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Abstract 

Background:  Lung cancer is the leading cause of cancer-related deaths worldwide. 
The majority of lung cancers are non-small cell lung cancer (NSCLC), accounting for 
approximately 85% of all lung cancer types. The Cox proportional hazards model (CPH), 
which is the standard method for survival analysis, has several limitations. The purpose 
of our study was to improve survival prediction in patients with NSCLC by incorporat‑
ing prognostic information from F-18 fluorodeoxyglucose positron emission tomogra‑
phy (FDG PET) images into a traditional survival prediction model using clinical data.

Results:  The multimodal deep learning model showed the best performance, with 
a C-index and mean absolute error of 0.756 and 399 days under a five-fold cross-
validation, respectively, followed by ResNet3D for PET (0.749 and 405 days) and CPH for 
clinical data (0.747 and 583 days).

Conclusion:  The proposed deep learning-based integrative model combining the 
two modalities improved the survival prediction in patients with NSCLC.

Keywords:  Deep learning, Survival prediction, Lung cancer, Multimodal learning, FDG 
PET

Background
Despite the recent development of novel treatment strategies, lung cancer is the leading 
cause of death worldwide. The 2-year and 5-year survival rates of lung cancer patients 
in the United States are low at approximately 30% and 20%, respectively [1]. The predic-
tion of patient outcomes, such as the overall survival (OS), is important for guiding the 
treatment decision making. However, the current practice in predicting a prognosis is 
unsatisfactory. The prediction of OS following lung cancer diagnosis using tumor-node-
metastasis (TNM) staging alone is the current practice in many hospitals [2]. The TNM 
stage has been used extensively by most physicians to roughly predict a patient outcome; 
however, heterogeneity within stage groups influences patient outcomes. Although vari-
ous prognostic factors have been investigated for a more accurate survival prediction 
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with advances in medical examinations, risk stratification of individual patients for 
precision medicine is still limited. One of the important reasons for this limitation is 
the difficulty in integrating different types of data containing prognostic information. 
This hurdle cannot be addressed using the traditional Cox proportional hazards model 
(CPH), a standard method for survival analysis in the medical field [3].

During the last few decades, a radiomic texture analysis with CPH has been actively 
investigated for survival prediction in patients [4]. The traditional radiomic texture anal-
ysis was based on extracting manually designed features (handcrafted features) from a 
manually or automatically segmented region of interest [5, 6]. However, there are limi-
tations in extracting prognostic information from high-dimensional medical images 
using traditional radiomics models with handcrafted features [7–10]. Moreover, hand-
crafted feature extraction using traditional radiomics is laborious and time-consuming. 
Deep learning-based survival prediction models have recently outperformed traditional 
feature extraction methods, particularly when working with high-dimensional medical 
images [11–15].

Deep learning has also revolutionized image recognition. A convolution neural net-
work (CNN), which is composed of multiple convolutional and pooling layers, is the 
dominant framework for image recognition [16]. A CNN builds layers of features while 
maintaining spatial information by receiving raw image input. The important aspect of 
a CNN is to see parts rather than the entire image and to make use of the association 
between one pixel of the image and the surrounding pixels. However, a deeper layer 
causes gradient vanishing and explosion problems, and a ResNet model using a short-
cut method that adds residuals to the network has been developed. Therefore, the CNN 
model has expanded its applications to various tasks such as classification, detection, 
segmentation, and prognostic prediction in the medical image field [16–18].

F-18 fluorodeoxyglucose positron emission tomography (FDG PET) imaging, a type of 
functional whole-body imaging, is known to be a promising tool for prognostic predic-
tion in patients with lung cancer. FDG PET provides information on disease pathophysi-
ology that might be difficult to contain in clinical data [19]. We aimed to improve the 
prediction of the survival times in patients with non-small cell lung cancer (NSCLC), 
which accounts for the majority of all lung cancer, using a multimodal deep learning 
approach that integrates different types of medical data, including clinical variables and 
whole-body FDG PET images.

Results
Data preparation

Clinical variables and FDG PET images were collected from patients who were diag-
nosed with and treated for NSCLC between January 2011 and December 2017 at Chon-
nam National University Hwasun Hospital. Clinical data and PET images were obtained 
at almost the same time as the lung cancer diagnosis. FDG PET/computed tomography 
(CT) scans were obtained according to standardized imaging protocols at our institu-
tion using two types of PET/CT scanners. To test the generalization, PET images were 
derived from two types of PET/CT scanners: Discovery ST (GE Medical Systems, Mil-
waukee, WI, USA) and Discovery 600 (GE Medical Systems, Milwaukee, WI, USA). The 
three-dimensional (3D) PET images (whole-body axial images) had an image matrix of 
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128 × 128 × 427. Because coronal maximum intensity projection (MIP) images of FDG 
PET have shown promising results for survival prediction in patients with NSCLC [20], 
coronal MIP PET images were also obtained for comparison with 3D PET images. MIP 
PET images were obtained by projecting voxels with maximum intensity in parallel from 
the viewpoint to the coronal plane. Patients without any clinical factors or adequate 
pretreatment F-18 FDG PET/CT were excluded from the present study. Therefore, the 
datasets did not contain missing data. A treatment strategy for each patient, as deter-
mined by the multidisciplinary team, was recommended to the patients. This study was 
approved by the Institutional Review Board of our institution (CNUHH-2019-194).

A total of 2687 NSCLC patients (2005 men and 682 women, with a mean age of 
67.95 ± 9.63 years) were included in this study. The datasets were split into two groups, 
80% for training and 20% for testing. The patient characteristics for each dataset are 
listed in Table 1. There were no statistically significant differences among the features of 
each set based on a t-test for continuous variables and a Chi-square test for categorical 
variables. At the time of analysis, 1857 patients had died and 830 had been censored.

Statistics and performance metrics

The OS time was measured from the date of clinical diagnosis to the date of death. We 
predicted the absolute survival time and 2-year and 5-year survival status of the patients. 
We used the median residual life to predict the expected residual life expectancy (Fig. 1).

Baseline differences between the training and testing sets were assessed using a t-test 
for continuous variables and a chi-square test for categorical variables. Survival curves 
were generated using the Kaplan–Meier method and compared using the log-rank test 
[21]. Multivariate CPH regression analyses were conducted to estimate the prognostic 
effect of clinical features. Statistical significance was set at p < 0.05.

To compare the performance of the models in predicting the OS of an individual, we 
used C-index, MAE, and accuracy of the survival status. Owing to the presence of cen-
soring in survival data, the frequently used evaluation metrics for regression, includ-
ing the root mean squared error and R2, are inappropriate for estimating the prediction 
performance. Instead, specialized metrics such as the C-index and MAE are preferred 
for survival analysis [22]. The performance metrics were calculated and averaged using 
stratified five-fold cross-validation sets. The C-index is the fraction of all pairs of sub-
jects whose predicted survival times are correctly ordered among all subjects that can 
be ordered. The C-index estimates the probability of the predicted survival time for each 
pair and evaluates whether each pair is of the same order as the actual survival time [23–
26]. The C-index considers the relative risk of an event rather than the absolute survival 
times; therefore, we added the MAE to the performance metrics, which is the average of 
the differences between the predicted median residual lifetimes and actual observed OS 
times (ground truth) [22, 27]. Lower MAE values indicate a better model performance. 
We measured the MAE in the subgroup of uncensored patients (n = 1857) because the 
censored data underestimated the survival time [28]. The classification accuracy of 2- 
and 5-year survival status was also evaluated using the predicted residual life. A high 
accuracy indicates a better performance. Furthermore, we conducted a subgroup analy-
sis to compare each model with the ground truth survival curve and MAE according to 
the overall stage.
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Experimental setup

All our experiments are conducted in a computer with an Intel(R) Xeon(R) Silver 4210R 
CPU and four Nvidia 3090 GPUs with 24 GB. The Adam optimizer was applied with a 
learning rate of 1e-4, a batch size of 6 per graphics processing units (GPU) according to 
the GPU memory capacity for 3D images, and a batch size of 125 for clinical data. Fur-
thermore, the entire epoch was learned using callbacks with three digits of patience.

Survival prediction models using clinical features

Table  2 presents the results of the multivariate CPH model. The model included nine 
clinical features, most of which are statistically significant risk factors for a poor OS. 

Table 1  Clinical features of training and test sets in the fold 1

The datasets were split into two groups, 80% for training and 20% for testing

NOS Non-specified; T Primary tumor; N Regional lymph node; M Distant metastasis

Clinical features Number of patients Training set (n = 2149) Test set (n = 538) p value

Age 2687 67.97 ± 9.65 67.87 ± 9.57 0.837

Sex

Male 2005 (74.6%) 1609 (80.2%) 396 (19.8%) 0.584

Female 682 (25.4%) 540 (79.2%) 142 (20.8%)

Histology

Adenocarcinoma 1501 (55.9%) 1197 (79.7%) 304 (20.3%) 0.986

Squamous cell carcinoma 1038 (1.5%) 834 (80.3%) 204 (19.7%)

Large cell carcinoma 39 (1.5%) 31 (79.5%) 8 (20.5%)

NOS 109 (4.1%) 87 (79.8%) 22 (20.2%)

Overall stage

I 595 (22.1%) 482 (81.0%) 113 (19.0%) 0.906

II 269 (10.0%) 213 (79.2%) 56 (20.8%)

III 836 (31.1%) 667 (79.8%) 169 (20.2%)

IV 987 (36.7%) 787 (79.7%) 200 (20.3%)

T stage

T1 575 (21.4%) 457 (79.5%) 118 (20.5%) 0.394

T2 1066 (39.7%) 852 (79.9%) 214 (20.1%)

T3 544 (20.2%) 426 (78.3%) 118 (21.7%)

T4 502 (18.7%) 414 (82.5%) 88 (175%)

N stage

N0 930 (34.6%) 753 (81.0%) 177 (19.0%) 0.096

N1 329 (12.2%) 273 (83.0%) 56 (17.0%)

N2 709 (26.4%) 546 (77.0%) 163 (23.0%)

N3 719 (26.8%) 577 (80.3%) 142 (19.7%)

M stage

M0 1700 (69.3%) 1363 (80.2%) 337 (19.8%) 0.773

M1 987 (36.7%) 786 (79.6%) 201 (20.4%)

Smoking history

Ever smoker 1861 (69.3%) 376 (20.2%) 1485 (79.8%) 0.763

Never smoker 826 (30.7%) 162 (19.6%) 664 (80.4%)

Smoking amount 2687 29.44 ± 27.28 29.12 ± 27.11 0.809

Dead status

Death 1857 (69.1%) 1485 (80.0%) 372 (20.0%) 0.974

Censored 830 (30.9%) 664 (80.0%) 166 (20.0%)
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Older age, male sex, and advanced TNM stage were found to be independent predictors 
of a poor OS. Squamous cell carcinoma is associated with favorable survival outcomes.

DeepSurv with an MLP model using clinical features consisted of 32, 64, and 128 
nodes with two hidden layers, and a Gaussian error linear unit (GELU) was used as an 
activation function [29]. Unlike the rectified linear unit (RELU) function, which gives a 
difference according to the input of the gate, GELU is weighted according to the input 
value and is an active nonlinear function that is also used as an active function of MLP in 
the Vision Transformer (ViT) model [30]. A comparison of the DeepSurv MLP models 
with different nodes and the CPH model showed similar values for all models. However, 
the MLP with 64 nodes showed the best performance in terms of MAE and accuracy 
(Table 3). Therefore, we chose the DeepSurv MLP with 64 nodes for the final multimodal 
model.

Survival prediction models using PET images

For survival prediction using 2D MIP images, among ResNet with 18, 34, and 50 layers, 
the performance improved further as the number of layers increased. ResNet with 50 
layers (ResNet-50) showed a better performance in terms of the MAE and classification 
accuracy than CPH, but not the C-index. For survival prediction using 3D PET images, 
3D CNN ResNet3D models with 10, 18, and 34 layers were compared. Because whole-
body PET images have a large volume, ResNet variants with a relatively low network 
depth (layers) were evaluated. The CNN models using 3D PET images showed better 
performance in all metrics than models using 2D PET images. ResNet3D with 34 layers 
(ResNet3D-34) achieved the best performance among all PET models (Table 4). There-
fore, we chose the ResNet3D-34 using 3D PET images for the final multimodal model.

Multimodal deep learning

The DeepSurv MLP model using clinical features showed better performance than 
CPH model in terms of the MAE and classification accuracy of 2- and 5-year survival 

Fig. 1  The structure of the proposed model and workflow. In step 1, the performances of the CPH and MLP 
model with DeepSurv were compared for use as a prediction model using clinical features. In step 2, the 
performance of a 3D CNN model with 3D PET images and a 2D CNN model with 2D MIP PET images were 
compared. In step 3, integration of the clinical features and image data for the proposed model occurs. The 
model performance was evaluated based on three metrics: C-index, MAE, and accuracy
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status. ResNet3D-34 using PET images showed a similar performance as the CPH 
model in terms of the C-index but a much better performance than the CPH in terms 
of the MAE and classification accuracy of 2- and 5-year survival status. Therefore, 
we proposed multimodal model combining ResNet3D-34 and MLP with 64 nodes 

Table 2  Multivariate Cox proportional hazard model for clinical variables associated with overall 
survival in non-small cell lung cancer patients

Clinical variable Log hazard ratio p value

Age 0.03 < 0.005

Sex

Male 0.48 < 0.005

Female 0.00

Histology

Adenocarcinoma − 0.19 0.12

Large cell carcinoma − 0.05 0.72

Squamous cell carcinoma − 0.70 0.04

NOS 0.00

T stage

T1 0.00

T2 0.10 0.22

T3 0.21 0.02

T4 0.28 < 0.005

N stage

N0 0.00

N1 0.07 0.52

N2 0.20 0.05

N3 0.53 < 0.005

M stage

M0 0.00

M1 0.39 0.63

Overall stage

I 0.00

II 0.58 < 0.005

III 1.09 < 0.005

IV 1.36 0.1

Smoking history

Ever smoker 0.00

Non-smoker − 0.06 0.13

Smoking amount 0.00 0.54

Table 3  Performance comparison of survival prediction models using clinical features

The best score in each column is highlighted in bold

MAE Mean absolute error; C-index Harrell’s concordance index; CPH Cox proportional hazards; MLP multilayer perceptron

Clinical model MAE (days) C-index Classification accuracy of 
2-year survival status

Classification accuracy 
of 5-year survival status

CPH 583 ± 37 0.747 ± 0.01 0.610 ± 0.05 0.868 ± 0.02

MLP {32 × 32} 506 ± 66 0.744 ± 0.01 0.731 ± 0.03 0.894 ± 0.03

MLP {64 × 64} 463 ± 81 0.745 ± 0.01 0.740 ± 0.02 0.913 ± 0.03
MLP {128 × 128} 500 ± 74 0.747 ± 0.01 0.730 ± 0.02 0.902 ± 0.03
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and two layers. The proposed multimodal model showed the best performance in all 
prediction models. The C-index was the highest in the multimodal model, reaching 
0.756 ± 0.01 under a five-fold cross validation. In addition, the MAE also showed the 
smallest error (approximately 1  year). Furthermore, the 2- and 5-year classification 
accuracies were the highest, reaching 0.743 ± 0.02 and 0.933 ± 0.01, respectively, with 
the proposed model (Table 5).

Figure 2 shows the Kaplan–Meier curves comparing the distribution of the ground 
truth of the actual survival time and the predicted survival times using each model in 

Table 4  Performance comparison of the survival prediction of convolutional neural network (CNN) 
models using positron emission tomography (PET) images

The best score in each column is highlighted in bold

MAE Mean absolute error; C-index Harrell’s concordance index; MIP Maximum intensity projection

PET model MAE (days) C-index Classification accuracy of 
2-year survival status

Classification accuracy 
of 5-year survival status

ResNet (MIP)

18 layers 447 ± 26 0.710 ± 0.02 0.719 ± 0.03 0.920 ± 0.01

34 layers 470 ± 14 0.713 ± 0.02 0.699 ± 0.03 0.908 ± 0.01

50 layers 423 ± 22 0.717 ± 0.01 0.724 ± 0.03 0.924 ± 0.01

ResNet3D

10 layers 440 ± 33 0.729 ± 0.01 0.726 ± 0.02 0.917 ± 0.01

18 layers 429 ± 15 0.740 ± 0.01 0.733 ± 0.02 0.915 ± 0.01

34 layers 405 ± 29 0.749 ± 0.02 0.751 ± 0.02 0.928 ± 0.01

Table 5  Performance comparison of models using clinical data, positron emission tomography 
(PET) data, or dual modality

The best score in each column is highlighted in bold

MAE Mean absolute error; C-index Harrell’s concordance index; CPH Cox proportional hazards; MLP Multilayer perceptron; 
MIP Maximum intensity projection

Data Model MAE (days) C-index Classification 
accuracy of 2-year 
survival status

Classification 
accuracy of 5-year 
survival status

Clinical data CPH 583 ± 37 0.747 ± 0.01 0.610 ± 0.05 0.868 ± 0.02

MLP {64 × 64} 463 ± 81 0.745 ± 0.01 0.740 ± 0.02 0.913 ± 0.03

PET (MIP images) ResNet-50 423 ± 22 0.717 ± 0.01 0.724 ± 0.03 0.924 ± 0.01

PET (whole-body 
axial images)

ResNet3D-34 405 ± 29 0.749 ± 0.02 0.751 ± 0.02 0.928 ± 0.01

Clinical data + PET 
(whole-body axial 
images)

Multimodal 399 ± 27 0.756 ± 0.01 0.743 ± 0.02 0.933 ± 0.01

Fig. 2  Survival curves of ground truth and each model in the test set. a Survival curves for each model at all 
stages. b Survival curves of each model in the early stages (I, II, and III). c Survival curves of each model in the 
advanced stage (IV). *p < 0.05, ***p < 0.001
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the test set. Log-rank tests were conducted to evaluate the similarity of the survival 
distributions. There were no statistically significant differences between the ground 
truth and ResNet3D model (p = 0.17) or between the ground truth and multimodal 
model (p = 0.29). However, there was a significant difference between the ground 
truth and CPH (p < 0.001). In the early stage (I, II, III) of NSCLC patients, the CPH 
model (p < 0.001) showed a statistically significant difference from the actual survival 
curve, whereas ResNet3D (p = 0.629) and the proposed multimodal model (p = 0.416) 
showed no statistically significant difference. However, in the advanced stage (IV), the 
CPH (p = 0.026) and ResNet3D (p = 0.028) models showed a statistically significant 
difference from the actual survival curve, whereas the proposed multimodal model 
(p = 0.362) did not. Prediction models that use PET images as a portion of the input 
data provided more accurate survival predictions than the prediction model using 
only clinical data in early-stage NSCLC patients. In addition, the proposed multi-
modal model showed no significant difference from the actual survival curve and pro-
vided a more accurate survival prediction than other models in all stages of NSCLC 
patients.

The survival curves for each patient with NSCLC were estimated from the predicted 
hazard ratios. Figure  3 shows the results of estimating individual survival curves in 
a representative 60-year-old male patient with stage III NSCLC without a history of 
smoking. The patient’s actually observed survival time was 252  days. The predicted 
survival time of each model was estimated using the median residual life. The residual 
lifetimes predicted by the CPH, ResNet3D, and multimodal models were 788, 159, 
and 251 days, respectively. The most accurate model used to predict the actual sur-
vival time was multimodal model, which showed the smallest error (1 day) in com-
parison with ResNet3D (93 days) and CPH (536 days).

In the subgroup analysis of the MAE in patients according to overall stage, the 
advantages of the model using PET data (ResNet3D-34 and multimodal model) were 
more prominent than those of the model using clinical data (CPH) in the early stage 
(I, II, and III) (Fig. 4). In the early stage, the ResNet-34 and multimodal model showed 
a statistically significant difference from CPH. The MAE of the CPH showed a larger 

Fig. 3  Prediction of survival curves of each model in a representative patient
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error in the early stage than in the advanced stage. Additional prognostic information 
from PET images might be advantageous, particularly in early-stage NSCLC patients.

Discussions
The prediction of a prognosis in individual patients is important for predicting the 
effectiveness of a treatment and improving patient care [31]. In the present study, 
a multimodal deep learning model is proposed that integrates two heterogeneous 
modalities (clinical data and 3D PET images) with joint fusion to predict the OS time 
in NSCLC patients. The integrative multimodal model showed an improved prog-
nostic performance compared to the traditional CPH model using clinical data, a 
ResNet model using 2D PET images, and a ResNet3D model using 3D PET images. 
The proposed model seems to effectively combine the information inherent in the 
two different modalities and reflects them in the survival prediction. This is probably 
because, unlike ResNet2D, ResNet3D allows learning additional information, such as 
the spatial context around the tumors. Furthermore, ResNet3D handles a relatively 
small axial area close to the tumor such that the level of attention is not distracted by 
uninformative non-tumor areas in the images [32, 33]. As the ResNet3D model out-
performed other 3D-CNN models comparing C3D and RGB-I3D models in Kinetics, 
a large-scale video dataset [33], our results were consistent with the previous study.

Traditional radiomic approaches for predicting cancer prognosis using imaging 
data have been actively investigated [4, 34]. However, the handcrafted feature extrac-
tion of radiomics is laborious and time-consuming and cannot use the complete 
information of the images. Because deep learning-based models have shown a good 
performance in terms of image classification, localization, detection, segmentation, 
and registration, deep learning-based survival prediction has been investigated to 
overcome these limitations; however, this approach has not been fully investigated 

Fig. 4  Comparison of mean absolute error (MAE) in each stage. *p < 0.05, **p < 0.01
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[35]. Whereas traditional CPH predicts the hazard function and requires specific 
assumptions to evaluate the survival time, the proposed model directly predicts the 
individual survival time (residual life). Direct survival time prediction, rather than a 
hazard function or distribution function, provides a more intuitive interpretation of 
the prognostic predictions [36].

In the present study, both 2D and 3D PET images were evaluated as input data for 
survival prediction. The prediction model of 3D PET images showed a much better per-
formance than that of 2D MIP images [37, 38]. MIP is a common visualization method 
that can be used to visualize 3D images by converting them into 2D images [39]. MIP 
PET images project voxels with maximum intensity in a parallel manner from the view-
point to the plane. Although MIP images allow a reduction of the data size and comput-
ing power during training, they might be limited to reflecting the spatial information of 
the tumor, which contains useful prognostic information. The use of whole 3D medi-
cal images might be more robust than 2D images for prognostic prediction in cancer 
patients [17].

The present study has certain limitations. First, the number of features in the clinical 
data was limited because it was difficult to collect medical data through electronic medi-
cal records. However, we included essential clinical risk factors that were preferentially 
collected and readily used as prognostic factors in the real world. The TNM stage alone 
is often considered as a prognostic factor when making decisions regarding treatment 
and management owing to the lack of an appropriate model incorporating information 
from different modalities. Moreover, we included major risk factors for NSCLC, such 
as age, sex, histology, smoking history, and the TNM stage. Second, PET images with-
out lesion annotation were used. Although a lesion annotation might have improved the 
predictive performance of deep learning models, lung cancer patients may have multiple 
metastatic lesions, ranging from several to hundreds. It takes a significant amount of 
time and effort by physicians to annotate such lesions. Instead, we attempted to improve 
the accuracy and generalize the model by collecting data from a relatively large number 
of patients. Finally, the present study still has room for performance improvements by 
using state-of-art CNN models. Variants of ResNet such as 3D densely connected con-
volutional network (3D-DensNet) and ResNet(2 + 1)D have been proposed and outper-
formed ResNet3D in imaging analysis [40–42]. Further research is necessary to address 
the challenges predicting prognosis using state-of-art CNN models for medical imaging 
applications.

Conclusion
The results of the present study indicate that deep learning model integrating clini-
cal data and PET image data should improve prognostic prediction power in NSCLC 
patients, especially in patients with early stage. The proposed multimodal deep learn-
ing model can successfully integrate different types of medical data and provide intuitive 
prognostic prediction results to physicians and NSCLC patients.
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Method
The modeling process that combines the two modalities is shown in Fig. 1. First, we 
compared the performance of DeepSurv with that of traditional CPH to choose a 
suitable model for clinical data. DeepSurv is a multilayer perceptron (MLP) adapted 
for survival analysis, which is a form of a feedforward deep neural network (DNN). 
DeepSurv predicts the effects of clinical covariates on the hazard rate parameter-
ized by the weight of the network. The loss function for DeepSurv includes a negative 
log partial likelihood from the CPH and regularization term. The open-source code 
DeepSurv by Katzman et al. was used [43]. To optimize the hyperparameter of Deep-
Surv, three layers (32, 64, and 128 nodes) of MLP were compared using the Harrell’s 
concordance index (C-index) and mean absolute error (MAE).

Then, we compared the predictive ability of ResNet3D for 3D PET images with 
ResNet for two-dimensional (2D) MIP images. Because ResNet contains shortcut 
connections that turn the network into its counterpart residual version and allows 
stacked layers to fit the residual mapping, we proposed ResNet to extract features of 
PET images [17]. For survival prediction using 2D MIP images, ResNet models with 
18, 34, and 50 layers were compared. For survival prediction using 3D PET images, 
3D CNN ResNet3D models with 10, 18, and 34 layers were compared. We used a 
model structure that uses batch normalization and a RELU as an activation func-
tion after each convolution layer. The size of the convolution kernel is (3 × 3 × 3), two 
stride convolution layers were used for downsampling, and adaptive average pooling 
was applied to make the last fully connected layer [33]. Final multimodal model was 
constructed by combining CNN of optimal parameters in PET and DNN of optimal 
parameters in clinical data [44].
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