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Abstract 

Presenting with a poor prognosis, gastric cancer (GC) remains one of the leading 
causes of disease and death worldwide. Long non-coding RNAs (lncRNAs) regulate 
tumor formation and have been long used to predict tumor prognosis. N7-methyl-
guanosine (m7G) is the most prevalent RNA modification. m7G-lncRNAs regulate GC 
onset and progression, but their precise mechanism in GC is unclear. The objective 
of this research was the development of a new m7G-related lncRNA signature as a 
biomarker for predicting GC survival rate and guiding treatment. The Cancer Genome 
Atlas database helped extract gene expression data and clinical information for GC. 
Pearson correlation analysis helped point out m7G-related lncRNAs. Univariate Cox 
analysis helped in identifying m7G-related lncRNA with predictive capability. The 
Lasso-Cox method helped point out seven lncRNAs for the purpose of establishing an 
m7G-related lncRNA prognostic signature (m7G-LPS), followed by the construction of a 
nomogram. Kaplan–Meier analysis, univariate and multivariate Cox regression analysis, 
calibration plot of the nomogram model, receiver operating characteristic curve and 
principal component analysis were utilized for the verification of the risk model’s reli-
ability. Furthermore, q-PCR helped verify the lncRNAs expression of m7G-LPS in-vitro. 
The study subjects were classified into high and low-risk groups based on the median 
value of the risk score. Gene enrichment analysis confirmed the constructed m7G-LPS’ 
correlation with RNA transcription and translation and multiple immune-related path-
ways. Analysis of the clinicopathological features revealed more progressive features 
in the high-risk group. CIBERSORT analysis showed the involvement of m7G-LPS in 
immune cell infiltration. The risk score was correlated with immune checkpoint gene 
expression, immune cell and immune function score, immune cell infiltration, and 
chemotherapy drug sensitivity. Therefore, our study shows that m7G-LPS constructed 
using seven m7G-related lncRNAs can predict the survival time of GC patients and 
guide chemotherapy and immunotherapy regimens as biomarker.
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Introduction
Gastric cancer (GC) ranks fifth on the list of highly prevalent malignancies and remains 
the third leading risk factor for cancer-caused fatalities globally [1]. Stomach adenocarci-
noma is the main pathologic type of GC originating from the stomach’s most superficial 
glands or mucous membranes. The understanding of the pathogenesis and progression 
of GC remains limited, due to which a majority of patients are diagnosed with local-
ized or distant metastasis, thus missing the opportunity for radical surgical treatment 
[2]. Moreover, postoperative recurrence is also a major cause of GC-associated deaths. 
Although advanced surgical techniques such as hot intraperitoneal chemotherapy, 
improved systemic chemotherapy, targeted therapy, and immunotherapy have made 
great strides, the prognosis of GC remains unsatisfactory [3]. Therefore, the identifica-
tion of novel predictive biomarkers and promising pharmaceutical target agents for GC 
is extremely important.

RNA methylation is a post-transcriptional modification commonly existing in eukary-
otes and prokaryotes [4]. Based on the modification site, RNA methylation can be clas-
sified as N6-Methyladenosine (m6A), 5-Methylcytidine (m5C), N7-methylguanosine 
(m7G), or 2-O-Methylation [5]. By directly affecting messenger RNA, ribosomal RNA, 
microRNA, and transfer RNA metabolism, m7G modification directly functions in sev-
eral normal physiological mechanisms and pathologies [6]. Multiple research reports 
have shown the close association of m7G modification with tumorigenesis and cancer 
growth. Being a prominent mediator of m7G, methyltransferase 1 (METTL1) expres-
sion is notably upregulated in hepatocellular carcinoma depicting its relationship with 
poor prognosis. A study showed that METTL1 suppression in-vitro and in-vivo could 
effectively limit bladder cancer proliferation, migration, and invasion [7]. In lung can-
cer, METTL1-mediated m7G promotes miRNA maturation by destabilizing stem-loop 
structures, thereby inhibiting cell migration and, thus, metastasis [8]. In addition, many 
bioinformatics investigations have highlighted the use of m7G regulation as a predictive 
marker for GC, breast cancer, and melanoma gliomas [9, 10].

LncRNAs are greater than 200 nucleotides long and form an important part of the 
non-coding genome [11]. Typically, lncRNAs regulate the expression of specific miR-
NAs by acting as competitive endogenous RNAs to target downstream molecules [12]. 
A lot of research has demonstrated lncRNAs’ function in numerous biological processes 
such as DNA methylation, histone modification, RNA post-transcriptional regulation, 
and protein translation regulation, and their involvement in tumorigenesis and progres-
sion [13]. Furthermore, RNA methylation of lncRNAs was also found to influence cancer 
growth. A study has shown that m6A ‘writer’ METTL3 increases LINC00958 stability 
and promotes hepatocellular carcinoma advancement [14]. LncRNA UBA6-as1 slows 
down UBA6 mRNA destruction by modifying m6A methylation status, thereby inhib-
iting the malignancy of ovarian cancer cells [15]. In glioblastoma stem cells, the m6A 
demethylase ALKBH5 interacts with lncRNA Forkhead box protein M1(FOXM1)-AS for 
the purpose of promoting cancer cell growth and tumorigenicity [16]. In addition, many 
bioinformatics analyses have shown that lncRNAs have great potential as prognostic 
biomarkers for gastric cancer. wang et al. used LASSO analysis to identify four Pyrop-
tosis-Related-lncRNAs (HAND2-AS1, LINC01354, RP11-276H19.1, and PGM5-AS1), 
and demonstrated that these four lncRNAs could well predict the prognosis of gastric 
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cancer patients, and found that the pyroptosis risk score of gastric cancer was associated 
with clinicopathological features and TME alterations [17]. And in another study, four 
ferroptosis-related lncRNAs (AP003392.1, AC245041.2, AP001271.1, and BOLA 3-AS 1) 
could also well predict the prognosis of gastric cancer patients [18]. Although several 
studies have identified the role of lncRNA methylation in tumorigenesis and its potential 
as a biomarker, the role of m7G-related lncRNA in gastric cancer remains unclear.

The tumor immune microenvironment (TIME) includes tumor cells, immune cells, 
tumor-associated fibroblasts, peripheral microvessels, different cytokines, and extracel-
lular matrix [19]. Tumor-related onset and advancement are influenced by the interac-
tions between its cells and the microenvironment [20]. LncRNA regulates immune cell 
differentiation, growth, secretory elements, and auxiliary physiological procedures in 
the TIME, affecting tumor onset and progression [21]. LINC01116 knockdown affects 
IL-1b release, which promotes the use of tumor-associated neutrophils, which, in turn, 
results in the accumulation of TAN, causing the production of numerous cytokines, thus 
leading to tumor growth [22]. The lncRNA HOXA transcript at the distal tip (HOTTIP) 
enhances IL-6 expression by upregulating PD-L1 expression in neutrophils allowing 
ovarian cancer cells to escape the immune system. HOTTIP promotes IL-6 secretion, 
thereby upregulating PD-L1 expression in neutrophils and ultimately promoting the 
ability of ovarian cancer cells to escape the immune system [23]. In addition, LINC00662 
upregulates the expression of WNT3A by attaching to miR-15a, miR-16, and miR-107 
competitively, causing stimulation of the Wnt/β-catenin signaling pathway in HCC cells 
and increased polarization of M2 macrophages, leading to tumor development [24]. 
However, limited research is available on the association of lncRNAs with immune cell 
infiltration in GC.

During this research, m7G-related lncRNAs in GC were identified based on The Can-
cer Genome Atlas (TCGA) database, and a prognostic model containing seven m7G-
related lncRNAs was established. The relationship of risk score with immune infiltration, 
immune checkpoint genes, and chemotherapeutic drug sensitivity was also studied.

Methodology
Procurement of data

The data for transcriptome sequencing data and clinical information were taken from 
the TCGA database (https://​portal.​gdc.​cancer.​gov/). Patient clinical information was 
extracted, including age, gender, stage, grade, TNM stages, and survival status. After 
downloading, samples with incomplete clinical data, low gene expression, and OS < 30 
were excluded. Eventually, RNA sequencing data from 337 GC samples were included. 
Data on lncRNA annotation was taken from the GENCODE database (https://​www.​
genco​degen​es.​org).

Identification of differential expression and interactions of m7G methylation‑regulated 

genes

Based on previous literature, 22 m7G markers were identified. These include AGO2, 
DCP2, DCPS, EIF3D, EIF4A1, EIF4E, EIF4E2, IF4E3, EIF4G3, GEMIN5, IFIT5, LARP1, 
METTL1, NCBP1, NCBP2, NCBP3, NUDT10, NUDT11, NUDT16, NUDT3, NUDT4, 
WDR4. The expression matrix of m7G markers and lncRNAs was obtained from 

https://portal.gdc.cancer.gov/
https://www.gencodegenes.org
https://www.gencodegenes.org


Page 4 of 22Zhao et al. BMC Bioinformatics          (2023) 24:100 

RNAseq. ’Limma’ (linear models for microarray data) is a differential expression screen-
ing method based on generalized linear model [25]. The R software package ‘limma’ 
(version 3.40.6) was utilized for differential evaluation for the purpose of obtaining gene 
expression differences across different comparison groups and control groups. The fil-
tering criteria were set to be |log2fold change|> 1 and false discovery rate (FDR) < 0:05. 
The STRING database (https://​www.​string-​db.​org) helped construct a Protein–Protein 
Interaction (PPI) network of m7G regulatory genes.

Acquisition of m7G‑LPS and establishment of a predictive risk model

RNAseq data was used to extract the lncRNA expression matrix. Pearson correlation 
analysis was conducted with the help of the “corrplot” function in R software for obtain-
ing m7G-related lncRNA (r > 0.3, p < 0.05). Survival time, survival status, and gene 
expression data were integrated with the help of the R software package “survival”, and 
univariate Cox regression helped in evaluating the predictive efficiency of each gene. The 
least absolute shrinkage and selection operator (LASSO) Cox regression analysis was 
conducted with the help of the R package “glmnet.” In addition, tenfold cross-validation 
was also set for the purpose of developing an optimized model. The Lambda value was 
set to 0.00281938915464775, after which seven genes were obtained. The formula used 
for risk score calculation is given below:

where Coefi represents the coefficients, and Expi stands for the FPKM value of each 
m7G-related lncRNA

Assessment of the predictive (prognostic) model of m7G‑LPS

The receiver operating characteristic (ROC) curve analysis was conducted with the 
help of the R package “pROC” (version 1.17.0.1) for the purpose of obtaining the area 
under the curve (AUC). Univariate and multivariate Cox regression analysis confirmed 
the independent predictive efficiency of the m7G-related lncRNA prediction model for 
GC. Principal components analysis (PCA) was conducted with the help of the R pack-
age “stats” (version 3.6.0). Using the R package “rms”, survival time, survival status, and 
eight features data were integrated, followed by the establishment of a nomogram using 
the Cox method for the purpose of assessing the feature’s predictive efficiency in 337 
samples.

Gene set enrichment analysis (GSEA)

The GSEA software (version 3.0) was obtained from the GSEA website (http://​softw​
are.​broad​insti​tute.​org/​gsea/​index.​jsp) [26]. Two groups were established by the divi-
sion of the samples according to the risk score and the c5.go.mf.v7.4.symbols.gmt sub-
set, c2.cp.kegg.v7.4.symbols.gmt subset, c5.go.bp.v7.4.symbols.gmt subset and c5.go.cc.
v7.4.symbols.gmt subset was downloaded from the Molecular Signatures Database 
(http://​www.​gsea-​msigdb.​org/​gsea/​downl​oads.​jsp) for the purpose of evaluating the 
associated pathways and underlying molecular mechanisms [27–30]. On the basis of 

Risk score =

n

i=1

Coefi ∗ Expi

https://www.string-db.org
http://software.broadinstitute.org/gsea/index.jsp)
http://software.broadinstitute.org/gsea/index.jsp)
http://www.gsea-msigdb.org/gsea/downloads.jsp


Page 5 of 22Zhao et al. BMC Bioinformatics          (2023) 24:100 	

gene expression profile and phenotype grouping, the minimum and maximum values of 
the gene set were set to 5 and 5000, respectively, and 1000 times of resampling was per-
formed. A p value of < 0.05 and an FDR of < 0.25 were considered statistically significant.

Immunocorrelation analysis and drug sensitivity analysis of prognostic features

The Perl programming language was used for the purpose of obtaining an immune 
infiltrating cellular matrix and CIBERSORT for immune infiltration analysis. Single-
sample GSEA (ssGSEA) helped in assessing the immune cells and their functionality. 
The “pRRophetic” package helped compare the differences in IC50 values of chemo-
therapeutic drugs utilized in the treatment of GC. Results of the immunocorrelation 
analysis were viewed using the R packages “barplot”, “corrplot”, and “ggplot2”.

qPCR of the expression of m7G‑related lncRNAs in tissues

Human normal gastric mucosal epithelial cells GSE-1 and human GC cell lines MKN-45, 
AGS, and HGC-27 were bought from Shanghai FuHeng BioLogy Ltd. The Trizol reagent 
(Vazyme Biotech Co., Ltd) was utilized to isolate total cellular RNA. Reverse transcrip-
tion was conducted following the instructions of the Vazyme reverse transcription kit 
(Vazyme Biotech Co., Ltd). Quantitative PCR (qPCR) using 2X ChamQ Universal SYBR 
QPCR Master Mix kit (Analytik Jena AG). The Ct value data in the reaction were col-
lected with a corrected threshold setting, and qPCR was used for relative quantifica-
tion using the 2−ΔΔCt method. Each PCR reaction was performed in triplicates. For PCR 
amplification, the primers (“F” represents “Forward” and “R” represents “Reverse”) used 
include: CHROMR F 5′-CTG​GTG​CTG​CTG​AGT​AAC​CA-3′ and R 5′- AAA​GCG​AGG​
ACA​ACC​AGA​GA -3′, LINC01094 F 5′- GAG​GGA​GCA​CTG​GGA​TGT​TA -3′ and R 5′- 
CCT​TGC​AGC​TAG​GAG​TGG​AC -3′, AL355574.1 F 5′- GAG​TGG​AGT​TCT​TGG​GAA​ 
-3′ and R 5′- GGC​CAC​AGA​TAA​CTG​CTG​CT -3′, AC245041.1 F 5′- GCA​AGA​GGC​
AGC​TAT​TGG​AC -3′ and R 5′- TGT​GCA​GTG​GAG​AGA​TCC​TG -3′, and AL161785.1 
F 5′- TGA​TAC​CTC​GCC​ACA​TTC​TG -3′ and R 5′- AAA​GCG​AGG​ACA​ACC​AGA​GA 
-3′, AP001528.1 F 5′- CCA​GTG​GTC​CTC​CTT​TCT​GA -3′ and R 5′- CAT​TTC​AGC​
TTG​AGG​CTT​CC -3′, AC005586.1 F 5′- AGC​ATC​GCC​AGA​GGA​AAC​TA -3′ and R 5′- 
AAG​CTT​CCA​GCT​GGC​ATA​AA -3′, and GAPDH F 5′- CAG​CCT​CAA​GAT​CAT​CAG​
CA -3’ and R 5’- TGT​GGT​CAT​GAG​TCC​TTC​CA -3′. GAPDH was utilized in the form 
of internal control to determine relative expression.

Statistical analysis

Data analysis was done primarily using the R software (version 4.0.3) and Perl soft-
ware (version 5.3). In this study, univariate and multifactorial Cox regression, Lasso 
regression, Kaplan–Meier method, PCA, and ROC analysis were used. Kruskal–Wal-
lis test helped compare the differences (variations) across different groups. Pearson 
correlation test helped in carrying out correlation analysis. The rest of the analyses 
were performed as described previously. P < 0.05 was considered statistically signifi-
cant (∗ p < 0.05, ∗  ∗ p < 0.01, and ∗  ∗  ∗ p < 0.001).
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Results
Differential expression and interaction of m7G regulatory genes

The flow chart was shown in Fig.  1. Initially, the expression of 22 m7G methylation-
regulated genes was analyzed in GC and healthy samples from the TCGA database. 
A remarkable variation was observed in the m7G regulatory genes between GC and 
healthy tissues. Particularly, the expression of AGO2, DCP2, DCPS, EIF3D, EIF4A1, 
EIF4E, EIF4E2, EIF4G3, GEMIN5, IFIT5, LARP1, METTL1, NCBP1, NCBP2, NCBP3, 
NUDT3, NUDT4, and WDR4 was remarkably increased in GC compared to healthy 
tissues (p < 0.001). EIF4E3 and NUDT10 expression was significantly decreased in GC 
compared to healthy tissues. However, no difference in the expression of NUDT11 and 
NUDT16 was found between GC and normal tissues (Fig. 2a). In the correlation analy-
sis of the 22 regulatory genes, EIF4E expression was strongly associated with NUDT10 
expression (Fig. 2b). In the next step, the STRING database helped in developing a PPI 
network to determine the relationship between the identified regulatory genes. A close 
relationship was found among all regulatory genes except IFIT5 (Fig.  2c). The node 
count diagram revealed EIF4E’s relation to 13 other genes, suggesting that EIF4E may 
be key in the PPI network (Fig. 2d). It is evident from the above-mentioned findings that 
m7G methylation-regulated gene expression varied remarkably across GC and healthy 
tissues, suggesting its involvement in GC onset and advancement.

Identification of m7G‑related lncRNA prognostic signature (m7G‑LPS)

Initially, based on the annotation files downloaded from the ‘GENCODE’ website, the 
lncRNAs expression matrix was identified in the TCGA database, followed by extraction 

Fig. 1  Flow chart
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of the expression matrix of 22 m7G regulatory genes from the TCGA database. Those 
lncRNAs whose expression values were related to one or more m7G methylation-regu-
lated genes were defined as m7G-related lncRNAs (|Pearson R|> 0.3 and p < 0.05). Finally, 
446 m7G-associated lncRNAs (Fig.  3a) were identified. Subsequently, univariate COX 
regression analysis (p < 0.05, Fig. 3b) and correlation analysis (Fig. 3c) helped identify 25 
lncRNAs having good predictive efficiency. Then, genes with p < 0.01 were screened for 
Lasso regression analysis, and finally, seven m7G-related lncRNAs, namely, AL161785.1, 
LINC01094, CHROMR, AP001528.1, AC245041.1, AL355574.1, and AC005586.1, were 
identified (Fig. 4a). Among these genes, AL355574.1 and AC005586.1 were recognized 
as protective effects (HR < 1, p < 0:05). In contrast, AL161785.1, LINC01094, CHROMR, 
AP001528.1, and AC245041.1 were considered as risk effects (hazard ratio, HR > 1, 
p < 0:05).

The formula used for calculating the GC sample risk score is given below: Ris
kscore =  0.0410201815783705 ×  AL161785.1 +  0.232602359496281 ×  LINC
01094 +  0.0744239113701401 ×  CHROMR +  0.1873048414553 ×  AP001528
.1 +  0.0295140650717325 ×  AC245041.1–0.226949073687661 ×  L355574.1–
0.151514242977824 × AC005586.1. As per the median value of the risk score, the 
samples were stratified into two groups, one of high risk and the other of low risk. 
The Kaplan–Meier survival curve depicted a remarkably shorter overall survival 
(OS) of the high-risk group in comparison to the other group (p < 0.001, Fig. 4c). As 
given in the risk value curve and the survival status scatter plot, the survival time and 
survival status of the high-risk subjects were worse than those in the low-risk cat-
egory (Fig. 4d). The established prognostic model’s survival prediction capability was 

Fig. 2  Differential expression and interactions of m7G methylation-regulated genes. a Heatmap of 
differential expression of m7G methylation-regulated genes. b Correlation heat map. c Protein–protein 
interaction network (PPI). d Node count of PPI network
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evaluated with the help of the ROC curve for GC patients over one, three, and five 
years, and the AUC values were 0.68, 0.70, and 0.72, respectively (Fig. 4b). These find-
ings indicate that the established m7G-LPS has accurate OS prediction ability.

Validation of the prediction model constructed using the m7G‑LPS and construction 

of nomograms

To test whether the risk score was an independent risk factor, the survival time, sur-
vival status, age, sex, tumor pathological stage, TNM stage, tumor grade, and risk 
score were integrated and analyzed using univariate and multivariate COX regression. 
The findings of these analyses (p < 0.05) revealed HR = 1.667546, 95% CI 1.186220734–
2.344176354 and HR = 0.621721461, 95% CI 0.426695209–0.905886843, respectively, 
for risk score, from which it can be concluded that risk score can serve as an inde-
pendent risk factor for GC (Fig. 5a, b). A nomogram was also constructed based on 
the findings of the Cox regression analysis (Fig. 5c). For the purpose of assessing the 
prognostic efficiency of the constructed model, the AUC values of the time-depend-
ent ROC curve of the risk score were evaluated, and the values over one, three, and 
five years were 0.68, 0.69, and 0.71, respectively. Moreover, the risk score AUC in the 
clinical ROC appeared to be remarkably increased compared to other clinical indica-
tors (Fig.  5d, e). The calibration curve of the nomogram is shown in Fig.  4f. These 

Fig. 3  Identification of m7G-related lncRNA. a Sankey diagram of m7G gene and m7G-related lncRNA. b 
Univariate COX analysis of prognostic m7G-related lncRNA. c Heatmap of correlation between m7G gene and 
prognostic m7G-related lncRNA
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findings are indicative of the m7G-LPS-based prediction model’s enhanced sensitivity 
as well as specificity in predicting the prognosis of patients with GC.

Principal component analysis (PCA) of m7G‑LPS

PCA was utilized for the purpose of analyzing the variations between both risk groups in 
terms of genome-wide expression profiles, m7G methylation-regulated genes expression 
profiles, prognosis-related m7GlncRNA expression profiles, and seven prognostic m7G-
related lncRNAs expression profiles. The findings of this analysis showed clearer differ-
ences across the two groups in the seven prognostic m7G-related lncRNAs expression 
profiles than in the other three expression profiles (Fig. 6). Therefore, seven prognostic 
m7G-related lncRNAs expression profiles were greatly distinct and could be used to dif-
ferentiate effectively across the two GC populations.

Gene set enrichment analysis (GSEA) of m7G‑LPS

To clarify the differences in the potential pathways activated in the two risk groups, 
GSEA was conducted. The top ten signaling pathways (Fig. 7) in the two groups were 
visualized based on this analysis. Gene Ontology (GO) analysis revealed high enrich-
ment of external encapsulating structure, negative regulation of T cell migration and 
T helper 1 type immune response, positive regulation of T helper 1 cell differentiation, 

Fig. 4  Lasso Regression analysis, Time-dependent ROC analysis, and Kaplan–Meier analysis, risk score 
analysis for m7G-LPS a m7G-LPS lasso regression analysis and Determine the optimal LASSO settings. b 
Time-dependent ROC analysis for m7G-LPS. c Kaplan–Meier curves between high and low risk groups d 
Distribution of risk groups, prognosis, and m7G-LPS expression heat maps
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leukotriene signaling pathway, epithelial-mesenchymal signaling, and granulocyte 
colony-stimulating factor production in the high-risk group and positive regulation 
of establishment of protein localization to telomere, DNA endoreduplication, positive 
regulation of meiotic cell cycle phase transition, regulation of mitochondrial mRNA 
stability, transcription initiation from RNA polymerase III promoter, endoribonuclease 
activity, ligase activity, RNA polymerase activity, endonuclease activity, catalytic activity 
acting on RNA, endonuclease activity active with either RNA or DNA and producing 5 

Fig. 5  Validation of Prediction Models Constructed with m7G-LPS and Construction of Nomograms. a 
Univariate and b multivariate Cox regression analysis between multiple clinical variables and OS in GC 
patients. c Clinical prognostic nomogram predicted the survival risk of GC patients. d Time-dependent ROC 
and e Clinical ROC curves are used to evaluate the diagnostic capabilities of models. f Calibration plot of the 
nomogram model. (∗ p < 0.05, ∗  ∗ p < 0.01, and ∗  ∗  ∗ p < 0.001)
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phosphomonoesters, nucleotidyltransferase activity, nuclease activity, catalytic activity 
acting on DNA, RNA methyltransferase activity, nuclear chromosome, mitochondrial 
matrix, nucleolus, spliceosomal complex, preribosome, RNA polymerase complex, U2 
type spliceosomal complex, small nuclear ribonucleoprotein complex, receptor complex 
and transcription factor IID complex in the low-risk group. The Kyoto Encyclopedia of 
Genes and Genomes (KEGG) analysis showed a high enrichment of toll-like receptor 
signaling pathway, Jak-STAT signaling pathway, chemokine signaling pathway, leukocyte 
transendothelial migration, cytokine-cytokine receptor interaction in the subjects with 
a high risk score, while a high enrichment of mismatch repair, DNA replication, RNA 
polymerase, homologous recombination, and spliceosome in the subjects with a low risk 
score. These findings indicated the possibility of m7G-LPS’ influence on the course of 
GC by regulating transcription, translation, and immune infiltration.

Correlation of the m7G‑LPS with clinicopathological features in patients with GC

The association of the risk score with the clinicopathological features of the two risk 
groups was investigated. The results suggest a significant difference in T-stage, N-stage, 
pathological stage, and age between the two groups (Fig. 8a). In particular, GC subjects 
with T3 and T4 presented an elevated risk score than those with T1 (p < 0.05). The sub-
jects with N1 and N3 showed elevated risk scores than those with N0 (p < 0.05); and risk 
scores were remarkably increased in those with STAGE II, STAGE III and STAGE IV 
than in those with STAGE I (p < 0.05, Fig. 8b, c, d). In addition, patients aged ≤ 65 years 
presented with a remarkably greater risk score compared to those aged > 65 years group 
(Fig.  8e). Therefore, high-risk subjects tended to have advanced clinicopathological 
features.

Fig. 6  PCA comparison between two groups based on a genome-wide, b m7G methylation-regulated 
genes, c m7G-related lncRNAs, and d m7G-LPS in TCGA entire set
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Correlation of the m7G‑LPS with the immune characteristics of GC patients

To explore the value of the m7G-LPS in the tumor immune microenvironment, the 
CiberSort algorithm was utilized for analysis of the differences in the distribution of 
22 tumor immune cells in the two risk groups. The heat plot and violin plot show that 
the immune cell distribution differed between them (Fig. 9a, b). The subjects with the 
high risk presented with higher infiltration abundance of memory CD4 T cells rest-
ing, monocytes, M2macrophages, dendritic cells (DCs) resting, mast cells resting, and 
neutrophils, while low-risk subjects had higher abundance of infiltration M0 mac-
rophages and follicular helper T cells (p < 0.05). The immune cell composition of the 
samples is shown in Fig. 9c. This was followed by an investigation of the association 
of risk score with immune cells. A positive correlation of risk score was found with 

Fig. 7  GSEA situation in the two groups. a GO: Cellular Component. b GO:Molecular Function. c GO: 
Biological Process. d KEGG signaling pathways
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Fig. 8  Relationship between risk scores and clinicopathological characteristics. a Clinicopathological 
characteristics and heat map of 7 m7G-LPS expression between the two groups. Relationship between risk 
score and b T-stage, c lymph node metastasis, d pathological stage and e age
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the abundance of CD4 T cell (cor = 0.172, p < 0.01), CD8 T cell (cor = 0.330, p < 0.001), 
DCs (cor = 0.460, p < 0.001), macrophages (cor = 0.550, p < 0.001), and neutrophils 
(cor = 0.423, p < 0.001). These findings were indicative of the involvement of immune 
cells in risk score grading (Fig. 10).

In addition, the correlation between m7G-LPS and immune cell and immune function 
concentration scores was also evaluated. The results showed higher enrichment scores 
of aDCs, B cells, CD8 + T cells, DCs, iDCs, macrophages, mast cells, neutrophils, natural 
killer (NK) cells, pDCs, T helper cells, TIL, Treg and Tfh in the subjects with high-risk 
score (p < 0.05, Fig. 11a). Also, greater enrichment scores were observed in the high-risk 
group for multiple immune functions, such as antigen-presenting cell (APC) co-inhibi-
tion, APC co-stimulation, CCR, checkpoint, cytolytic activity, human leukocyte antigen, 
inflammation-promotion, MHC class I, parainflammation, T cell co-inhibition, T cell 
co-stimulation, Type I IFN response, and Type II IFN response (p < 0.05, Fig. 11b). These 
findings were indicative of the involvement of seven prognostic m7G-related lncRNAs in 
immune function regulation.

Value of m7G‑LPS in immunotherapy and chemotherapy

The value of m7G-LPS in guiding treatment decision-making was also studied. The 
expression of immune checkpoint genes across the two groups was also assessed. 

Fig. 9  Differences in immune cell infiltration between the two groups. a Violin diagram and b heat map of 
immune cell infiltration. c Relative percentage of different immune cells between the two groups
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Elevated expression of ADORA2A, BTLA, CD160, CD200, CD200R1, CD244, CD27, 
CD274, CD28, CD40, CD40LG, CD44, CD48, CD80, CD86, HAVCR2, ICOS, IDO2, 
LAG3, LAIR1, NRP1 PDCD1LG2, TIGIT, TMIGD2, TNFRSF4, TNFRSF8, TNFRSF9, 
TNFSF14, TNFSF18, and TNFSF4 was found in the high-risk subjects (p < 0.05) in com-
parison to the low-risk subjects. In contrast, TNFRSF25 expression was higher in the 
low-risk subjects (p < 0.05). The findings were indicative of the significance of m7G-LPS 
in predicting the efficiency of immune checkpoint inhibitor therapy (Fig.  12). Moreo-
ver, the association of risk score with half maximal inhibitory concentration (IC50) of 
common chemotherapeutic agents was assessed, and the results revealed a negative 

Fig. 10  Scatter plot of correlation between risk score and infiltration of CD8 T cells, Dendritic, Macrophage, 
Neutrophil, B cells and CD4 T cells

Fig. 11  Enrichment scores of a immune cells and b immune function. (∗ p < 0.05, ∗  ∗ p < 0.01, 
and ∗  ∗  ∗ p < 0.001)
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association of the IC50 of Cisplatin with the risk score (cor = − 0.125, p = 0.022), and 
it was remarkably decreased in the high-risk compared to the other group (p < 0.05, 
Fig.  13b, d). However, although the IC50 of Docetaxel was also negatively correlated 

Fig. 12  Differences in immune checkpoint gene expression between the two groups. (∗ p < 0.05, ∗  ∗ p < 0.01, 
and ∗  ∗  ∗ p < 0.001)

Fig. 13  The Value of m7G-LPS in Immunotherapy and Chemotherapy. Scatter plot of correlation between 
risk scores and IC50 of Docetaxel (a) and Cisplatin (b). Violin plot of the difference in IC50 of Docetaxel (c) and 
Cisplatin d between the two high and low risk groups. (∗ p < 0.05, ∗  ∗ p < 0.01, and ∗  ∗  ∗ p < 0.001)



Page 17 of 22Zhao et al. BMC Bioinformatics          (2023) 24:100 	

with risks core (cor = − 0.151, p < 0.05), no remarkable variations appeared in the IC50 
across the two groups (Fig. 13a, c). These findings are suggestive of the increased chemo-
therapy sensitivity of low-risk patients as well as better prognoses and clinical outcomes.

Expression of m7G‑related lncRNAs in tissues

The expression of m7G-related lncRNAs was assessed in four cell lines, namely, GSE-1, 
MKN-45, AGS, and HGC-27, by q-PCR. Their expression varied remarkably between 
the cancerous and healthy cell lines (Fig.  14). Among them, CHROMR, LNC01094, 
AC245041.1, and AL355574.1 had significantly higher expression levels in tumor cell 
lines, whereas AC005586.1, AL16178.5, and AP001528.1 had the opposite, which is con-
sistent with the results of our analysis. This result further validated the accuracy of the 
developed risk model.

Discussion
Gastric cancer is among the top five malignant tumors in terms of morbidity and mor-
tality worldwide [31]. A lot of research has been conducted on the early diagnosis, 
treatment, and prognosis evaluation of GC, but the molecular mechanism of GC devel-
opment remains unclear [32]. A large number of researches confirmed lncRNAs’ impor-
tance in GC onset and advancement. Liu et al. demonstrated that the lncRNA HOTAIR 
leads to epigenetic inactivation of miR-34a, causing activation of epithelial–mesenchy-
mal transition (EMT) in cancer cells using the HGF/c-MET/SNAIL pathway [33]. The 
increased expression of MALAT1 in GC cells reduces the inhibitory impact of UPF1 on 
cell proliferation and EMT and increases apoptosis, resulting in GC cell invasion and 
metastasis [34]. LncRNAs have high specificity and sensitivity; therefore, they have the 
potential to serve as biomarkers for early screening, diagnosis, treatment, prognosis, and 
drug response to various diseases. Tan et al. showed a remarkable association of lncRNA 
GACAT2 expression with lymph node and distant metastasis, as well as neuroinvasion 
in GC [35]. Ji et al. demonstrated a significant association of LINC00086 expression lev-
els with tumor size, lymph node metastasis, TNM stage, and CEA and CA19-9 levels 
[36]. However, many lncRNAs are still to be discovered as prognostic markers for GC.

Methylation affects almost all aspects of RNA processing and is essential for regu-
lating gene expression, maintaining RNA stability, and homeostasis in vivo. Increasing 

Fig. 14  qRT–PCR of a CHROMR, b AC005586.1, c AP001528.1, d LINC01094, e AC245041.1, f AL161785.1, g 
AL355574.1 in GSE-1, MKN-45, AGS and HGC-27 cell lines. (∗ p < 0.05, ∗  ∗ p < 0.01, and ∗  ∗  ∗ p < 0.001)
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evidence shows the association of lncRNA’s abnormal expression with tumorigenesis. 
YAN et al. showed that METTL14 knockout abolished the m6A level of lncRNA XIST 
and enhanced the expression of lncRNA XIST, leading to colorectal cancer proliferation 
and metastasis [37]. Hang et al. showed that m6A RNA methylation maintains RMRP 
stability through the TGFBR1/SMAD2/SMAD3 pathway, which ultimately leads to the 
advancement and progression of non-small cell lung cancer [38]. As an important RNA 
modification, m7G methylation has been shown to be associated with many cellular pro-
cesses that lead to cancer progression. METTL1 mediates m7G methylation in miRNAs 
and promotes tumor cell migration [8]. However, the mechanism of the pathogenicity 
of m7 G and lncRNAs in GC onset and progression is still unclear. Our study therefore 
focuses on the ability of m7G-related lncRNAs as gastric cancer biomarkers to better 
understand the role of m7G methylation in gastric cancer and thus provide a possible 
basis for further therapeutic interventions. During this research, the GC patients were 
stratified into different subgroups based on m7G-related lncRNA expression, a prognos-
tic model was constructed, and its utility for guiding GC diagnosis and treatment was 
checked.

The GC transcript data were obtained from TCGA, 22 m7G methylation-regulated 
genes were identified based on published literature, and the differences in expression 
in GC and healthy subjects were analyzed. Univariate and multivariate COX regression 
analyses helped in identifying 30 predictive m7G-associated lncRNAs. Lasso regression 
analysis helped build a risk prediction model on the basis of seven shortlisted m7G-
associated lncRNAs (AL161785.1, LINC01094, CHROMR, AP001528.1, AC245041.1, 
AL355574.1, AC005586.1) to obtain risk scores for GC patients and a nomogram was 
constructed based on COX regression. According to time-dependent ROC, clinical 
ROC, and the calibration plot, the constructed nomogram had a reliable predictive abil-
ity. Kaplan–Meier curves, independent prognostic analysis, PCA, and q-PCR results fur-
ther confirmed the reliability of the established m7G-LPS as a prognostic marker. Next, 
the GC subjects were stratified into two groups of high and low-risk, and their differ-
ences in clinicopathologic features were analyzed. The high-risk patients presented with 
a greater likelihood of developing a more advanced pathologic stage. These findings were 
suggestive of the impact of lncRNAs in the m7G-LPS on the progression and prognosis 
of GC and their possible therapeutic importance.

Of the lncRNAs used to establish the m7G-LPS in this study, AL161785.1, LINC01094, 
CHROMR, AP001528.1, AC245041.1 were risk genes, while AL355574.1, AC005586.1 
were considered as protective genes. LINC01094 was found to play a role as a cancer-
promoting factor in many tumors. Xia et  al. revealed that LINC01094 directly targets 
miR-340-5p and negatively regulates its expression, promoting breast cancer cell pro-
liferation and cell cycle advancement and suppressing apoptosis [39]. In ovarian cancer, 
the LINC01094/miR-577 axis regulates the expression of a β-linked protein, c-Myc, and 
cell cycle protein D1, promoting cancer cell proliferation, invasion, and migration [40]. 
Yufeng et al. demonstrated that LINC01094 acts as a competitive endogenous RNA in 
clear cell renal cell carcinoma and plays a tumor-promoting role through the competitive 
link to miR-224-5p for the regulation of CHSY1 expression [41]. Moreover, it was found 
that some of m7G-LPS related lncRNAs are involved in constituting other GC prognos-
tic models. LINC01093 and CHROMR, as necroptosis-related lncRNAs, constitute a 
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predictive model with ten other lncRNAs [42]. AC245041.1 could potentially be associ-
ated with tumor angiogenesis, suggesting a poor prognosis for GC [7]. AL355574.1, as a 
ferroptosis- and cellular senescence-related lncRNA, constitute a predictive model for 
GC [43, 44]. However, the role of AL161785.1, AP001528.1, and AC005586.1 in tumors 
remains to be confirmed, and the findings of this study direct toward a new reference to 
conduct future research.

During this research, GSEA findings were indicative of the involvement of m7G-LPS 
in the regulation of several pathways, such as the toll-like receptor signaling pathway, 
JAK-STAT signaling pathway, chemokine signaling pathway, leukocyte transendothelial 
migration, granulocyte colony-stimulating factor production, to influence the course 
of GC through multiple immune pathways. Immune cell infiltration analysis revealed 
remarkably increased infiltration of memory CD4 T cells resting, monocytes, M2mac-
rophages, DCs resting, mast cells resting, and neutrophils in high-risk patients com-
pared to others showing their positive correlation with the risk score. M2 macrophages 
produce anti-inflammatory cytokines so as to inhibit immune surveillance of tumor cells 
and promote angiogenesis and stromal remodeling, facilitating tumor progression and 
metastasis [45]. CD4 resting memory T cells, resting mast cells, and resting DCs may also 
contribute to tumor progression to the progressive stage. This result suggests that several 
immune cells may be involved in the progression of GC. However, the enrichment of M1 
macrophages and follicular helper T cells was greater in the low-risk subjects. M1-type 
macrophages manifest anti-tumor effects through the secretion of pro-inflammatory 
cytokines and chemokines and the presentation of antigens exclusively for the purpose 
of participating in a positive immune response and mediating immune surveillance [46]. 
Follicular helper T cells play an anti-tumor role by promoting B-cell differentiation and 
inducing humoral immunity [47]. This may be the cause behind the improved progno-
sis of low-risk subjects in comparison to the others. m7G-LPS impact on immune cells 
and immune function scores was also studied. Many immune cells, such as mast cells, 
iDC, NK cells, and follicular helper T cells, had greater enrichment scores in the subjects 
with a high risk. Some immune function scores, such as CCR, inflammation promotion, 
and T cell co-inhibition, were also remarkably increased in high-risk populations. These 
results suggest that m7G-LPS is involved in regulating many immune cells and immune 
functions. This might also explain why subjects with varying risk scores respond differ-
entially to immunotherapy.

LncRNAs have been shown to be vital for immune recognition and the escape of 
tumor cells from the immune system [48]. Moreover, remarkable variations in the 
expression of 31 immune checkpoint genes were observed across the two risk groups. 
Therefore, m7G-LPS may provide a reference in the prediction of immune checkpoint 
inhibitor treatment efficiency in GC patients. A negative association of the risk scores 
was observed with the IC50 of both cisplatin and docetaxel, and subjects with a high risk 
score appeared to be less sensitive to chemotherapeutic agents. This study suggests the 
possible predictive capability of m7G-LPS for immunotherapy and chemotherapy.

With the increasing studies on the mechanism of gastric carcinogenesis, ceRNAs have 
been shown to play an important role in various aspects of gastric carcinogenesis and 
invasion and metastasis. However, the regulation of non-coding RNAs is not isolated, 
but multiple factors are interrelated and work together, and this complex regulatory 
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relationship poses many difficulties for experimental validation. With the development 
of bioinformatics analysis tools such as machine learning, deep learning and convolu-
tional neural networks, bioinformatics analysis of lncRNA–miRNA will bring great 
reference value to experiments. Several methods have been proposed for predicting 
lncRNA–miRNA interactions, such as lncRNA–miRNA interactions prediction by 
logistic matrix factorization with neighborhood regularized (LMFNRLMI), graph con-
volutional neural network and conditional random field (GCNCRA), and network dis-
tance analysis model for lncRNA–miRNA association prediction (NDALMA), all of 
which have been shown to be reliable [49–51]. In addition, several bioinformatics tools 
provide an important contribution to tumor metabolism analysis and drug develop-
ment. A bioinformatics tool, named graph convolutional network with graph attention 
network (GCNAT), is able to predict hERG channel blockers in the early stages of drug 
discovery [52]. The metabolite-disease associations predicted by the graph convolutional 
network with graph attention network (GCNAT) method have also been experimentally 
validated [53].

This study is limited because the constructed model lacked validation on non-TCGA 
datasets, mainly due to the lack of datasets with complete lncRNA sequencing data. Sec-
ond, there is a need to conduct more molecular biology experiments and clinical trials to 
further validate the findings of this study.

Conclusion
During this research, seven prognostic m7G-related lncRNAs with a high correlation 
with the prognosis of GC patients based on the TCGA database and the role of m7G-
LPS in the prediction of survival rate, correlation with tumor immune microenviron-
ment, possible underlying mechanisms of m7G-related lncRNAs, prediction of potential 
immunotherapy targets, and sensitivity of chemotherapeutic drugs were studied. It can 
be postulated that the m7G-LPS established in this study can serve as a predictor of the 
survival rate of GC patients and may facilitate future individualized treatment.
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