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Abstract 

Background: Whole genome bisulfite sequencing (WGBS), possesses the aptitude 
to dissect methylation status at the nucleotide‑level resolution of 5‑methylcytosine 
(5‑mC) on a genome‑wide scale. It is a powerful technique for epigenome in various 
cell types, and tissues. As a recently established next‑generation sequencing (NGS) 
platform, GenoLab M is a promising alternative platform. However, its comprehensive 
evaluation for WGBS has not been reported. We sequenced two bisulfite‑converted 
mammal DNA in this research using our GenoLab M and NovaSeq 6000, respectively. 
Then, we systematically compared those data via four widely used WGBS tools (BSMAP, 
Bismark, BatMeth2, BS‑Seeker2) and a new bisulfite‑seq tool (BSBolt). We interrogated 
their computational time, genome depth and coverage, and evaluated their percent‑
age of methylated Cs.

Result: Here, benchmarking a combination of pre‑ and post‑processing methods, we 
found that trimming improved the performance of mapping efficiency in eight data‑
sets. The data from two platforms uncovered ~ 80% of CpG sites genome‑wide in the 
human cell line. Those data sequenced by GenoLab M achieved a far lower proportion 
of duplicates (~ 5.5%). Among pipelines, BSMAP provided an intriguing representation 
of 5‑mC distribution at CpG sites with 5‑mC levels > ~ 78% in datasets from human 
cell lines, especially in the GenoLab M. BSMAP performed more advantages in running 
time, uniquely mapped reads percentages, genomic coverage, and quantitative accu‑
racy. Finally, compared with the previous methylation pattern of human cell line and 
mouse tissue, we confirmed that the data from GenoLab M performed similar consist‑
ency and accuracy in methylation levels of CpG sites with that from NovaSeq 6000.

Conclusion: Together we confirmed that GenoLab M was a qualified NGS platform 
for WGBS with high performance. Our results showed that BSMAP was the suitable 
pipeline that allowed for WGBS studies on the GenoLab M platform.
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Introduction
DNA methylation at the fifth carbon position (C5) of cytosine is the conventional and 
pivotal epigenetic signature in the mammalian genome [1], namely 5 methylcytosines 
(5-mC). It can be reproduced through mitosis and is defined as the characteristic of cel-
lular epigenetic memory or genomic imprinting [2]. Namely, the “persistent homeosta-
sis” of 5-mC is extensive on the genome scale and it would be mediated and maintained 
by epigenetic switches according to cell status, tissue type, organisms state, and so on 
[3]. Functionally, 5-mC impacts embryonic development and several vital processes, 
such as the gene expression and chromatin remodeling [1, 4]. In terms of those func-
tions, perturbations in methylation patterns, called failures of homeostasis of 5-mC, 
have been found to contribute to complicated disease etiology, including tumorigenesis, 
neurodegenerative disease, and neurological disorders [5–7]. Herein, the significance of 
this modification leads to a large and rapidly growing number of studies on itself [8].

Numerous experiments based on next-generation sequencing (NGS) could reveal 
DNA methylation status [9]. The current mainly approach adopts sodium bisulfite con-
version to interrogate and quantify DNA methylation at nucleotide resolution [10], such 
as whole genome bisulfite sequencing (WGBS), and reduced representation bisulfite 
sequencing (RRBS). Due to the out-performance of efficiently detecting methylated 
cytosine at the whole genome scale and constructing robust whole-genome scale 5-mC 
methylation profiles [11], the WGBS assays is extensively used in the 5-mC analysis in 
mammalian genetics research nowadays. It is increasingly vital as a standard diagnos-
tic tool in research and the medical setting for DNA methylome analysis [12]. Recently, 
Mary L. Stackpole et  al. revealed the highly promising feature of specific individual 
methylation, used not only to detect cancer but also to locate its tissue of origin [13–15].

The development of new sequencers has been beneficial in reducing the high cost 
of WGBS, further rendering it possible to investigate various samples and resulting in 
rapidly increasing data for the usability of cancer detection (Additional file 1: Table S3). 
Currently, the principal sequencing instrument for WGBS is still the Illumina plat-
form, such as NextSeq 550, and NovaSeq 6000 Sequencing System (NovaSeq). Those 
two sequencers use similar technologies and differ in fluorescence signals (4-color vs. 
2-color) and corresponding basecall algorithms. In 2020, GeneMind released a new 
short-read sequencer, GenoLab M. This system offers both high- and mid-throughput 
flow cells, accommodating various sizes, throughputs, and turnaround times, for labs 
from large-scale to smaller (Additional file 1: Table S3). Presently, it demonstrated prom-
ising and robust performance in a wide variety of sequencing projects, such as LncRNA 
and transcriptome [16], WES and WGS [17], capable of calling multiple types of vari-
ants, including InDels and CNVs. However, its performance on WGBS has not yet been 
comprehensively assessed. GenoLab M platform for WGBS poses challenges, such as 
intact genomic representation, raw data quality, uniquely mapping ratio, data accuracy, 
the usability of suitable mapping tools, and potential bias introduced during sequenc-
ing, which is attractive for those wishing to integrate new sequencing data with data 
sequence on older platforms [18].

As for conventional methods for DNA library, due to bisulfite conversion of 
unmethylated cytidine residues after ligation of methylated adapters, many adapter-
tagged DNA fragments are diminished and finally excluded in sequencing results, 
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which results in viable reads drop [19]. The GenoLab M platform circumvents this 
limitation according to making bisulfite conversion take place before the ligation of 
sequencing adapters, namely as Post-Bisulfite Adaptor Tagging (PBAT) [20, 21]. This 
method reduces the DNA amount of sample required to at least 10 pg, avoids degra-
dation of most DNA fragments during the bisulfite conversion, and produces highly 
diverse libraries as viable sequencing templates. This feature could enable more types 
of samples to be investigated, such as rare biopsies and cell lines [21].

Apart from intact genomic DNA fragmentation, the descriptions of data from the 
novel platform for methylation calls typically dissect other dimensions such as the 
properer pipelines, followed by preprocessing step, the proportion of mapped reads 
and uniquely mapped reads, the post-processing step, which is implemented after 
reading mapping and before methylation calls, genome-wide methylation levels, com-
putational speed [22]. Those together bring us a more accurate interpretation of the 
bisulfite-seq dataset. In general, the critical point in silico analysis of WGBS is the 
alignment, which leads to specific challenges for the mapping tools due to the bisulfite 
conversion. There are two main approaches to mapping bisulfite-seq sequences: ‘wild 
card’ and ‘three letter’ mapping. Depending on the corresponding short-read align-
ment tool, those two approaches allow either gapped or ungapped mapping. Coupled 
with a proliferation of bisulfite-seq mapping tools [22], benchmarking studies have 
been implemented using real data downloaded and generated from platforms [23, 24]. 
According to those studies, in those dazzling tools, BSMAP [24–27], Bismark [22, 
24, 27], BatMeth2 [28], and BS Seeker2 [27] outperform substantially all of the other 
pipelines based on different aligning algorithms, and corresponding information was 
listed in Table 1 For the mapping algorithm, Bowtie2 is much better for PE150 [29, 
30], and Bowtie is much better for a shorter read [31]. Thus, in terms of our PE150 
reads, we choose Bowtie2 as Bismark’s and BS Seeker2’s aligners (Table 1).

Together, we obtained four human 293 (h293) and four mouse methylomes (repre-
senting two platforms from two individuals) and implemented five pipelines. To sum 
up, we confirmed the performance of GenoLab M on WGBS by parallel comparison 
with HiSeq Nova6000 on the well-characterized h293 and adult mouse liver tissue.

Experimental procedures
Sample preparation and genomic DNA isolation

Human cell line 293 was the kidney of a human embryo cell line 293 (HEK293), and 
was purchased from ATCC (VA, USA). Mouse liver cells was murine liver cell line 
NCTC1469. The mouse liver cells (< 25  mg) and HEK293 (< 5 ×  106) were acquired 
from Vazyme Biotech Co., Ltd., China, and GeneMind Biosciences. Genomic DNA 
(gDNA) from corresponding cells was isolated and extracted using  FastPure® Blood/
Cell/Tissue/Bacteria DNA Isolation Mini Kit (Vazyme Biotech Co., Ltd., China) 
according to the manufacturer’s instructions. This kit performed an enzymatic 
approach to cell lysis, followed by protein precipitation and subsequent nucleic acid 
extraction, resulting in high purified, high-molecular-mass DNA. The amount of 
extracted DNA from two h293 samples and two mouse samples was preserved at 
-80℃ before library preparation [16].
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Bisulfite conversion, library preparation and sequencing

Bisulfite conversion of purified gDNA is performed using the  EpiArt® DNA Methyla-
tion Kit (EM101). With this method, bisulfite conversion was performed before add-
ing sequencing adapters. Moreover, this kit employs thermal denaturation instead of 
traditional chemical denaturation. Meanwhile, it combines DNA denaturation and 
bisulfite conversion into one step and expedites the time of conversion reaction to 
less than 140  min. Finally, it resulted in high-yield of bisulfite-converted DNA (the 
conversion ratio is ≥ 99%, and the recovery efficiency is ≥ 80%).

Next, the bisulfite-treated DNA was purified and used to prepare the sequencing 
library using the  EpiArt® DNA Methylation Library Kit (NE103) according to the 
manufacturer’s instructions. In this procedure, sample-specific gDNA libraries were 
produced using unique dual indexes according to VAHTS Dual UMI UDI Adapt-
ers Set 1-Set 4 (N351 indexes which consist of 96 double-ended unique-dual-index 
(UDI) UMI adapters). Subsequently, those resulting sample-specific libraries were 
used to add P5/P7 adapters by PCR at the 5 and 3 ends, respectively, of the original 
DNA strand. Each index specific to a given sample was marked with a corresponding 
marker, such as mouse_s1, mouse_s2 (two replicates), or h293_s1, h293_s2 (two rep-
licates) in the following in silico analysis. Each library was fragmented between the 
range of 200 bp and 500 bp using a 4150 Bioanalyzer DNA High Sensitivity kit (Agi-
lent). Subsequently, each library was separated into two parallel libraries for two dif-
ferent sequencers and pooled. Libraries marked as Mouse_s1_NV and h293_s1_NV 
were pooled, and libraries marked as Mouse_s2_NV and h293_s2_NV were pooled, 
for NovaSeq platform. Libraries marked as Mouse_s1_GM and h293_s1_GM were 
pooled, and libraries marked as Mouse_s2_GM and h293_s2_GM were pooled, for 
GenoLab M platform. After library QC, pools were sequenced in PE150 mode on 
both sequencers, with the same 40% Phix spike-in [2] to improve the complexity of 
sequencing.

Pre-processing

Raw reads in fastq format were identified by the index i5 sequences and divided into 
independently fastq files marked with corresponding sample names. Then, reads of 
each sample were checked for quality, including trimming adaptor, trimming low-
quality bases, performing the quality score and read length filtering, by cutadapt [32] 
with the “-a GGG GGG GGG GGG X -a AGA TCG GAA GAG  -A AGA TCG GAA GAG  
-A GGG GGG GGG GGG X -g CTC TTC CGA TCT  -G CTC TTC CGA TCT ” options to 
identify and trim adapter and poly-N, with the “-n 10 --max-n 0.05 -q 20,20 -u 10 -U 
10 -m 30 -e 0.2” options to omit low-quality reads and produce clean fastq files. In 
terms of the additional tail sequence during ligation of the 3′ adapter and the insert 
size being smaller than the reading length, the bases from the header of the 5′ and 
the tail of 3′ need to be trimmed for more mapping efficiency. Non-trimmed and 
trimmed reads were quality-checked using FastQC v0.11.9 for adapter content, Q20, 
Q30, and QC quality checks. Dependent on the result of FastQC and BSMAP map-
ping, we choose 10 bp, 20 bp, 30 bp, 40 bp, and 50 bp to set parameters “-u” and “-U” 
as the trimmed length to detect a better mapping efficiency.
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Cross-platform m5C sequencing data analysis

Bisulfite-converted reference genome files, including human (GRCh38.p14) and mouse 
(mm10) were generated using Bowtie2 [30] on Bismark [33] and BS Seeker2 [34]. Align-
ment of QC-passed reads to the human and mouse reference files was performed with 
BSMAP v2.9.0 [35], Bismark v0.22.3 (Bowtie2), BatMeth2 [22], BS Seeker2 (Bowtie2), 
and BSBolt v1.4.8 (BWA-MEM) [36] respectively.

For all the approaches, we used default parameters. The post-precessing step is needed 
at Bismark, due to its particular requirement of uniquely mapping pair-end reads for 
subsequent methylation calling. The other process was implemented using the uniquely 
mapped reads for each aligner using corresponding post-processing programs, which 
could be used to estimate the percentage coverage and percentage methylation for all 
CpG sites on a genome-wide scale. All the alignment was implemented with 8 threads 
using a computational cluster with 377G RAM size and two physical CPUs containing 
24 logical CPUs per physical CPU.

The Jaccard statistic, called the Jaccard similarity, could measure the similarity 
between two data sets to see which members are shared and distinct [37]. Here, we esti-
mated the Jaccard statistic to reflect the similarity of the two sets uncovered by all dif-
ferent software [38]. All genomic characteristics were defined due to the GRCh38.p14 
genomic annotation database acquired from NCBI. The promoter was defined as regions 
of ± 2 kb around transcription start locations [39]. The extent of overlap of methylated 
Cs and CpG from different pipelines was implemented using bedtools v2.27.1.

To verify the accuracy of the percentage methylation ratio of all chromosomes 
and specific genes by four sorts of software, we downloaded an average percentage of 
methyl-cytosines per chromosome in HEK-CT cells [40] and the percentage of meth-
ylation levels of NSUN2 and GNB1 genes from NCBI, belonging to GSM1254259 [40], 
GSM2467585 [41], GSM2425586 [42]. Subsequently, we compared previous studies on 
the methylation patterns of crucial locations of GNB2 and NSUN2 genes using house-in 
scripts and bedtools v2.27.1 [43] and visualized the methylated sites of those genomes 
using a custom R pipeline (Additional file 1).

Results
Comparison of read level and improving the mapping efficiency according to trimming

Since the generation of high-quality WGBS data ultimately impacts the quantifica-
tion and interpretation of Cs methylation levels, it is indispensable to monitor the 
raw data quality and interrogate the appropriate pre-processing step to cleanse data 
[1]. To avoid biased results by different sample preparation and library construc-
tion processes, we split the same library (Additional file 2: Fig. S1a and b) into two 
copies for two sequencing platforms. Finally, we obtained eight datasets as in Fig. 1. 
Based on an average of 321  bp length for two h293 libraries and 327  bp length for 
two mouse libraries, we generated 204.94 ± 43 (mean ± standard deviation (SD))
million reads for the four h293 samples and 64.91 ± 12.01 million reads for the four 
mouse samples (Additional file 3: Table S1), of which the minimum value of Q30 was 
90%. Even though high quality of raw data was obtained, due to the result of quality 
scores (Additional file 4: Fig. S2) and base distribution (Fig. 2b) using FastQC in the 
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pre-processing step, we found that the first ten bases of read2 and the end ten bases 
of read1 showed relatively low quality. This phenomenon presumably resulted from 
the PBAT protocol, which suffered from a higher percentage of low-quality bases 
along the start of reads [39], or maybe because of the inadequacy of those sequencing 
instruments, requiring more detailed research in the follow-up research work [44]. 
Thus, we set various cutoffs, including 10 bp, 20 bp, 30 bp, 40 bp, and 50 bp (Fig. 2a) 
for the trimming stage and detected the mapping ratio of four h293 samples from 
the BSMAP mapping tool. The results determined that the proper number of the 
trimmed base from the 5′ of read2 and the end of read1 was 10 bp, which produced 
most of the viable amount of usable bases (of which, the minimum value of Q30 was 

Fig. 1 Schematic of the pipelines including key wet and dry labs

Fig. 2 The effective number of trimmed bases in filtering process. a The whole‑mapping ratio and 
unique‑mapping ratio under different trimmed bases in filtering step. AR: all reads mapping ratio; UAR: 
unique all reads mapping ratio. b The site for trimming bases in read1 and read2. The orange dashed line and 
scissor are the cutting site for trimming. c The post‑filtering depth and coverage of eight samples
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up to 90.41%) and increased the mapping efficiency from 60 to 80% on unique map-
ping ratio (Fig.  2a; Additional file  4: Fig. S2). We loaded those cleansing datasets 
into BCREval [45] software to estimate the bisulfite conversion of those four librar-
ies. The result showed that the conversion ratio was 96.685% for h293_s1, 95.745% 
for h293_s2, 93.97% for mouse_s1, and 93.41% for mouse_s2, respectively. That may 
result in false positive outcomes, such as a high level of non-CG methylation status. 
One particular challenge in carrying out WGBS is the base bias of the library. There-
fore, we pooled ~ 40% PhiX spike-in, a substantial spike-in of DNA of a balanced base 
composition, to enhance sequencing quality. The result of base bias (Additional file 5: 
Fig. S3) showed the high-quality curated data. Besides, the relative decline of quality 
near the end of reads occurred on both sequencers. That may have been caused by 
the accumulation of phasing and prephasing errors in the PE150 sequencing. Based 
on this trimmed cutoff, we observed that the percentage of T base in whole reads 
from two platforms showed higher consistency and unbiasedness in PBAT step from 
another side (Additional file 6: Fig. S6a).

Using the QC-passed reads to align reference, we found that the four h293 data spread 
a balancing coverage, depth, and GC%, the same as mouse samples (Fig. 2c; Additional 
file 6: Fig. S6b). After the mapping stage using the BSMAP aligner, the data from Geno-
Lab M reached a more robust depth (35x) [1] than that from NovaSeq, ranging from 28× 
to 33×, no matter in genome-wide or at chromosome-level (Fig.  2c; Additional file  6: 
Fig. S6c and d). The depth and coverage of data belonging to mouse samples showed 
consistency in the two platforms. The two replicates per platform and the average depth 
and coverage satisfied the modest sensitivity and specificity of standard WGBS [46].

Comparison of those mapping performance and methylation conversion

Apart from the data qualification, the mapping ratio was the second challenge mainly 
affected by computational methods and would impact the final methylation calls [27]. 
Herein, we then focused on comparing the mapping ratio and subsequently methyla-
tion conversion from the perspective of the platforms as well as data processing pipe-
lines. From the platform’s perspective, it revealed that the alignment ratio was relatively 
higher in two h293 curated data from the NovaSeq platform, which was similar in four 
mouse curated data (Fig. 3a and c). The proportion of duplicated reads was much higher 
on NovaSeq (mean 14.94%) than that on GenoLab M (mean 3.05%) (Fig. 3a and c). In 
the comparison of software, we found that the alignment percentage for BSBolt was 
the highest and was superior to 94% on four h293 samples, and to 91% on four mouse 
samples. The following was BetMeth2, which could obtain at least 91% unique map-
ping reads on four h293 samples, and 86% unique mapping reads on four mouse sam-
ples. The performance of the BS Seeker2 aligner was the worst. The Bismark could find 
more duplicated reads on data from NovaSeq (mean 14.9%) than the other four sorts of 
software.

Additionally, multiple reads uncovering each methylated cytosine could be used as a 
readout of the fragmentation of the sequences within the sample that are methylated 
at that location, here represented as the methylation level of a specific cytosine. There-
fore, we observed differences in methylation levels of the specific cytosine between 
the sequencing platforms and among the software of methylation calls. The detectable 
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genome-wide Cs mainly contain non-CG context (CHG and CHH, where H = A, C, or 
T) and CG context (CpG sites). The methylated Cs percentile of curated data from the 
two platforms showed high conformity in both h293 and mouse samples. In the four 
sample reads (two h293 samples and two mouse samples) on GenoLab M, the methyl-
ated Cs of CpG (mCG) sites were significantly more than the methylated Cs of CHG 
(mCHG) and CHH (mCHH) (Fig. 3b and d). This trend of methylated Cs was similar 
in four samples on NovaSeq, indicating that at sites of non-CG methylation only a frac-
tion of the surveyed genomes in those samples were methylated and data from the two 
platforms were entirely consistent. However, analysis of these loci from four software 
showed that BSMAP and BatMeth2 could reveal much more methylated Cs (~ 70–80%) 
than the remaining methods (~ 65%). This quantitative difference was much smaller than 
the unique alignment ratio.

Assessment of the agreement between DNA methylation landscapes generated 

by pipelines versus that from two platforms

After strict curating the pre-processing and processing step, we evaluated the per-
formance of two platforms for DNA methylation quantification and five processing 
pipelines for DNA methylation calls. In the genome of mammals, DNA methylation 
occurs mainly at cytosine followed by guanine, namely CG methylation (mCG) pro-
file. Contrastingly, methylation status at cytosines followed by bases other than gua-
nine is referred to as non-CG methylation (mCHG, mCHH, where H = A, C, or T) 
profiles. For two platforms, we focused on those three methylated Cs profiles (mCG, 

Fig. 3 Alignment ratios and the methylated Cs’ ratio about CG/CHG/CHH. a The unique mapping ratio 
and duplication ratio of four h293 samples in four pipelines. b The radial histogram of the proportion 
of methylated CG/CHG/CHH in all identified Cs in four h293 samples. c The unique mapping ratio and 
duplication ratio of four mouse samples in four pipelines. d The radial histogram of the proportion of 
methylated CG/CHG/CHH in allidentified Cs in four mouse samples. For the result of BSBolt, the final 
proportions were only mCG and mCH (containing mCHH and mCHG). That is, there was no intermediate 
result for all CHH sites and CHG sites, preventing us from distinguishing the percentage of mGHG and mCHH
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mCHG, mCHH) throughout each autosome and chrX. Of the detected Cs site in 
the CpG context, the density profile of mCG displayed consistency throughout each 
autosome and chrX from a global-scale view. On the contrary, the density profile of 
mCHG and mCHH showed more variations across each chromosome (Fig. 4a). Con-
sidering the testing mCs in all and the CpG context, we found that the GenoLab M 
platform calls considerably higher mCs relative to the NovaSeq platform (Fig.  4d). 
The common quantified mCpG sites accounted for ~ 50%.

For those processing pipelines, the profiled all Cs sites in the CpG context of the 
human genome showed that the Bismark could detect the most CG context, up to 
approximately 59 million, containing almost 99% CG context from the other four 
pipelines (Fig. 4c) and similar with the previous amount [4]. The density profile of 
mCpG was highly in agreement with data metrics from five processing pipelines. 
Conversely, the density profiles of methylated non-CG context from BSMAP and 
Bismark were similar and more noticeable than that from BSBolt, BatMeth2 and 
BSSeeker2. As a result of BSMAP, the density profile of methylated non-CG con-
text on two platforms show more consistency from two replicates, which is vice 
versus Bismark. The BSSeeker2 uncovered the lowest density profiles of mCHG 
and mCHH among all software (Fig.  4a). For mCG loci, the correlation analysis of 

Fig. 4 Comparing the methylated Cs profiles of two platforms from different software. a The methylation 
level of CG/CHG/CHH in each chromosome in four h293 samples from four sorts of software. b The PCA for 
datasets from four kinds of software. c The scanned CpG sites in four software. d The overlap methylated 
CpGs and all CpG sites in two replicates from two platform and four pipelines. h293_GM means this data 
is from GenoLab M platform, whereas h293_NV means that from NovaSeq 6000. e The correlationship of 
heatmap of all datasets from five pipelines and two platforms. bsm: BSMAP; bis: Bismark; bss: BS Beeker2; bsb: 
BSBolt; ba: BatMeth2
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biological replicates and different approaches showed that BSMAP performed the 
best between replicates and platforms (Additional file 7: Fig. S4a).

To characterize the similarity of mCG and the clusters of those biological samples 
from all approaches, we performed the principal component analysis (PCA) using all 
mCG data. We generally observed a higher correlation between data from BSMAP 
and Bismark (Fig.  4b), a similar trend to the genomic-wide view of DNA methyl-
ation patterns (Fig.  4a). Among this result, two replicates on GenoLab M showed 
more similarity than two on NovaSeq from Bismark. Moreover, two replicates on 
NovaSeq showed more similarity than two on GenoLab M from BSMAP. For com-
bined mCHG loci, the PCA analysis showed that the mCHG is more complicated 
and inconsistent among all pipelines and platforms (Additional file 7: Fig. S4b).

Hereafter, we combined two replicates to represent each platform and imple-
mented the correlation analysis through pairwise comparison of mCG to excavate 
the concordance of data on two platforms from five approaches. We calculated the 
value of Jaccard similarity between pairs, and showed those correlation values via 
a heatmap plot (Fig. 4e). We observed that the data from BSMAP, BS-Seeker2, and 
Bismark showed more consistency, especially from BSMAP and BS-Seeker2. Fur-
thermore, the data on two platforms from BSSeeker2 showed the most consistency. 
Intriguingly, that condition was observed in the analysis of identifying the common 
mCG sites and mCs sites according to the post-filtering mCG sites (depth per site 
≥ 4) (Fig.  4d), which obtained the most common mCG sites and mCs sites up to 
68%. However, a lower correlation was observed between mCG sites on two plat-
forms from BatMeth2 and BSBolt (Fig.  4e). Due to the analysis of identifying the 
common mCG sites and mCs sites, we observed that of the methylcytosine detected 
in h293 on GenoLab M from BSMAP and BatMeth2, up to 88% were obtained in the 
CG context, and the total number of mCG sites was lower up to 84% on NovaSeq. 
That was a similar proportion between the two platforms from Bismark. For all 
pipelines, the common mC loci and mCG loci were lower in balance, and those were 
slightly increasing only for BSMAP and BSSeeker2, which was consistent with the 
result of correlation analysis (Fig. 4d and e). We further compared the paradigm of 
mCG methylation, which was validated by previous research [40], with our results of 
h293 from two platforms and four pipelines. The graph (Additional file 7: Fig. S4c) 
showed roughly similar methylation levels throughout each autosome and chrX.

Apart from the results’ concordance of the mappers based on the two platforms 
above, we simultaneously recorded the computational time on each procedure, 
including building reference index, pre-processing, alignment, post-processing, 
methylation calling, the convenience of use, and total time based on the same oper-
ating system configuration (Ubuntu v20.04 operating system, containing 2 physical 
CPUs, 48 logical CPUs, and 377G RAM size). We observed that BS-Seeker2 took the 
longest time in reference index, alignment, and methylation calls, whose time ranged 
from fourfold to tenfold longer than other pipelines. On the contrary, the BSBolt 
took the shortest time for the whole five procedures, which was only ~ 10 h on analy-
sis of h293, following with BSMAP (~ 11 h) (Table 1; Additional file 8: Table S2).
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Consistency of methylated pattern of specific CG sites among data from two platforms 

and previous studies

Despite the general concordance of the mapping outcomes, the results of the methyl-
ated calling demonstrated that BSMAP provided attractive robustness between rep-
licates and platforms. Consequently, we further dissected the paradigm of mCs’ and 
mCGs’ methylation over genomic annotations from the result of BSMAP. Methylation 
rates plotted over GRCh38.p14 genomic annotation database was generated by aggre-
gating all mCs methylation and mCG methylation fractions in percentile windows for 
5000 bp upstream of the gene TSS, through the geneset, and the 5000 bp downstream 
of the gene TES. The result (Fig. 5a and b) revealed the same feature as the previous 
study [4].

We simultaneously compared the specific CpG of two genes in the human embry-
onic kidney cell line, which was validated by previous research [39], among our meth-
ylation results from BSMAP and those known results from NCBI [40–42]. The bubble 
plot showed highly consistent methylation patterns within all five datasets, indicating 
the accuracy of mCG sites on two platforms (Fig. 5c; Additional file 9: Fig. S5).

Fig. 5 The distribution of methylated Cs in CpG about gene regions. a The methylation ratio of whole Cs and 
CpG sites in four h293 sampes from BSMAP. US2kb: upstream 2 kb; TSS: transcript start site; TES: transcript end 
site; DS2kb: downstream 2 kb. b The methylation ratio 0f CpG sites in four mouse samples. c The methylation 
levels of specific‑site in CNB1 and NSUN2 genes. The x‑axis means datasets from different origins; the y‑axis 
means the specific‑site in specific‑gene
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Discussion
The GenoLab M platform is a new sequencing platform from GeneMind Biosciences, 
recently validated as a viable NGS sequencer in WES, WGS, RNA-seq, and lncRNA 
sequencing applications. The reproducibility of this sequencer and its concordance with 
main-stream sequencers on the mammalian genome has not been studied in WGBS, 
which is a crucial evaluation indicator of the newly established technology [26]. Hence, 
we have presented a benchmarking study about a human 293 cell line and mouse sam-
ples and anatomized concordance of those data from two dimensions, platform, and 
software, including publicly widely used Bisulfite-Seq software: BSMAP, Bismark, Bat-
Meth2, BSBolt, and BSSeeker2 [25, 26].

As a determinant of the entire WGBS analysis workflow, the building of the bisulfite-
Seq library is the first node needing attention for downstream methylation analysis. 
Those bisulfite-seq libraries are sequenced whether on GenoLab M or NovaSeq, the raw 
reads needed trimming from the start 10 bp of read2 and the end 10 bp of read1, which 
was attributed to the PBAT library preparation or other reasons requiring follow-up 
studies. Despite PBAT suffering from a higher percentage of low-quality bases along the 
start of reads [44], it could diminish the DNA amount of sample required down to 10 pg, 
improve degradation of most DNA fragments during the bisulfite conversion, and pro-
duce highly diverse libraries as effective sequencing templates [20]. In order to make up 
for that deficiency, trimming and quality filtering are indispensable. The cleansing data 
shows a better mapping ratio, GenoLab M especially exhibits more robust depth and 
coverage in h293 biological replicates (Additional file 6: Fig. S6c and d).

After that, we independently evaluated the mapping efficiency between the two plat-
forms in each alignment algorithm. Comparing the platforms, we observed that the 
unique mapping ratio of bisulfite-seq reads on NovaSeq is higher by ~ 1%. Whereas, the 
percentage of duplication reads was much higher on NovaSeq than GenoLab M (14.94% 
vs. 3.05%), meaning that much more viable reads were obtained and used for the sub-
sequent analysis procedures. This tendency was concordant with previous observations 
[47]. In the software comparison, the alignment percentage from BSBolt and BatMeth2 
are both the highest, which is up to 91% in all data. The second best one is BSMAP, in 
which the M-bias plots show a higher consistency and lower CpG retention across the 
entire read length for both reads1 and reads2 after filtering (Additional file 4: Fig. S2: 
post-cleansing data). The duplication rate in Bismark is a mean of 2%, indicating that 
Bismark maybe contains a more strict cutoff for defining replication reads.

In the post-processing procedure using Bismark, we removed single-end unique 
mapping reads because of the request for methylation calls on only paired-end unique 
matching reads. To some extent, this discarding would result in the dropping some sin-
gle-end sequencing reads containing informative methylated Cs sites. For example, our 
outcomes demonstrated that the Bismark tested the lowest methylated Cs sites (~ 65%) 
among pipelines. The subsequent in-house shell scripts and extra procedures increased 
the total analysis time. Though, the quantitative difference was much smaller than the 
unique alignment ratio. That trend of methylation conversion in h293 and mouse was 
undeviating with prevailing assumption [23], which demonstrated that mammalian 
genomic methylation levels are located almost entirely in the CG context, and a hand-
ful of studies have uncovered non-CG methylation in embryonic stem cells [48, 49]. 
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Meanwhile, the methylation calling process shows differences in software. The BSMAP 
performs the best in running time and concordance of replicates and platforms. How-
ever, Bismark shows no obvious bias in analyzing the data of different platforms and 
could generate a final report for the whole methylation workflow, which is quite user-
friendly. In addition, in terms of the lower depth in h293_s2_NV replicate, we decreased 
the filtering criteria of informative CpG sites to two and one supporting reads, and 
found that the ratio of common detecting informative CpG sites in two platforms was up 
to 77%, and 91.23%, respectively. That was observed in methylated CpG sites, up to 73%, 
and 84.56%, respectively, in two filtering conditions. Therefore, the relative lower depth 
of h293_s2_NV affected the potential informative CpG sites of the final result in some 
context, which suggested that the unique CpG sites from GenoLab M could be true posi-
tive sites.

Hereafter, we used the result from BSMAP to compare with known datasets, investi-
gate the difference among those data and find that they show highly consistent methyla-
tion levels on CpG sites of GNB and NSUN2 (Additional file 9: Fig. S5). We caution that 
the lack of more mammalian specimens and low sample number may skew the platform’s 
performance. Also, more uniform coverage depth on each sample may be required to 
determine the methylation detection accuracy across genome.

Conclusion
In conclusion, we generated eight bisulfite-seq datasets based on two sequencing plat-
forms. Based on these datasets, we compared choices of preprocessing steps, mapping 
algorithm, postprocessing methods, and methylation pattern estimation. In the preproc-
essing procedure, we found the appropriate data trimming protocol on read1 and cor-
responding read2. We validated that generally good concordance of those data on the 
two platforms and highlighted suitable mapping algorithms for each platform. Our study 
provides a standardized WGBS resource to benchmark new WGBS library preparation 
protocols and sequencing platforms.
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