], 
an infrastructure-as-code service that creates “stacks” of resources built from a “tem-
plate” (Fig. 3, step 1). After the cluster resources are created, the client interacts with 

Fig. 2  Dataflow in ElasticBLAST

Fig. 3  Architecture and workflow overview on AWS
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AWS Batch (Fig. 3, step 2) to submit jobs to the compute resources allocated (Fig. 3, 
step 3). The jobs are queued and scheduled to run on instances provisioned by AWS 
Batch (Fig. 3, step 4). Once the jobs start their execution, they retrieve BLAST data-
bases and query batches from cloud buckets to block storage (i.e., the local storage on 
an instance), and ultimately save the results onto the user’s results bucket (Fig. 3, step 
5). AWS Batch handles job failures by retrying them up to three times, unless the jobs 
ran out of memory, in which case they are flagged as failed. This behavior addresses 
spot instance termination, after which AWS Batch requests a new (spot) instance and 
restarts the job. Results of completed jobs have already been saved in a cloud bucket. 
After all BLAST jobs have completed successfully or if any job fails, the resource 
manager module deallocates the compute resources either through an AWS Lambda 
function or via the user’s elastic-blast delete invocation (Fig. 3, step 6).

When configured to run on GCP, ElasticBLAST relies on GKE to create a Kuber-
netes cluster (Fig.  4, step 1). The cluster is configured with a shared persistent disk 
and an initialization job to retrieve BLAST input data (Fig. 4, steps 2 and 3) onto the 
disk and split queries. After this initialization completes, the client’s job submission 
module sends jobs to Kubernetes (Fig. 4, steps 4 & 5) to run BLAST. Kubernetes job 
objects provide native support for work queues [17], which handle scheduling, queu-
ing, error handling and monitoring of jobs consistent with how it is done in AWS. 
After all BLAST jobs have completed successfully, their results are written to the 
user’s cloud bucket (Fig. 4, step 6), and the resource manager module deallocates the 
compute resources through a Kubernetes cronjob or via the user’s elastic-blast 
delete invocation (Fig. 4, step 7).

In order to make efficient use of computing resources, ElasticBLAST leverages the 
horizontal scaling features of GKE and AWS Batch: both managed services will start 
up as many instances as needed to process the work queue, up to the limit configured 
by the end user. As the number of outstanding jobs in the queue diminishes, the man-
aged service will shut down the instances when they are no longer needed.

Fig. 4  Architecture and workflow overview on GCP
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Query splitting and batch size

ElasticBLAST leverages the cloud to provide multiple worker nodes to parallelize 
the computation by breaking the queries into query batches. The batch length speci-
fies the number of bases or residues per query batch, which is important for Elas-
ticBLAST performance. The batch length needs to be configured to a value large 
enough to amortize the runtime cost of the scheduling and queueing. An individual 
query sequence will not be split between batches. The authors ran experiments with 
varying programs, BLAST database sizes, query sizes and batch lengths to arrive at 
a reasonable default batch length for a given configuration. The goal was to target a 
median runtime for each of the BLAST jobs in the 5–30 min time frame. Using this 
information, ElasticBLAST provides default values for the different BLAST programs, 
database sizes and query sizes, but the end user can customize this via the batch-
len [18] configuration parameter.

Selection of instance types in ElasticBLAST

The choice of instance type is critical to the performance of ElasticBLAST. The instance 
type provides an upper bound on the number of CPUs and main memory (i.e.: RAM) 
available to BLAST + . ElasticBLAST relies on the BLAST database metadata that is 
automatically generated when creating BLAST databases (using BLAST+ 2.13.0 or 
newer) to determine the amount of main memory needed for the database. The meta-
data file lists not only the total size of the files in the BLAST database but also the size 
of the files needed for the search to run efficiently, which is smaller than the size of the 
database. The sequence and some indices are needed for the actual search and produc-
ing alignments, and it is important they are in memory. After the search, only a fraction 
of the sequence titles is needed for producing the report, and it would be wasteful to 
copy all of them to memory. This lower number is used to select an appropriate instance 
type from the 400 plus instance types available at each of AWS [19] or GCP [20].

Cloud providers offer instances with enough memory to accommodate almost all 
BLAST databases. The largest database offered by the NCBI is the ref_euk_rep_genomes, 
which contains 1.3 trillion letters and requires 319 GB of memory for BLAST to run effi-
ciently. The largest instances that ElasticBLAST will currently suggest are twice as large 
(r5ad.24xlarge at AWS with 768 GB of RAM and n1-highmem-96 at GCP with 624 GB 
of RAM). Users could manually request even larger instances from the providers. Larger 
instances could be added to future releases of ElasticBLAST if needed.

Automatic shutdown feature

The resource manager module supports an automatic shutdown feature which con-
sists of an AWS Lambda function that monitors the AWS Batch job queue created 
by ElasticBLAST. The lambda function runs every 5  min to check the status of the 
BLAST jobs and shuts down and deletes all cloud resources, including itself on suc-
cessful completion of all jobs or the occurrence of a failure. When running in GCP, 
the resource manager module starts a Kubernetes cronjob to perform the same role 
as the lambda function in AWS.
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Results and discussion
We discuss how to run ElasticBLAST and present two search examples, demonstrating 
its value to the scientific community. In the first case, we show how ElasticBLAST can 
be used to identify RNA-seq contamination. In the second, we examine how efficiently 
ElasticBLAST makes use of multiple cloud instances. Finally, we discuss ElasticBLAST 
in the context of other available tools.

Interface

A user starts an ElasticBLAST search by invoking the elastic-blast application 
which reads a configuration file specifying the search. Figure 5 shows an example con-
figuration file. There are three sections (cloud-provider, cluster, and blast) that require 
corresponding information. In this example, the region is specified as us-east4, but all 
GCP and AWS regions are supported. At the end of the search, the BLAST results are 
copied to a cloud bucket (owned by the user) specified in the configuration file. The 
ElasticBLAST documentation [21] provides information on the necessary fields so we 
will not go into more detail here. It is also possible to use command-line options rather 
than a configuration file when calling the application, which is also discussed in the 
documentation.

As described in the implementation section, ElasticBLAST automatically selects an 
appropriate instance type for a search, based on database metadata and the BLAST pro-
gram. The user can override this selection by explicitly setting it in the configuration file.

The ElasticBLAST command-line application can be used as the basis for other inter-
faces. For example, we have built a Jupyter notebook that calls the elastic-blast applica-
tion as part of a workflow [22]. It would also be possible to call it based on input to a 
web page or to containerize the application for use in a pipeline with a formal workflow 
language.

Identifying RNA contamination with ElasticBLAST

Whole-transcriptome sequencing (WTS), also known as RNA sequencing (RNA-Seq), 
is a cost-effective means [23] to study differential gene expression profiles [24, 25], phy-
logenomics [26, 27] or evolution [28, 29]. However, RNA-Seq data analysis is especially 

Fig. 5  A configuration file used in the second example (below). This configuration file is for GCP. The 
use-preemptible keyword in the cluster section specifies the use of discounted instances. Information 
relevant to the search is in the blast section. Results are placed in the user’s bucket specified by the results 
keyword in the blast section
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challenging if there is no reference genome available in the public databases for the tar-
get organism. In this case, a suitable reference transcriptome can be assembled de novo 
and used for quantifying RNA abundance [30].

RNA-Seq contamination, however, is a recognized problem that has played an impor-
tant role in misleading multiple research conclusions [31]. Detecting and removing 
contamination prior to a de novo transcriptome assembly is a critical step. Nonethe-
less, detecting contamination in RNA-Seq data is complex due to the sequence similar-
ity between genes in distant taxonomic species. BLAST tools [1, 2] can be used to align 
RNA-Seq reads to public databases of sequences associating reads with one or more tax-
onomies. These associations can be used to filter contaminant reads prior to the assem-
bly process. Unfortunately, traditional BLAST searches are time and resource intensive, 
therefore, k-mer-based methods have been developed to accelerate the computation like 
Kraken 2 [32]. The improved computing time is at the cost of reducing the sensitivity of 
the sequence alignments. Although k-mer-based tools are reported to be much faster 
than programs like BLAST that produce alignments, the latter are still the more sensi-
tive tool for sequence similarity identification [33].

ElasticBLAST offers a cloud-based solution to efficiently execute BLAST searches in 
the cloud. The improvement in processing time makes BLAST a usable tool for taxo-
nomic classification of RNA-Seq reads without reducing the sensitivity of the sequence 
alignments. The GTax database [34] is a taxonomically structured database of genomic 
sequences comprising 19 taxonomic groups. This database includes representative 
genome sequences and latest sequence assemblies (if the reference genome is not availa-
ble) for 20,657 taxa. BLAST searches against GTax are used for taxonomic classification. 
In the case of an unannotated organism, RNA-Seq reads are aligned to the phylogeneti-
cally closest species or remain unidentified after not aligning to any GTax taxonomic 
group.

We used ElasticBLAST to perform BLAST nucleotide searches (using the blastn exe-
cutable from the BLAST + package) against the GTax database to taxonomically classify 
reads from eight RNA-Seq raw samples from Physalis peruviana (TaxID: 126903, Bio-
Project PRJNA67621). This plant is in the Solanoideae subfamily (TaxID: 424551) and it 
is phylogenetically close to the Capsicum genus (peppers, TaxID: 4071) and the Solanum 
genus (TaxID: 4107), which includes flowering plants like tomato, potato, and eggplant.

Our workflow first processes the samples with Trimmomatic [35] to remove adapt-
ers and low-quality reads. A total of 26,724,497 reads (5,375,728,710 bases) were aligned 
with ElasticBLAST against the GTax Eudicotyledons taxonomy group. Figure 6a shows 
the taxonomy tree created from the BLASTN results with the percentage of reads 
assigned to each species. The results show that 85.61% of the reads are assigned to spe-
cies below the correct Pentapetalae clade (TaxID: 1437201). Moreover, 76.85% of the 
reads are assigned to species under the correct family Solanaceae (TaxID: 4070). The 
remaining 14.39% of the reads were aligned to the rest of 18 GTax taxonomic groups. 
We identified 2.95% of the total reads as contaminants in these samples, see Fig.  6b, 
where the pie chart shows the percentage of reads with respect to total contaminant 
reads. As expected, the most prevalent contaminants in these samples are the bacte-
riophage Escherichia virus phiX174 (TaxID: 10847), the fungus Fusarium oxysporum f. 
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sp. lycopersici 4287 (TaxID: 426428) and the bacterium Staphylococcus sp. MZ1 (TaxID: 
2836369).

Plant (Viridiplantae kingdom) genomes in GTax are separated into three different tax-
onomy groups: Liliopsida and Eudicotyledons, with any other plant genome placed in 
a global taxonomy group named Viridiplantae. In this analysis, we considered as con-
tamination those reads with BLAST hits in Liliopsida or Viridiplantae that do not have 
any hits in Eudicotyledons genomes. We found a few reads, less than 1%, in the Physalis 
peruviana raw reads, that hits Asparagus officinalis (Liliopsida taxonomy group) that are 
marked as contamination despite being a plant, see Fig.  6b. Readers should note that 
separating plants into these three groups is a restrictive approach which should be used 
carefully depending on the research objective. For instance, if the analysis is focused on 
family conserved transcripts, the contamination threshold can be moved to the family 
level and consider anything that does not have BLAST hits against any member of the 
family as contamination. On the other side, reads with hits in Liliopsida or Viridiplantae 
could be marked as no contamination and joined as part of the Eudicotyledons reads 
in case of processing plants for less restrictive analysis. Additionally, research projects 
interested in horizontal gene transfer should further investigate reads marked as con-
tamination from other organisms like bacteria and fungi to avoid excluding those reads 
from further analysis.

Table  1 presents information on the size of the eudicotyledons and non-eudicotyle-
dons search sets. Table  2 presents information on the cost, run-time, and number of 
vCPU’s used for the searches. The blastn executable supports multiple search modes, 
and the sensitive BLASTN mode was used for the taxonomic identification described 
here. In this example, ElasticBLAST used thousands of instances (44,288 vCPUs) to 

Fig. 6  Percent of RNA-Seq reads assigned to each taxonomy species for eight Physalis peruviana samples. 
a Taxonomy tree created from the alignment to GTax Eudicotyledons taxonomy group. Percent of reads 
at species level with respect to total reads in all samples. b percent of reads not identified in the first 
alignment that match other GTax taxonomy groups. Percent of reads in the Pie chart are related to the total 
contaminant reads
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perform the BLASTN searches of 26,724,497 reads in less than a day at a cost of $0.0013 
per read.

We also present information for the megaBLAST search mode, which is optimized for 
more similar sequences than BLASTN but has a much shorter run-time and is corre-
spondingly less expensive to run. It is suitable for comparing sequences from the same or 
closely related organisms. The megaBLAST runs cost $0.000024 per read. ElasticBLAST 
could also start thousands of instances and finish searching 26,724,497 reads in a little 
more than an hour.

For both megaBLAST and BLASTN an expect value of 0.00001 was used and align-
ments below 75% identity were discarded. The actual BLAST options were the same in 
both searches:
-outfmt "6 qseqid sseqid pident slen length mismatch gapopen 

qlen qstart qend sstart send evalue bitscore score staxid" 

-evalue 1e-5 -perc_identity 75 -max_target_seqs 5 -max_hsps 

10 -penalty -3.

Using ElasticBLAST with multiple instances

To demonstrate the ability of ElasticBLAST to effectively utilize multiple instances, 
we present results for ElasticBLAST runs with 1, 2, 4, and 8 instances at GCP. We 
run these searches with both on-demand and preemptible instances to provide runt-
ime and cost estimates. To provide a baseline, we run BLAST+ on a stand-alone GCP 
instance using a script to execute operations performed by ElasticBLAST to configure 
and run BLAST. For this series of runs we searched 224 contigs (631,309 nucleotides) 
from the WGS project (DXSX00000000.1) for Candidatus Saccharibacteria bacte-
rium against the refseq_protein database, consisting of high-quality proteins from the 
NCBI RefSeq project [36]. We used the BLASTX program, which translates a nucleo-
tide query in six frames and compares it to a protein database. ElasticBLAST uses 

Table 1  Search sets used for the taxonomic classification (derived from GTax database)

Search set Number of sequences Number of bases

Eudicotyledons 880 39,174,504,447

non-eudicotyledons 41,218 447,368,164,093

Table 2  Cost, run-time, and number of virtual CPUs for the ElasticBLAST searches used for 
taxonomic identification

The costs were calculated by considering the run-time, the hourly on-demand cost per instance, and the number of 
instances used. Non-eudicotyledons searches were run on an r5ad.4xlarge instance (16 vCPUs, 128 GB RAM, 600 GB local 
SSD, 10 Gigabit NIC, $1.048/hr on demand). The eudicotyledons searches were run on an c5ad.4xlarge instance (16 vCPUs, 
32 GB RAM, 600 GB local SSD, 10 Gigabit NIC, $0.688/hr on demand)

Search set MegaBLAST 
time

MegaBLAST 
cost

MegaBLAST 
vCPUs

BLASTN time BLASTN cost BLASTN vCPUs

eudicotyle-
dons

18 min $20.64 1600 3 h 29 min $1,849 12,288

non-eudicoty-
ledons

1 h 19 min $617.2 7248 15 h 45 min $33,012 32,000
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the database metadata to select the e2-highmem-16 instance with sufficient memory 
(128 GB) to accommodate the database. The full refseq_protein database is 135 GB, 
but as described earlier, the metadata specifies the memory needed for ElasticBLAST 
to run efficiently (about 96  GB). Table  3 presents the results, and we discuss those 
below. The BLAST parameters used for these searches were:
-outfmt 7 -evalue 0.01 -task blastx-fast.

Discounted instances are an effective means to reduce cloud costs. At GCP, they 
are called preemptible instances and cost 20% of the on-demand instance price. Elas-
ticBLAST searched the 631,309 nucleotides against the 90 million residues in ref-
seq_protein for a little more than a dollar with one instance, but this run costs about 
$6 with one on-demand instance (first row of Table  3). We did not have a problem 
acquiring discounted instances for our runs, and they ran in roughly the same time 
(and sometimes less) as the on-demand instances.

ElasticBLAST can effectively use multiple instances. The run-time with two 
instances was about 50% of that for a single instance, and the cost was about the 
same. The run-time with four instances was about 29% of the single instance time, 
and the cost was 5% higher. The search with eight instances cost about 30% more than 
the single instance run and ran in about 20% of the single instance time. The extra 
expense of the eight-instance run is due to the time it takes Kubernetes to detect that 
instances are no longer needed and shut them down (data not shown), but the run 
is still under $2 using preemptible instances. Figure  7 presents a screenshot of the 
GCP monitoring view for the four-instance run, consisting of two graphs. The top 
graph shows the number of instances in the cluster at a given time. The bottom graph 
shows how busy the cluster is at a given time. Every ElasticBLAST search on GCP has 
a start-up period where only one instance is running allowing for cluster configura-
tion and BLAST database installation. This time varies, depending upon the state of 
the network at the provider and the size of the database, but was 22 min or less for 
the runs discussed here. The bottom graph shows that the cluster is no longer com-
pletely busy after 4:20, and the top graph shows that cluster shrinking in response, 
completely shutting down after all instances are no longer busy.

For the stand-alone run, a bash script was used to download the BLAST+ pack-
age, the refseq_protein BLAST database and the query file, and then start the 

Table 3  ElasticBLAST searches of Candidatus Saccharibacteria bacterium contigs from 
DXSX00000000.1

Searches were performed at GCP with the e2-highmem-16 instance, selected by ElasticBLAST. The cost was estimated using 
the search time, the number of instances, and the hourly cost ($0.81432) of the instances (as of October 25, 2022). Costs for 
ElasticBLAST runs on preemptible instances were calculated at 20% of on-demand instance cost and are shown in the last 
two columns. The last row (“stand-alone”) shows data for a stand-alone BLAST + run, performed on one on-demand instance

Number of instances Time (hours) Cost ($) Time (hours) 
preemptible

Cost ($)
preemptible

1 8.07 6.57 7.83 1.28

2 4.08 6.44 4.13 1.30

4 2.37 6.87 2.22 1.28

8 1.63 8.55 1.5 1.59

1 (stand-alone) 6.62 5.39 NA NA
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BLAST+ search (using 15 threads). The time and cost shown in Table  3 include all 
those tasks. The stand-alone run was faster than ElasticBLAST with a single instance 
but did not include starting the instance, downloading results to a cloud bucket (after 
the search) and shutting the instance down.

Cloud providers charge for storing data in cloud buckets. In Table 4, we present esti-
mates for the cost of storing data associated with the second example for a month. The 
costs to store the BLAST results and queries are minimal. Additionally, a user might 
want to store a custom database on the cloud. A database the size of refseq_protein 
would be $3.11 per month.

ElasticBLAST is most efficient working on large query sets. There are a few reasons 
for this. First, each ElasticBLAST search involves setup overhead, which occurs once 
regardless of the number of queries. Second, ElasticBLAST groups the queries into 
batches that are large enough to amortize the scheduling overhead of any individual 
batch. In the example above the setup time is around 20 min, most of which is to down-
load the refseq_protein database (135 GB).

We have discussed searches with a wide range of costs. A relatively small search of 
a few hundred contigs against a smaller (but well curated) protein database cost less 
than $2 with discounted instances. A large search of more than 5 billion bases against 

Fig. 7  Cluster size (top) and CPU utilization of the cluster (bottom) for an ElasticBLAST run with four 
instances. This is a screenshot of the GCP monitoring view for the cluster. The cluster has only one instance 
from 2:15 to 2:40 (top graph), allowing for the installation of software and databases. The bottom graph 
shows that the cluster has about 50% CPU utilization after 4:20, and the top graph shows the cluster size 
shrinking about 10 min later. The CPU utilization at a given time is based on the size of the cluster at that 
point in time

Table 4  Costs to store data associated with the second example for a month

ElasticBLAST delivers the BLAST results to the cloud bucket already gzipped. ElasticBLAST can also read a gzipped FASTA file. 
The current costs at GCP and AWS of $0.023 per GB per month were used

Data Size (GB) Cost ($) per month

BLAST results (gzipped) 0.0018 0.0000414

Query file (gzipped) 0.000196 0.000004508
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a database of more than 400 billion bases using a sensitive search algorithm cost about 
$33,000. There are some best practices to prevent surprises. First, as noted in [8], it is 
a good idea to perform a small test run before submitting large jobs. This allows users 
to estimate overall cost and possibly change strategy. Second, discounted instances can 
provide substantial savings, and ElasticBLAST makes it straightforward to use those. 
Cautious users can specify a small number of instances and, if it seems the run will cost 
too much, stop the searches with the delete command. Already processed results will 
be available in the cloud bucket.

ElasticBLAST implements several best practices to make searches efficient. First, 
it selects appropriate hardware for the search. It uses SSDs for the databases, which 
are more expensive than spinning disks, but inexpensive compared to the cost of the 
instances and respond more quickly, keeping the databases in memory and the instances 
busy. It also selects the smallest instance, based on the size of the database, that has suf-
ficient memory to hold the database and allow BLAST to function efficiently. Second, it 
uses cloud services that shut down instances when they are no longer needed. Third, it 
optimizes the BLAST threading for the search, using at most 16 threads per process as 
this is optimal for BLAST. Instances with more than 16 vCPUs (e.g., 32 vCPUs) run mul-
tiple processes. For small databases, it uses a threading model that is more efficient for 
those databases [37].

Other tools

We compare ElasticBLAST to other software that can run BLAST on the cloud. We limit 
our discussion to projects that make source code available and can be run without a 
licensing fee to match those features of ElasticBLAST.

First, we discuss two packages that use cloud technology to produce sequence align-
ments. SparkBLAST [38] is a cloud native application that runs BLAST on GCP and 
Azure. It uses cloud native technology to distribute queries over multiple instances 
running an unsupported version of BLAST (“blastall”). It does not create or provision 
instances for the BLAST search and does not support spot instances. SparkBLAST is 
from 2017 and does not appear to be currently in development. Sparky-BLAST [39] is 
an application that runs its own implementation of BLAST (written in Python). It is pre-
sented by the authors as a proposal, but it has some interesting features. It can distribute 
a database across multiple instances, allowing Sparky-BLAST to use smaller machines 
for the searches. ElasticBLAST is unable to distribute databases in this manner, but (as 
described in the Implementation section) ElasticBLAST can start instances that can 
handle almost any database. Sparky-BLAST can also distribute a set of queries over 
multiple instances, and the authors demonstrate that it scales well (with five 16 CPU 
instances) and compare it to BLAST+ running on one instance, since BLAST+ can-
not use multiple instances. ElasticBLAST, running BLAST+ on the cloud for the user, 
lifts this limitation by distributing searches over multiple instances. As we have shown 
above, it also can scale the searches with different numbers of instances. Sparky-BLAST 
only supports one BLAST program (BLASTN or DNA-DNA comparisons), requires the 
user to set up a SPARK cluster and Cassandra database, and does not offer the full range 
of BLAST report options so does not seem suitable for most uses of BLAST. The authors 
in [39] also do not make clear which cloud provider was used for their benchmarking 
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or if it was run on non-cloud machines. It does make interesting and innovative use of 
cloud technology to improve sequence searches.

Nextflow [40] is a general package for running a pipeline, and one could use it to run 
BLAST searches. It supports spot instances, has cloud support, and can create and pro-
vision instances, but the user must provide the software. It is unable to decide which 
instances will be able to run a BLAST search, unlike ElasticBLAST. It is specifically tar-
geted to “bioinformaticians familiar with programming” [40], whereas ElasticBLAST 
does not require programming experience.

ElasticBLAST was designed specifically for the cloud, with the goal of making it easy 
to run there. There is other software that will run BLAST on the cloud, but nothing with 
the functionality of ElasticBLAST.

Conclusion
We presented ElasticBLAST, a new cloud native application that can run 
BLAST+ searches on a cloud provider. ElasticBLAST simplifies running a BLAST search 
on the cloud. It can choose a cloud instance suitable for a BLAST search, given informa-
tion about the database and program. It can also use discounted instances, saving the 
user money. ElasticBLAST can search NCBI or user provided databases and supports 
most of the BLAST+ programs and options. It is supported at both AWS and GCP.

Extensive documentation for ElasticBLAST is available at [21]. This documentation 
includes an introduction to the cloud and ElasticBLAST as well as quickstarts for GCP 
and AWS, so a researcher can try out ElasticBLAST with minimal effort. Tutorials and 
documentation for parameters are also available. The ElasticBLAST source code is avail-
able at GitHub [42]. We also provide a GitHub repository with scripts that use Elas-
ticBLAST [22], which includes a Jupyter notebook.

We are exploring ways to improve ElasticBLAST. These include optimizing the set-
ting of parameters (e.g., batch-len) used by ElasticBLAST and improving the ability 
of ElasticBLAST to read in large numbers of sequences from SRA. We are also inter-
ested in integrating ElasticBLAST into workflows. We welcome feedback from users on 
features that would make ElasticBLAST more useful.
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