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Abstract 

Background:  Due to the high resource consumption of introducing a new drug, drug 
repurposing plays an essential role in drug discovery. To do this, researchers examine 
the current drug-target interaction (DTI) to predict new interactions for the approved 
drugs. Matrix factorization methods have much attention and utilization in DTIs. How-
ever, they suffer from some drawbacks.

Methods:  We explain why matrix factorization is not the best for DTI prediction. Then, 
we propose a deep learning model (DRaW) to predict DTIs without having input data 
leakage. We compare our model with several matrix factorization methods and a deep 
model on three COVID-19 datasets. In addition, to ensure the validation of DRaW, we 
evaluate it on benchmark datasets. Furthermore, as an external validation, we conduct 
a docking study on the COVID-19 recommended drugs.

Results:  In all cases, the results confirm that DRaW outperforms matrix factorization 
and deep models. The docking results approve the top-ranked recommended drugs 
for COVID-19.

Conclusions:  In this paper, we show that it may not be the best choice to use matrix 
factorization in the DTI prediction. Matrix factorization methods suffer from some 
intrinsic issues, e.g., sparsity in the domain of bioinformatics applications and fixed-
unchanged size of the matrix-related paradigm. Therefore, we propose an alternative 
method (DRaW) that uses feature vectors rather than matrix factorization and demon-
strates better performance than other famous methods on three COVID-19 and four 
benchmark datasets.
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Introduction
Drug discovery is a highly sensitive, with public domain aspect to the research that 
needs a tremendous amount of time and cost [1, 2]. Thus, scientists and researchers take 
advantage of computational methods in drug discovery [3, 4]. Drug-repurposing is one 
of its main branches that finds new indications for approved drugs [5]. This point of view 
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is constructive, especially in an urgent situation, e.g., the coronavirus disease (COVID-
19) pandemic [6–8].

Computational drug-repurposing methods, applied to COVID-19, can be categorized 
into three groups: (i) network-based methods; (ii) structure-based methods; and (iii) 
machine learning (ML)-based methods [9]. The methods of the first group, network-
based methods, identify proteins that are functionally related to COVID-19. Messina 
et al. [10] studied the interactome of human coronaviruses (HCoV) with their host cells 
using a network-based model simulation. They utilized curated protein-protein interac-
tions and gene co-expression data to analyze all possible virus-host protein interactions. 
Sadegh et al. [11] used a network-based technique to investigate the SARS-CoV-2 virus-
host-drug interactome in order to predict repurposable treatment candidates. To that 
purpose, they created the CoVex online platform, which incorporates drug-target inter-
action and PPIs data to help with the drug repurposing process.

The methods of the second group, structure-based techniques, investigate the pos-
sible interactions between therapeutic agents and macromolecular targets in order to 
discover new uses for existing drugs. Culletta et al. [12] looked for potential therapeu-
tics against SARS-CoV-2 using a structure-based pharmacophore modeling technique. 
They investigated the SARS-CoV-2 proteome and identified high-quality protein mod-
els using homology modeling. Also, to discover pharmacophore features for each target, 
they conducted structure-based modeling. Then, the obtained results were employed 
in a series of virtual screenings against the DrugBank database. Following a docking 
study, they discovered a total of 34 hits for all of the investigated targets, and the poten-
tial drugs were chosen based on the best binding energy for each drug as determined 
by the molecular mechanics with generalized born and surface area solvation (MM/
GBSA) calculation. Juárez-Saldívar and colleagues [13] performed a virtual screening of 
four databases (PDB, ChEMBL, BindingDB, and DrugBank) to identify potential SARS-
CoV-2 main protease (Mpro) inhibitors. They investigated the binding affinity of chemi-
cal compounds and Mpro using the docking approach. The candidate compounds were 
then clustered based on structural differences in order to uncover structural features 
of potential SARS-CoV-2 inhibitors. In addition to the aforementioned investigations, 
more recent studies on structure-based drug repurposing have focused on the target-
ability of the spike protein as a potential candidate to inhibit the SARS-CoV-2-ACE2 
receptor [14–16].

The last group is the ML drug repurposing approaches. Beck and colleagues [17] 
developed a deep learning model for predicting drug-protein binding affinity based on 
the molecular transformer-drug target interaction (MT-DTI). Using this model, they 
discovered that atazanavir, remdesivir, and efavirenz are effective inhibitors against 
SARS-CoV-2 3C-like proteinase. Tian et al. [18] suggested a unique drug repositioning 
approach (called VDA-KLMF). This suggested model incorporates information from 
known viral-drug associations, drug chemical structures, and virus sequences. Gaussian 
kernels of viruses and drugs are generated using known viral-drug associations. Then, by 
utilizing biological features and an identity matrix, the similarity kernels of viruses and 
drugs were generated. In the next step, the similarity and Gaussian kernels are diffused, 
and a logistic matrix factorization model with kernel diffusion was suggested to find pos-
sible anti-SARS-CoV-2 drugs. In another study, Zeng et al. [19] developed an integrative 
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strategy that combines network-based and deep learning techniques, to predict drugs 
for COVID-19. They created an extensive knowledge graph with 15 million connections 
linking drugs, diseases, proteins or genes, pathways, and expressions from a signifi-
cant collection of scientific literature. Their suggested model predicted 41 repurposable 
drugs. In order to uncover hints for the therapy of COVID-19, Shen and co-workers [20] 
created a framework for virus-drug association (VDA) identification using imbalanced 
bi-random walk, and Laplacian regularized least squares. Their proposed method per-
formed reasonably well in terms of prediction. Also, their model in comparison with six 
state-of-the-art prediction models demonstrates superior prediction performance.

This paper deals with the last group, machine learning drug repurposing to predict 
new unknown associations among viruses and approved drugs. These prediction meth-
ods come in a wide range, starting from optimization to simple classical machine learn-
ing methods, e.g., random forest [21], SVM [22], and toward current state-of-the-art 
deep learning methods [23–25]. Most of those methods try to mimic or expand the 
matrix factorization approach. that is, decomposing a given matrix into two or more 
latent matrices. The original matrix can be estimated by multiplying these latent matri-
ces. We call those methods in this paper as “Matrix Factorization based Drug Repurpos-
ing methods” (MF-DR). We define MF-DR fromally in Sect. 2.3

During our investigation on the subject, we realized that the MF-DR does not entirely 
fulfill the aim of DTI prediction and suffers from some drawbacks. First, the drug-tar-
get matrix is extremely sparse, and in most cases, the percentage of the available asso-
ciations is less than one percent [1]. For example, most of the values in a row of drugs 
are zero, and there are just a single or a few entries with values equal to one. So, those 
methods consider an almost zero vector a non-sense feature vector. This sparsity causes 
another issue of a tremendous increase in the computation overhead and time. The com-
plexities increase exponentially, which makes the method inapplicable. More impor-
tantly, the labels already exist in the feature matrix. In other words, there is data leakage 
in the training or learning process [26].

On the other hand, zero values in the drug-target matrix can have two entirely dif-
ferent interpretations of I) no association between each zero-value drug-target pair; II) 
unknown association between each zero-value drug-target pair. The last issue with those 
methods is the problem with matrix factorization itself. Matrix factorization is a dog-
matic method that needs the number of columns or features to remain constant. When a 
new feature (e.g., a target) comes to the scene, the generated prediction model becomes 
useless. It will be necessary to re-run the learning process to have a new model with 
further information. The matrix factorization method comes from the recommender 
systems’ literature. Recommender systems are primarily helpful for recommending non-
important subjects. In other words, a mistake has no harm in those fields, e.g., movie 
recommendation or another book based on the history of the previously purchased 
books; now, these borrowed methods aim to suggest solutions in the sensitive area of 
bioinformatics and drug repurposing.

Regarding the above issues with the matrix factorization paradigm, and having a 
proper prediction process, we believe that prediction happens based on the features 
and their similarities. Let’s assume there are some features like similarities among 
drugs as well as similarities among the targets. Moreover, there exist drug-target pair 
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associations. It is better and closer to the real-world situation for prediction to con-
sider the former similarities as the feature space and the drug-target pair associations 
as the labels. Doing this relieves us from the issues MF-DR deals with. For example, 
the feature space is not sparse anymore. Thus, it is better to avoid matrix factorization 
methods in the process of DTI prediction and generally in bioinformatics. Or at least 
use those matrix factorization methods with more caution.

We consider drug repurposing for COVID-19 as a state-of-the-art DTI research 
problem to proceed with the above analysis. We use three virus-antiviral interactions 
(VAIs) datasets. We call our proposal as Drug Repurposing-analytic Way (DRaW). 
Figure 1 represents the DRaW framework. DRaW exclusively uses viruses’ and antivi-
rals’ similarities as input features. In other words, in contrast with MF-DR methods, 
the sparse VAIs are not the input features of DRaW. It aims to predict VAIs. We com-
pare our results with the published results of COVID-19 antiviral prediction [8, 18, 
20, 27].

The results show DRaW outperforms the MF-DR methods. To be short, DRaW is 
fair and close enough to the prediction in the real world and laboratory investigations 
and has higher performance with less effort than the state-of-the-art methods. We 
have evaluated the top antiviral recommendations of DRaW for COVID-19 by dock-
ing study.

Moreover, to be sure of the results, we make an external validation on benchmark 
datasets [28] as well. The DRaW significantly outperforms the MF-DR. The evaluations 
prove the correctness of the predictions. Our top-ranking results are in harmony with 
the reported experimental studies on COVID-19. In contrast with previous suggestions 
on using matrix factorization (e.g., by [29] and [30]) MF-DR methods are not the best 
choice for drug repurposing studies.

Fig. 1  DRaW’s Framework. (1) Instead of applying to the virus-antiviral interactions, we use the model on the 
similarity data of antivirals and viruses. (2) Each sample of antivirals is concatenated with a virus. The results of 
the concatenation are the feature inputs to a deep network. (3) The deep model consists of four consecutive 
Conv1D layers with Relu activation function. Each of them is followed by batch normalization and dropout 
0.5. Next, we use a dense layer after a flattened layer, followed by a dropout of 0.5. Finally, a dense layer with 
a sigmoid activation function acts as a binary classifier and predicts the interaction between the drug and 
protein. We compiled our model with Adam optimizer and binary cross entropy loss function. The prediction 
value is the association between the corresponding virus-antivirals. (4) Molecular docking study has been 
conducted on top-ranked drugs
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Materials and methods
Datasets

To show the benefit of direct use of similarity matrices, we have utilized three virus-
antiviral datasets. The first dataset, DS1, was generated by [31] and contains 12 
human RNA viruses and 78 antivirals, a total of 96 confirmed virus-antiviral associa-
tions. The second dataset, DS2, contains information on 59 viruses and 128 antivirals, 
with a total of 770 confirmed associations [20]. The third dataset, DS3, was gathered 
by [8] for COVID-19 treatments. The DS3 dataset comprises 34 human viruses such 
as RNA and DNA, HIV, and coronavirus. Also, it contains 210 specific and broad-
spectrum antiviral drugs. There are 437 confirmed human drug-virus associations in 
this dataset. In addition, each of the above datasets has two corresponding similarity 
matrices, Virus similarity matrix (V) and Antiviral similarity matrix (AV). DS1 has V 
with size 12× 12 and AV with 78× 78 , respectively. DS2 has V with size 59× 59 and 
AV with 128× 128 , respectively. DS3 has V with size 34 × 34 and AV with 210× 210 , 
respectively. The similarity among viruses results from multiple alignments of genetic 
sequences with the “Multiple Alignment using Fast Fourier Transform” (MAFFT) 
algorithm [8]. To measure the similarity among antiviral pairs, the “Tanimoto coeffi-
cient” was used as the similarity metric [32]. Table 1 shows the statistics of the virus-
antiviral datasets.

In addition to the virus-antiviral datasets, we have utilized benchmark datasets, as 
well. Benchmark datasets play an important role in comparing new techniques in the 
field of drug repurposing. The identification of drug-target interactions is a hot topic in 
drug discovery. Therefore, Yamanishi et  al. [28] provided researchers in this area with 
“four classes of drug-target interaction networks in humans involving enzymes, ion 
channels, G-protein-coupled receptors (GPCRs) and nuclear receptors”. In addition, they 
made available drug structure similarity and target sequence similarity of the mentioned 
datasets. Table 2 presents the statistics of the benchmark dataset. Since then, these data-
sets have acted as external validation for the prediction of drug-target interactions.

Table 1  COVID-19 datasets statistics

Dataset No of antivirals No of viruses Confirmed 
interactions

DS1 78 12 96

DS2 128 59 770

DS3 210 34 437

Table 2  Benchmark datasets statistics

Dataset No of drugs No of targets Confirmed 
interactions

Enzyme 445 664 2926

GPCR 223 95 635

Ion channel 210 204 1476

Nuclear receptor 54 26 90
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DRaW model

DRaW predicts the effective antiviral drugs for COVID-19 using the following objec-
tive function,

where I is the virus-antiviral association matrix, AV is the antiviral similarity, and V 
shows the virus similarity matrix. The indices i and j show i-th antiviral and j-th virus, 
respectively.

The typical matrix factorization methods decompose I into two latent feature matri-
ces. In contrast with such scenarios, we do not decompose the I matrix. But we use 
the similarity matrices as the input features to the model. The model uses these simi-
larity features to predict the VAIs. To do so, the model concatenates each row of AV 
with each row of V, and we update the above objective function as follows.

which || shows the concatenation operation. Each row represents the concatenation of 
an antiviral similarity vector with a virus similarity vector. Thus, each row in the gener-
ated matrix shows a sample of antiviral-virus concatenation. We add the corresponding 
value of pair associations from I as the label of each sample. For example, the association 
of antiviral  i and virus  j is the (i,  j)-th entry in the I. It is the label of the correspond-
ing virus-antiviral pair. In short, each sample of virus-antiviral pairs is a combination of 
antiviral and virus similarity vectors, and its label is their corresponding VAI.

MF‑DR model

To show the higher performance of direct usage of similarity matrices as the feature 
space, we need to compare our results with conventional drug-target matrix factori-
zation methods, which we call MF-DR here. To this end, we have used a technique in 
which virus-antiviral interactions are the input features of the samples in addition to 
similarity matrices. The goal of such methods is to decompose I into two latent factor 
matrices U34×f  and W210×f  , where f is the number of the factors. The objective func-
tion is as follows.

or simply

As is clear from the equations, the objective function 2 is different from the objective 
function 3. While the latter is matrix factorization, the former is a prediction using an 
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input feature vector. Adding some regularization parameters to the objective function of 
matrix factorization methods is possible.

Tang et al. [8] proposed a type of MF-DR, and used similar objective functions to 5, to 
divide the drug-target pair matrix into two latent matrices. It is called IRNMF. Many 
of the methods mentioned in previous studies perform such objective functions. These 
methods are different in either handling the additional information, e.g., similarities or 
implementation algorithms (e.g., while [33] used an iterative optimization method, [25] 
used a deep model. Anyhow, both belong to the MF-DR).

External method validation

In addition to executing the methods on the COVID-19 datasets, we evaluate the valid-
ity of our method in two ways. First, we apply DRaW and other methods to benchmark 
datasets [28]. Following that, we use the molecular docking approach on top-ranked 
antivirals suggested by DRaW to treat COVID-19. In the following subsections, we 
describe both external validations.

Evaluation of methods using benchmark datasets

We use four benchmark datasets of Enzyme, Ion Channel, GPCR, and Nuclear Recep-
tor [28] to do the external validation of DRaW. The results of the benchmarks are from 
applying 5-fold cross-validation on benchmarks.

Molecular docking study

The anti-COVID-19 activity of each top-ranked drug predicted by DRaW in each dataset 
has been covered in a plethora of studies [34–36]. Nonetheless, for the validation of our 
proposed model’s prediction power, structure-based molecular docking experiments are 
carried out for some less-noticed drugs, such as triflupromazine hydrochloride, chlor-
promazine, and loperamide. This technique is generally done as follows [37].

Protein Preparation: The crystal structure of the SARS-CoV-2 spike receptor-binding 
domain bound with ACE2 (PDB 6M0J) becomes the target protein for triflupromazine 
hydrochloride and chlorpromazine. Also, the crystal structures of SREBP1 (PDB 1AM9) 
are chosen as a target protein for loperamide and retrieved from the RCSB protein data 
bank database [38]. For the first complex (Spike-ACE2), both the spike protein and ACE2 
were separated. Thus, chain A in the ACE2 structure is a target. Also, the SREBP1 dimer 
was separated. The procedure removes the HEATM and other solvent molecules from 
both structures using Discovery Studio. For energy minimization, we use the steepest 
descent method. In addition, we use the Swiss PDB Viewer (SPDBV) tool [39] to reduce 
the target proteins’ potential energy and obtain their most stable conformation. Then, 
we utilize the Autodock tools (ADT) to add polar hydrogen and assign Kollman charges 
to the energy-minimized target proteins. Afterward, the format of proteins is converted 
into PDBQT for molecular docking purposes.

Ligand preparation: The 3D-SDF structures of the top three ranked antiviral drugs 
were downloaded from the NCBI PubChem database [40] and were converted into the 

(5)min
U ,W

�R−UW�2F + �U�U�2F + �W �W�2F + µ(Similarity− terms)
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Protein Data Bank (PDB) format. Polar hydrogens and gasteiger charges were added to 
ligands. Also, root detection and choosing torsions from the torsion tree were done to 
rotate all the rotatable bonds. Ultimately, the PDB data of ligands was converted into 
PDBQT using the ADT 4.0 tool. We generate the Grid Parameter File (GPF) to locate 
“active site” residues. These residues actively participate in establishing stable interac-
tions. SREs bind to the E-box site of SREBP1 using Glu332, His328, Tyr335 and Arg336 
amino acids, which are highly conserved among helix-loop-helix proteins, as mentioned 
in [41, 42]. Thus, these amino acids were chosen as the most participant residues for 
docking the SREBP1-loperamide complex. Also, to determine the important residues in 
the bonding position of ACE2, the SARS-CoV-2 spike-ACE2 complex (PDB 6M0J) was 
visualized using the LIGPLOT+ tool [44]. The obtained pattern indicates that Asp30, 
Lys353, Gln24, Tyr83, Tyr41, Gln42, and Asp38 are the most important residues involved 
in forming this complex’s hydrogen bonds. For each docking job, we adjust the grid box 
in such a manner to enclose the active sites within it. For preparing the GPF of ACE2 
protein, the grid box values are x-center=−37.26, y-center=32.197, z-center= −3.339, 
and x-points=34, y-points=98, and z-points=40. Also, for SREBP1, the center grid box 
is defined with 58.168, 27.345, and 127.623 as X-, Y-, and Z-coordinates, respectively. 
The grid points were 46, 52, and 74 in X-, Y-, and Z-coordinates. The grid point spac-
ing is set to 0.375 angstroms for both of them. Also, the Lamarckian Genetic Algorithm 
(LGA) is the search method for performing molecular docking studies. All remaining 
parameters were set to the default.

Ligands docking into proteins: We have used the Cygwin terminal to set up and run 
the docking process. To this end, we have used both autogrid and autodock computa-
tions and done ten independent docking iterations for each antiviral drug. Final docked 
conformations were clustered based on the conformational similarities and root-mean-
square positional deviation (RMSD) with a tolerance of 1.0 Å[44].

Post-docking investigations: the best poses correspond to the lowest binding energy 
( � G) and orientation of the ligand within the defined binding pocket. Then, we used 
Biovia Discovery Studio Visualizer 2020 [45] to visualize and analyze the docking results 
to identify the intermolecular interaction forces and residues.

Complexity analysis

In each epoch, the algorithm calls a pair of a single antiviral and a single virus. The num-
ber of antivirals in the train and test sets are ntr and nte , respectively, and n = ntr + nte . 
The same goes with the number of viruses — mtr for the training phase and mte for the 
test phase, where m = mtr +mte . We consider the number of epochs for training set 
equal to e. Then if we assume that the time of each epoch is equal to Tep , the complex-
ity of the training phase for each antiviral-virus pair is equal to O(eTep) , and the whole 
training phase for all the pairs — ntrmtr — is O(eTepntrmtr).

Performance evaluation metrics

We compute the recall (sensitivity), specificity, precision, and F1-score metrics based on 
the following equations.
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Moreover, we used AUC-ROC, and AUPR. The former is a summary of the Receiver 
Operator Characteristic (ROC) curve which computes several pairs of sensitivity and 
1− specificity by defining thresholds. The area under the curve (AUC) reports the capa-
bility of discrimination between the classes [46]. AUC-ROC is not proper for imbal-
anced datasets. Thus, we plot the Precision-Recall (PR) curve. It does not consider the 
true negatives (TN) samples and thus it is a common measure to report the classifier’s 
performance on the imbalanced data. We report the area under the PR (AUPR).

Implementation

Figure 1 shows the DRaW’s framework. As mentioned in the figure’s description, it is a 
convolutional neural network. We use Adam as the optimizer with a learning rate equal 
to 0.001, β1 = 0.9 , β2 = 0.999 , and ǫ = 10−7 . The dropout rate is set to 0.5. The batch 
size is chosen by the number of samples per dataset. This hyperparameter for DS1 is 
equal to 8, and those for DS2 and DS3 are set to 32.

In order to minimize the error of the model for drug repurposing, we trained the 
model 10 times in 5-fold cross-validation and saved the recommended drugs in each 
fold based on the probability they obtained. Then, we choose the top recommended 
drugs with the best average rank.

Results and discussion
This section reports the evaluation of our proposal. We utilized Tensor flow 2 and Scikit-
learn [47] to do this. We compare DRaW with objective function 2 versus those methods 
which relied on matrix factorization. Figure 1 shows the scenario we have implemented. 
The methods using either the objective function 3, or 5 are IRNMF [8], GRNMF [33], 
IMC [48]. Thus, we give some statistics on the COVID-19 dataset. Moreover, we apply 
DRaW and IRNMF methods and a deep learning method (AutoDTI++ [27]) on the 
benchmark datasets [28]. The final part of the computational results deals with the top-
ranked antivirals DRaW suggests for COVID-19.

Performance analysis on COVID‑19 datasets

This section provides the performance comparison of DRaW with MF-DR approaches 
on the COVID-19 datasets DS1, DS2, and DS3, introduced in Table  1. The methods 
are IRNMF [8], VDA-KLMF [18], and VDA-RWLRLS [20]. The IRNMF is a matrix 

(6)Recall =
TP

TP + FN

(7)Specificity =
TN

TN + FP

(8)Precision =
TP

TP + FP

(9)F1− score =2×
precision× recall

precision+ recall



Page 10 of 21Hashemi et al. BMC Bioinformatics           (2023) 24:52 

factorization method, which as its authors reported outperforms other matrix factor-
ization methods, i.e., GRNMF [33], IMC [48], CMF [49], and RLSMDA [50]. IRNMF 
returns the best result among these matrix factorization methods. It uses the similarity 
matrices and the main virus-antiviral matrix as the input to the procedure. VDA-KLMF, 
and VDA-RWLRLS belong to MF-DR and have shown high performance in COVID-
19 drug repurposing. Thus, we chose these methods to report the performance of our 
proposal, DRaW. Table 3 reports the results. Performance evaluation metrics with the 
highest value have been highlighted in bold for each dataset DS1, DS2, and DS3. IRNMF 
and VDA-RWLRLS have low performance in comparison with the other two methods, 
VDA-KLMF and DRaW. For example, note their precision. As the results show, while 
VDA-KLMF has the highest AUC-ROC and AUPR for the smallest dataset (DS1), DRaW 
has the highest AUPR and AUC-ROC for DS2 and DS3. In addition, DRaW has the high-
est precision and F1 score in all datasets. Thus, DRaW presents the best results com-
pared to all other matrix factorization methods. The results confirm that the MF-DR has 
lower performance than the non-MF-DR methods. As the results show, with an uncom-
plicated architecture,1 we reach a higher amount of performance and prediction com-
pared to the state-of-the-art matrix factorization methods.

Identifying potential drugs for COVID‑19

We extract DRaW’s top antiviral recommendations for each dataset. Tables 4, 5, and 6 
show the top-ranked drugs suggested by DRaW for DS1, DS2, and DS3, respectively. 
According to data extracted from DrugBank, among the top 34 candidate drugs pre-
dicted by DRaW in three datasets, 13 drugs either have been or are under clinical tri-
als for COVID-19, i.e., remdesivir, chloroquine, ribavirin, and pentoxifylline from DS1, 
tamoxifen, chlorpromazine, toremifene, teicoplanin, amodiaquine, and chloroquine from 
DS2, and chlorpromazine, ribavirin, and Imatinib from DS3.

Table 3  Comparison of DRaW with the other methods on COVID-19 datasets

Datasets Methods Recall Specificity Precision F1 score AUC-ROC AUPR

DS1 IRNMF 0.750 0.614 0.182 0.2927 0.706 0.2927

VDA-KLMF 0.892 0.544 0.300 0.367 0.939 0.763
VDA-RWLRLS 0.562 0.838 0.141 0.225 0.885 –

DRaW 0.642 0.836 0.651 0.620 0.822 0.589

DS2 IRNMF 0.801 0.728 0.220 0.345 0.816 0.2933

VDA-KLMF 0.826 0.531 0.208 0.283 0.857 0.377

VDA-RWLRLS 0.513 0.826 0.007 0.123 0.835 -

DRaW 0.513 0.778 0.441 0.463 0.865 0.458
DS3 IRNMF 0.741 0.771 0.174 0.2820 0.809 0.222

VDA-KLMF 0.863 0.522 0.163 0.233 0.866 0.391

VDA-RWLRLS 0.519 0.843 0.067 0.118 0.862 –

DRaW 0.538 0.847 0.576 0.550 0.887 0.558

1  We do not use the complicated deep learning architecture in this paper. Our aim in this paper is to show the problems 
with matrix factorization.



Page 11 of 21Hashemi et al. BMC Bioinformatics           (2023) 24:52 	

Table 4  Recommended drugs for COVID-19 by DRaW on DS1

Rank Drug

1 Remdesivir

2 Mycophenolic acid

3 Herbacetin

4 Chloroquine

5 Protein phosphatase 1

6 Ribavirin

7 Glycyrrhizin

8 Rhoifolin

9 Pentoxifylline

10 Phenothiazine

Table 5  Recommended drugs for COVID-19 by DRaW on DS2

Rank Drug

1 Tamoxifen

2 Dalbavancin

3 Chlorpromazine

4 Clomipramine

5 Oritavancin

6 Toremifene

7 Telavancin

8 Teicoplanin

9 Amodiaquine

10 Chloroquine

Table 6  Recommended drugs for COVID-19 by DRaW on DS3

Rank Drug

1 Triflupromazine Hydrochloride

2 Chlorpromazine

3 Loperamide

4 Thiothixene

5 Fluspirilene

6 Promethazine Hydrochloride

7 Ribavirin

8 Chlorphenozamine

9 Dasatinib

10 Clomipramine Hydrochloride

11 Fluphenazine

12 Astemizole

13 Imatinib

14 Terconazole
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In the first dataset, the top three predicted antiviral drugs are remdesivir, mycophe-
nolic acid, and herbacetin. The top three predicted antiviral drugs in the second dataset 
are tamoxifen, dalbavancin, and chlorpromazine. Consequently, the top three antiviral 
drugs predicted in the third dataset are triflupromazine hydrochloride, chlorpromazine, 
and loperamide. We concentrate on examining the mechanisms of action (MOA) of tri-
flupromazine hydrochloride, chlorpromazine, and loperamide. Because these drugs have 
had lower attention in the COVID-19 drug studies literature. Triflupromazine hydro-
chloride and chlorpromazine are neurotransmitter inhibitors in the typical antipsychotic 
class [51, 52]. The chemical structure and general properties of chlorpromazine are simi-
lar to those of triflupromazine hydrochloride, shown in Fig. 2a and b. These drugs have 
also shown antiviral and antimicrobial activity against several viruses and bacteria [53, 
54]. Also, recent studies demonstrate that antipsychotic drugs can decrease the unfa-
vorable evolution of COVID-19 infection, and consequently, repurposing antipsychotic 
drugs to treat COVID-19 has received a lot of attention [55–58]. The possible mecha-
nism of these drugs against SARS-CoV-2 is to prevent virus entry into the host cells. 
Following spike-protein (S) binding to the angiotensin-converting enzyme 2 (ACE2), 
SARS-CoV-2 gains entry into the cell via the mechanism of clathrin-mediated endocy-
tosis. Clathrin-mediated endocytosis is a process by which cargo-containing vesicles of 
SARS-CoV-2, which are coated by clathrin, pass from the cell membrane and are taken 
up into the cell [59, 60]. Chlorpromazine prevents clathrin migration from the cell sur-
face, significantly inhibiting SARS-CoV-2 entry into cells  [61]. The same MOA happens 
for triflupromazine hydrochloride. In addition to the activities mentioned above, the cur-
rent experimental in-vitro investigations have studied the affinity of some antipsychotic 
drugs to the ACE2 protein. The studies show the ability of these drugs to prevent the 
virus surface-anchored spike protein-mediated coronavirus entry. Their results state this 
class of drugs can significantly block SARS-CoV-2 binding to ACE2. Thus, antipsychotic 
drugs can inhibit the coronavirus entry into cells [62]. Loperamide, shown in Fig. 2c, is 
another of the top predicted antiviral drugs against coronavirus in our proposed model. 

Fig. 2  Two-dimension structure of top three-ranked drugs; a Chlorpromazine b Triflupromazine 
hydrochloride c Loperamide
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Loperamide is an antidiarrheal drug that controls diarrhea symptoms by slowing gut 
motility [63]. Furthermore, this drug increases the activity of SREBF transcription fac-
tors which is one of the key regulators of lipid metabolizing enzymes [64]. The correla-
tion between MERS-CoV replication and host cell lipid metabolism has been implicated. 
Therefore, manipulating cellular lipid metabolism to affect virus replication may be an 
appealing and notable approach to treating coronavirus infections [41]. The regulation of 
cellular lipid homeostasis and the synthesis of cholesterol and fatty acids are controlled 
by sterol regulatory element-binding proteins (SREBPs). In addition, multiple proteolytic 
processes have been reported for SREBP. The binding of SREB(s) to the specific sterol 
regulatory elements (SREs) in the cholesterogenic and lipogenic genes leads to the rever-
sal of the virus-induced lipid hyper-biosynthesis [41, 65].

Results on benchmark datasets

To be sure of the validity of our comparison, we applied DRaW, among other methods, 
on benchmark datasets, i.e., Enzyme, Ion Channel, GPCR, Nuclear Receptor [28]. We 
compare the DRaW with the IRNMF, AutoDTI++ [27], and DLILMF [66] methods. We 
already mentioned that IRNMF is an MF-DR method. Additionally, VDA-KLMF [18] 
is another MF-DR method. The authors borrowed the idea of dual-network integrated 
logistic matrix factorization (DNILMF) [66]. Thus, we ran the DNILMF to cover both 
mentioned methods. We chose AutoDTI++ due to it is a deep model. The authors con-
sidered the DTI matrix as the input to the model. Then they multiplied it by the fea-
ture vectors of drugs. Then, the computed matrix of this multiplication was fed to an 
autoencoder-based model. The autoencoder is a deep method. From the output of the 
model, they predicted the new DTIs. While they have used a deep method, their model 
suffers from considering DTIs as the input to the model. We mentioned this as a type 
of data leakage (and the main problem of matrix factorization methods) that makes the 
results unreliable. Nevertheless, we consider their results to compare. Table  7 shows 
the results. For each dataset, the highest AUC-ROC and AUPR values have been high-
lighted in bold. As the results show, our method outperforms the IRNMF on all datasets. 
The external validation shows our proposal’s power, which uses feature vectors rather 
than matrix factorization. The table needs more verification. The AUC-ROC metric 
shows that even an uncomplicated deep network on the similarity features outperforms 
the matrix factorization methods. However, if not all, most medical datasets are sparse 
matrices with a few ones and a massive number of trivial or zero values. More inter-
estingly, although IRNMF may have a high value for the AUC-ROC, e.g., 0.855 for the 
Enzyme dataset (still lower than DRaW with an AUC-ROC higher than 0.98), its AUPR 
is tremendously negligible. This result shows that IRNMF predicts most of the values, 
if not all, as zero. This conversion to zero causes a fake high AUC-ROC and a low real 
AUPR. Thus, IRNMF and most matrix factorization methods cannot predict the cor-
rect ones. On the other side, considering similarity matrices as the feature space, as we 
have proposed in DRaW, leads to a higher and more acceptable AUPR. By comparing 
the DRaW with the AutoDTI++ versions, the former achieves a higher AUC-ROC on 
all datasets. However, DRaW has a higher AUPR in just two of the benchmark datasets 
and a lower in the other two. It is worth mentioning that these results of AutoDTI++ 
are polluted with data leakage. Lastly, DRaW has a higher AUC-ROC in all cases and 
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Fig. 3  ROC of DRaW (green) and IRNMF (blue) on benchmark datasets

Fig. 4  PR curve of DRaW (green) and IRNMF (blue) on benchmark datasets
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a higher AUPR in Enzyme and Nuclear Receptor datasets. Anyhow, DRaW generally 
reaches a higher performance. In addition, diagrams in Fig. 3 present ROC curves, and 
diagrams in Fig. 4 present the PR curves of DRaW and IRNMF for benchmark datasets.

Table 7  Comparison of DRaW with IRNMF [8], AutoDTI++ [27], and DNILMF [66] on benchmark 
datasets [28]

Dataset Approach AUC-ROC AUPR

Enzyme IRNMF 0.855 0.069

AutoDTI++ ( Sp) 0.90 0.82

AutoDTI++ ( Sd) 0.50 0.33

AutoDTI++ ( St) 0.84 0.77

DNILMF 0.981 0.727

DRaW 0.983 0.875
Ion Channel IRNMF 0.817 0.144

AutoDTI++ ( Sp) 0.91 0.90
AutoDTI++ ( Sd) 0.49 0.50

AutoDTI++ ( St) 0.86 0.86

DNILMF 0.982 0.831

DRaW 0.983 0.886

GPCR IRNMF 0.707 0.131

AutoDTI++ ( Sp) 0.86 0.85
AutoDTI++ ( Sd) 0.47 0.47

AutoDTI++ ( St) 0.85 0.83

DNILMF 0.954 0.648

DRaW 0.955 0.704

Nuclear Receptor IRNMF 0.795 0.117

AutoDTI++ ( Sp) 0.87 0.84

AutoDTI++ ( Sd) 0.60 0.62

AutoDTI++ ( St) 0.87 0.84

DNILMF 0.919 0.626

DRaW 0.954 0.883

Fig. 5  3D structure of the binding interaction between Triflupromazine hydrochloride-ACE2
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Table 8  Docking results of top three ranked drugs recommended by DRaW against ACE2 and 
SREBP1

Compound Name PUBCHEM CID Molecular Formula Docking Score (kcal/
mol)

Ace2 SREBp1

Triflupromazine Hydrochloride 66069 C18H20CIF3N2S − 7.0 –

Chlorpromazine 2726 C17H19CIN2S − 6.1 –

Loperamide 3955 C29H33CIN2O2 – − 5.1

Fig. 6  2D diagram for the residues incorporated in Triflupromazine hydrochloride-ACE2 interaction

Fig. 7  3D structure of the binding interaction between Chlorpromazine-ACE2
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Docking results

Table 8 shows the docking results of the three selected antivirals with the ACE2 and 
SREBP1.

All three drugs bind to their proteins with acceptable binding affinities and in the 
correct position. Triflupromazine hydrochloride binds to ACE2 by forming hydrogen 
bonds with Tyr83, and other interactions with Lys31, Leu79, Gln76, Phe28, Thr27, 
Gln24, and Met82, Figs. 5 and 6 show its 3D and 2D representations, respectively. As 
Figs. 7 and  8 show, the chlorpromazine binds to ACE2 by an intermediate of some 
van der waals interactions with Gln24, Thr27, Leu79, Glu35, Gln76, Lys31, and π-π 
interactions with Tyr83, and Phe28. According to docking results, triflupromazine 

Fig. 8  2D diagram for the residues incorporated in Chlorpromazine-ACE2 interaction

Fig. 9  3D structure of the binding interaction between loperamide-SREBP1
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hydrochloride and chlorpromazine occupied the binding sites necessary for SARS-
CoV-2; this explains the viral entry inhibition by these two drugs. Furthermore, as 
shown in Figs.  9 and 10, loperamide binds to the V-shape DNA-binding domain of 
SREBP1 by forming van der waals, π-π and carbon-hydrogen bonds with Ile343, 
Lys359, Glu332, Asn340, Tyr335, Arg336, and Ile339. Therefore, loperamide can 
inhibit the DNA-binding domain activity of SREBP1 by physically blocking the SRE 
recognition site.

Conclusion
In this paper, we deal with an analytical way of computational drug repurposing using 
machine and deep learning methods. Due to the tremendous time and cost of drug 
discovery, drug repurposing is an essential and undeniable part of this industry. Thus, 
many efforts of bioinformatic academic centers and research studies have concen-
trated on this subject. An important branch of drug repurposing utilizes matrix fac-
torization methods borrowed from recommender systems. In this work, we analyzed 
the issues related to using such methods in drug repurposing studies. In addition, we 
have proposed a technique whose input feature consists of similarities and prelimi-
nary information on drugs or targets. In other words, we avoid sparse representations 
of drug-target interactions as the input vector. Our experiments on the COVID-19 
dataset and external validation show that our proposal outperforms the matrix fac-
torization methods.
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