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Abstract 

Background:  Functional gene networks (FGNs) capture functional relationships 
among genes that vary across tissues and cell types. Construction of cell-type-specific 
FGNs enables the understanding of cell-type-specific functional gene relationships 
and insights into genetic mechanisms of human diseases in disease-relevant cell types. 
However, most existing FGNs were developed without consideration of specific cell 
types within tissues.

Results:  In this study, we created a multimodal deep learning model (MDLCN) to 
predict cell-type-specific FGNs in the human brain by integrating single-nuclei gene 
expression data with global protein interaction networks. We systematically evaluated 
the prediction performance of the MDLCN and showed its superior performance com-
pared to two baseline models (boosting tree and convolutional neural network). Based 
on the predicted cell-type-specific FGNs, we observed that cell-type marker genes had 
a higher level of hubness than non-marker genes in their corresponding cell type. Fur-
thermore, we showed that risk genes underlying autism and Alzheimer’s disease were 
more strongly connected in disease-relevant cell types, supporting the cellular context 
of predicted cell-type-specific FGNs.

Conclusions:  Our study proposes a powerful deep learning approach (MDLCN) to 
predict FGNs underlying a diverse set of cell types in human brain. The MDLCN model 
enhances prediction accuracy of cell-type-specific FGNs compared to single modality 
convolutional neural network (CNN) and boosting tree models, as shown by higher 
areas under both receiver operating characteristic (ROC) and precision-recall curves for 
different levels of independent test datasets. The predicted FGNs also show evidence 
for the cellular context and distinct topological features (i.e. higher hubness and topo-
logical score) of cell-type marker genes. Moreover, we observed stronger modularity 
among disease-associated risk genes in FGNs of disease-relevant cell types. For exam-
ple, the strength of connectivity among autism risk genes was stronger in neurons, but 
risk genes underlying Alzheimer’s disease were more connected in microglia.
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Background
Functional gene networks (FGNs) capture functional relationships among genes and 
provide a system-level understanding of gene function, that could further shed light 
on genetic mechanisms underlying human diseases. Each node in a gene network rep-
resents a gene and each edge represents a functional connection between a gene pair. 
Evidence of functional connections include gene co-expression, physical interaction 
of proteins, and text mining. Gene networks vary across tissues and cell types because 
some genes are functionally related only in certain tissues and cell types due to the spec-
ificity needed to give rise to an array of functions. However, most curated gene networks 
that have been developed, such as STRING [1] and HumanNet [2], incorporate evidence 
from many tissues, cell types, and organisms, and may not closely reflect the gene rela-
tionships within specific tissues or cell types. This may limit our understanding of gene 
functions and genetic mechanisms underlying human diseases that exist only in disease-
relevant cell types.

On the other hand, computational approaches have been developed to predict gene 
interactions from gene co-expression patterns. The co-expression patterns of genes are 
usually quantified from gene expression signatures by using the statistical metrics such 
as Pearson correlation [3–6] and mutual information [7–9]. But predicting gene inter-
actions from the single-cell gene expression data is challenging due to technical noise 
and the large amount of missing data [10]. The statistical metrics mentioned above, 
when applied to the single cell expression data, may only reflect chance or noise in the 
data. The recent advances in deep learning techniques have opened up new opportuni-
ties for in silico prediction of cell-type-specific FGNs. A convolutional neural network 
model (CNN) was recently developed to predict gene relationships in specific cell types 
through a novel encoding scheme that transforms pairwise gene expression data to 
an image-like co-expression matrix [11]. Although the CNN model provides a flexible 
computational framework and opportunity for further improvement by incorporating 
domain knowledge for a particular task, this approach still heavily relies on the quality 
of single cell gene expression data. In addition, it ignores the rich global functional infor-
mation in the repositories of protein interaction networks, which limits their accuracy in 
gene interactions inference. Integrating the global functional information and single-cell 
gene expression data will lead to a comprehensive representation of gene interactions 
for more accurate inference of cell-type-specific gene networks. But only a few studies 
consider the integrative approach for predicting gene interactions at the cell type level 
[12–14].

In this study, we are interested in predicting cell type-specific gene functional rela-
tionships in the human brain. We reason that 1) the CNN framework is well suited to 
capture the 2D correlations in the image-like gene co-expression matrix; 2) integrating 
CNN framework with gene features derived from a global protein interaction network 
could learn a more comprehensive representation of genes and enable more accurate 
predictions of gene functional relationships. Accordingly, we developed a multimodal 
deep learning model (MDLCN) for predicting cell-type-specific FGNs by integrating 
single-nuclei expression data of the human brain with a global protein interaction net-
work. We systematically evaluated the prediction performance of MDLCN and showed 
it outperformed the CNN and a conventional machine learning model (i.e. boosting tree 
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model) that transforms the pairwise gene expression data to a correlation coefficient for 
predicting cell-type-specific FGNs. We further evaluated the cellular context of the pre-
dicted cell-type-specific FGNs through topological analyses of cell-type marker genes 
and genes underlying autism and Alzheimer’s disease.

Methodology
We developed MDLCN, a multimodal deep learning model, for predicting cell-type-spe-
cific FGNs by leveraging single-cell gene expression data with a global protein interac-
tion network (Fig. 1). Gene expression signatures of a gene pair were first transformed 
to a co-expression matrix that captures the joint density of co-expression patterns of the 
gene pair across the cells in a particular cell type. We computed a set of proximity fea-
tures for each gene pair based on a global protein interaction network which we assem-
bled from protein physical interaction evidence. The co-expression matrix and global 
proximity features of each gene pair were integrated to predict its functional relationship 
status through the MDLCN model. The MDLCN model was trained for each cell type 
using the cell-type-specific gold standards.

Training dataset

We assembled a gold standard of gene pairs for building cell-type-specific FGNs follow-
ing the approach for building tissue-specific FGNs in a previous study [14].We first con-
structed a cell-type-naive functional relationship gold standard from 564 expert-selected 
gene ontology (GO) terms and experimentally derived gene annotations. Gene pairs co-
annotated to expert-selected terms were treated as positive examples (i.e. functionally 
related), and pairs not co-annotated to any of these terms were considered as negative 
examples. Next, we identified cell-type-specific genes that are defined as the top ranked 
genes by a specificity score that was computed by the average expression level of the 
gene in each cell type divided by the total expression values of the gene across all cell 
types [15]. The higher the specificity score of a gene in a cell type, the more specific the 

Fig. 1  The framework of the proposed multimodal deep learning model for predicting cell-type-specific 
functional gene networks
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gene was to that cell type. Then, we combined the cell-type-naive gold standard with the 
cell-type-specific genes to construct the cell-type-specific gold standard.

Ultimately, our cell-type-naive gold standard included 3,619,063 positive gene pairs 
and 49,095,410 negative gene pairs. Table  S1 presents the positive and negative class 
construction procedure (see Additional file 1). The positive gene pairs in our cell-type-
specific gold standard were a subset of positive examples in the cell-type-naive gold 
standard, and the two genes of each pair were cell type-specific or one was cell type-
specific and the other was a house-keeping gene as defined previously [16]. The negative 
gene pairs in our cell-type-specific gold standard were either: (1) positive examples in 
cell-type-naive gold standard, but one gene was specific to the corresponding cell type, 
and the other gene was specific to a different cell type; (2) positive examples in cell-type-
naive gold standard, but one gene was specific to a different cell type, and the other gene 
was a house-keeping gene; (3) negative examples in cell-type-naive gold standard, but 
the two genes of each pair are cell type-specific or one was cell type-specific and the 
other was a house-keeping gene; (4) negative examples in cell-type-naive gold standard, 
but one gene was specific to the corresponding cell type, and the other gene was specific 
to a different cell type; (5) negative examples in cell-type-naive gold standard, but one 
gene was specific to a different cell type, and the other gene was a house-keeping gene.

The single-nuclei gene expression data used in this study includes 14,873 nuclei from 
the human brain that were clustered and annotated to major brain cell types in a pre-
vious study [17], including 3400 excitatory neurons, 1715 inhibitory neurons, 1897 
astrocytes, 245 endothelial cells, 386 microglia, 2963 oligodendrocytes, and 682 oligo-
dendrocyte precursor cells. We normalized the single nuclei count data by the "LogNor-
malize" function of Seurat that normalizes each feature count by the total counts in each 
cell, multiplied by a scale factor (10,000) and transformed to log scale [18]. Cell type-
specific genes were the ones which ranked in the top 5% in the specificity scores for all 
cell types except for excitatory neurons for which the top 10% ranked genes were used 
so that a sufficient number of labeled gene pairs for model training could be collected. 
To have a balanced number of positive and negative gene pairs in each training set, the 
negative classes were randomly down sampled [19]. The number of positive and negative 
gene pairs in each cell type is presented in Table S2 (see Additional file 1).

Transforming single‑nuclei gene expression data to 2D co‑expression matrices

We encoded single-nuclei gene expression data of the gene pairs to an image-like 2D 
co-expression matrix. Since the single-nuclei gene expression data suffers from techni-
cal noise and large number of missing values, we used a Markov affinity-based graph 
(MAGIC) method to impute the missing values and smooth the single nuclei expression 
data [10]. The MAGIC method shares information among similar cells using data diffu-
sion to fill in missing gene expression values and restore the data structure accurately. 
Then, the range of the expression values of each gene was divided into K  equal bins. 
Then, for each pair of genes, 2D co-expression matrix was constructed by counting the 
number of cells that each gene expressed in the corresponding bins [11]. As the number 
of bins ( K  ) plays an important role in the model performance in our experiments, it was 
tuned to 10, at which the model achieved the best prediction accuracy.



Page 5 of 12Afshar et al. BMC Bioinformatics           (2023) 24:47 	

Gene proximity features from global protein interaction network

Global protein interaction networks contain protein structural and functional informa-
tion that are informative for cell-type-specific gene functional relationships. We assem-
bled a global protein interaction network based on experimentally validated protein 
physical interaction evidence from multiple resources including Biogrid [20], IntAct [21, 
22], APID [23] and Inweb [24].

After overlapping with genes in the single-nuclei gene expression dataset, the global 
protein interaction network contained 16,873 genes and 142,340,628 pairs of physi-
cal interactions. We used five metrics to measure the degree of similarity or proxim-
ity between a protein pair in the global protein interaction network, including Common 
Neighbors (CN), Jaccard’s Coefficient (JC), Preferential Attachment (PA), Adamic-Adar 
Coefficient (AA), and Path Distance (PD). These metrics measure different topological 
relationships between two proteins in the network. In particular, CN counts the num-
ber of common neighborhoods between the two proteins, JC quantifies the similarity 
between their neighborhoods, PA calculates the likelihood of link existence by measur-
ing the strength of the hubness of the two proteins, AA computes the proportion of their 
shared links to the total number of their neighbors, and PD measures the length of the 
shortest path between the two proteins [25].

Predicting cell‑type‑specific FGNs

We developed a multimodal deep learning model to predict cell-type-specific 
gene functional relationships from co-expression matrices and proximity features 
between two proteins in the global protein interaction network. For each pair of 
genes, the co-expression matrix and the vector of proximity features were exploited 
as two modalities in our model, including a co-expression-processor modality to 
extract representations from the co-expression matrix and a proximity-processor 
modality to extract representations from proximity features as shown in Fig.  2. In 
the co-expression-processor modality, the input layer is a co-expression matrix for 
each gene-pair. The modality consists of three convolutional layers which map the 
local conjunctions of features from previous layers to a feature map. Immediately 
after each convolutional layer, there is a max pooling layer which down samples the 
output of convolutional layers by taking the maximum value over an input window. 
At the end of this modality, a flattened layer is used to switch 2D features extracted 

Fig. 2  The architecture of multimodal deep learning model
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from convolutional process to 1D features by retaining the weight orders and a 
densely connected layer is employed to compile the features extracted from previ-
ous layers to form the representations. The proximity-processor modality consists 
of an input layer for five proximity features between each gene pair, four densely 
connected layers and a flattened layer. The representations output from the two 
modalities are concatenated to a high-dimensional feature vector in a fusion layer 
and transformed through three densely connected layers. Finally, the feature vector 
is used in output layer to predict the probability of cell-type-specific functional con-
nection between a gene pair. We used rectified liner activation function (ReLU) as 
the activation function across the whole network except the output layer where sig-
moid function was used for binary classification. The dropout regularization is used 
in the multimodal deep learning model for preventing overfitting. The model was 
implemented using the Keras library in Python. We chose the Binary-Cross Entropy 
as the loss function and the Adam optimizer to update weights. The hyperparam-
eters in the model, including the number of filters in the convolutional layer, the 
kernel size of the convolutional layer, the kernel size of the max pooling, the size 
of the dense layer in co-expression modality, the size of the dense layers in proxim-
ity modality, the position and rate of dropout, and the optimizer’s type, were tuned 
using the validation set and summarized in Table S3 in Additional file 1.

Evaluation of model performance

We evaluated the performance of the MDLCN model in predicting functional relation-
ships of gene pairs in three different test sets, including a 1) dependent test set that 
included gene pairs with both genes appearing in the training set; 2) partially dependent 
test set that included gene pairs with only one gene appearing in the training set; and 3) 
independent test set that included gene pairs with both genes not appearing in the train-
ing set. We used the area under ROC curve (AUC-ROC) and the area under Precision-
Recall curve (AUC-PRC) as the evaluation metrics with five-fold cross validation. We 
compared the prediction performance of MDLCN with two baseline models. To eval-
uate the effects of the features from global protein interaction network, we compared 
the MDLCN with the single modality CNN model, which predicts the cell-type-specific 
FGNs from the 2D co-expression matrix only. The single modality CNN model consists 
of three convolutional layers which map the local conjunctions of features from previous 
layers, and after each convolutional layer there is a pooling layer that reduce the dimen-
sion of the output of convolutional layers to extract the essential information. At the end, 
there is a flattened layer which changes the 2D features extracted from convolutional 
process to 1D features by retaining the weight orders and a densely connected layer is 
used to compose the extracted features from previous layers to form the representations. 
To further demonstrate the advantages of using the 2D co-expression matrix compared 
to conventional statistical metrics, we also compared the MDLCN with a boosting tree 
model, which uses the Pearson correlation coefficients between gene expression signa-
tures and the proximity features extracted from the global gene network as predictors. 
The boosting tree model is an ensemble of 150 decision trees that were built sequentially 
to improve the prediction accuracy of cell-type-specific FGNs.
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Topological analysis of cell‑type marker genes

To evaluate the constructed cell-type-specific networks, we further examined 
whether cell-type marker genes have a distinctive topological structure across differ-
ent cell-type-specific FGNs. Our rationales are (1) within each cell type, its marker 
genes have higher expression level and distinct functional role than the non-marker 
genes, leading to the higher hubness of marker genes in their associated cell-type-
specific FGN; (2) the marker genes are cell-type specific which leads to higher topo-
logical score in their associated cell-type-specific FGN than in the other FGNs of not 
cell-type-specific. Cell-type marker genes were based on a previous study [26] and 
were defined as genes with at least one log-fold change in expression levels when cells 
of a given cell-type were compared against all other cells. The hubness of each marker 
gene was computed as the summation of edge weights that are directly connected to 
that gene. We also computed a topological specificity score for each marker gene to 
test whether cell-type marker genes have distinctive localization compared to random 
networks as done previously [12]. The topological specificity score represents the 
hubness of a gene in the predicted network normalized by its hubness distribution in 
random networks that were created by re-shuffling edge weights in the predicted net-
work. The topological specificity score (topS) for each marker gene is calculated as 
topS = tmarker−m(tmarker (g))

d(tmarker (g))
 , where tmarker represents the summation of edge weights 

directly connected to marker gene, and tmarker(g) represents the summation of edge 
weights directly connected to marker genes in random network g  . The terms 
m(tmarker(g)) , and d tmarker(g)  indicate the average and standard deviation of 
tmarker(g) s for g = 1, . . . , 10 , respectively.

Connectivity of disease genes in predicted cell‑type‑specific FGNs

To evaluate whether disease genes show cell-type-specific modularity in the con-
structed cell-type-specific networks, we assessed the connectivity strength between 
disease genes in each network. We considered two brain disorders: autism spectrum 
disorder (ASD) and Alzheimer’s disease (AD). We collected 408 high confidence ASD 
risk genes from the SFARI database [27] and 1,611 genes implicated in AD from the 
DisGeNET database [28]. We calculated the average connectivity over all pairs of 
disease genes for each network and compared the average connectivity with a back-
ground distribution from 1000 random gene sets matched by gene numbers and gene 
length with the disease genes. The Z-score was computed for each cell type with a 
large value of Z-score indicating that the disease genes show more significant cell-
type-specific modularity in the corresponding cell-type-specific FGN. Specifically, 
Z-score was computed as Z-score = Cm−m(Cm(π))

d(Cm(π))
 , where Cm represents the average 

connectivity of disease genes, Cm(π) represents the average of connectivity of random 
gene set with the same number of genes and same distribution of gene length as dis-
ease genes in random network π . The terms m(Cm(π)) , and d(Cm(π)) represent the 
average and standard deviation of Cm(π) s for π = 1, . . . , 1000 , respectively.
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Results
MDLCN model performance

We first compared the 2D co-expression matrices between the positive and negative 
gene pairs for each cell type (Fig. 3). In all cell types, the positive gene-pairs show on 
average higher values in the bins corresponding to higher co-expression levels than 
the negative pairs, suggesting that the 2D co-expression matrices capture the com-
plicated correlation among the genes to distinguish positive and negative classes. The 
proximity features extracted from global protein interaction network also show sig-
nificant difference between the positive and negative gene pairs in all cell types, with 
the positive gene pairs having higher values for CN, JC, PA, and AA scores and having 
lower values in the PD score compared to negative class (see Fig. S. 1-Fig. S. 5, Addi-
tional file 1).

Fig. 3  Co-expression heatmaps in positive and negative classes for excitatory neurons (Ex), inhibitory 
neurons (In), astrocytes (Ast), endothelial cells (Endo), microglia (Mg), oligodendrocytes (Oli), and 
oligodendrocyte precursor cells (Opc)

Fig. 4  The (a) AUC-ROC and (b) AUC-PRC values obtained from Boosting-tree, CNN, and MDLCN models for 
three different test sets in excitatory neurons (Ex), inhibitory neurons (In), astrocytes (Ast), endothelial cells 
(Endo), microglia (Mg), oligodendrocytes (Oli), and oligodendrocyte precursor cells (Opc)
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Prediction performance of the MDLCN model is illustrated in Fig.  4. The MDLCN 
model showed higher prediction accuracy in dependent, partially dependent, and inde-
pendent test sets in all cell types compared to the CNN and boosting tree models. For 
example, the AUC-ROC achieved by the MDLCN model is around 15% higher than the 
boosting tree model and 4% higher than the CNN model in all three different testing 
scenarios. The improvements on AUC-PRC achieved by the MDLCN model are more 
substantial, suggesting the advantage of the model in identifying true cell-type-specific 
gene functional relationships.

For all the cell types, the prediction accuracy of the MDLCN model is satisfactory. The 
AUC-ROC (AUC-PRC) was higher than 0.90 (0.72) for the dependent test set, 0.87 (0.67) 
for the partially dependent test set, and 0.87 (0.63) for the independent test set (Fig. 4). 
The independent and partially dependent test sets consist of functional relationships 
among new genes, which were not seen in the training data set and more challenging to 
predict. Nonetheless, the MDLCN model still achieved good prediction performance in 
these test sets, which indicates that our model is promising in its ability to predict func-
tional relationships between new genes.

Downstream analysis

Topological analysis of cell‑type maker genes

We evaluated the topological features of cell-type makers genes in each constructed 
cell-type-specific FGN. We observed that marker genes had higher hubness than non-
marker genes in the cell type that corresponds to the marker genes (Fig. 5). Furthermore, 
marker genes had higher topological specificity score in their corresponding cell type 
than the rest of the cell types (Fig. 6). These observations demonstrated that constructed 
cell-type-specific FGNs show distinct topological features for cell-type marker genes, 
reflecting the cellular context of predicted networks.

Connectivity of disease genes in predicted cell type‑specific network

We compared the strength of connectivity among risk genes that underlie ASD and AD 
across different cell types (Fig. 7). We observed that disease genes tended to be function-
ally related in each cell-type-specific network, but the strength of connectivity among 

Fig. 5  The hubness of marker genes versus non-marker genes in seven cell types: endothelial cells (Endo), 
excitatory neurons (Ex), oligodendrocyte precursor cells (Opc), astrocytes (Ast), inhibitory neurons (In), 
microglia (Mg), and oligodendrocytes (Oli). The P-values for even cell types are between 10−41 and 10−5
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disease genes varied across different cell types. For example, the strength of connectivity 
among ASD risk genes is stronger in astrocytes, and neurons, and lower in microglia, 
endothelial cells, and oligodendrocytes. On the other hand, risk genes underlying AD 
were more connected in microglia, astrocytes, and endothelial cells, but less connected 
in neurons and oligodendrocytes. These results were consistent with the literature as 
ASD etiology is more related to the dysfunction of neurons and astrocytes [29], while 
microglia cells play a key role in AD pathogenesis [30], providing further evidence for 
the cellular context of predicted cell type-specific FGNs.

Discussion and conclusions
We proposed a multimodal deep learning model MDLCN to predict cell type-specific 
FGNs by integrating single-cell gene expression data with global protein interaction net-
works. We showed the superior performance of the MDLCN model compared to both 
the CNN and boosting tree models. We further demonstrated evidence for the cellular 
context of predicted cell type-specific FGNs through the distinct topological features of 
cell-type marker genes and risk genes underlying two brain disorders: autism and Alz-
heimer’s disease.

Fig. 6  Topological specificity scores (topS) of marker genes in seven cell types: endothelial cells (Endo), 
excitatory neurons (Ex), oligodendrocyte precursor cells (Opc), astrocytes (Ast), inhibitory neurons (In), 
microglia (Mg), and oligodendrocytes (Oli). The P-values for seven cell types are between 10−10 and 10−4

Fig. 7  Z-scores for AD and ASD risk genes in endothelial cells (Endo), excitatory neurons (Ex), 
oligodendrocyte precursor cells (Opc), astrocytes (Ast), inhibitory neurons (In), microglia (Mg), and 
oligodendrocytes (Oli)
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While the MDLCN model holds the promise to predict functional gene relationships 
underlying a diverse set of cell types, the model should be viewed in light of two limita-
tions. First, model performance may depend on the quality of the training dataset since 
the MDLCN employs a supervised approach. Second, the model can only predict the 
functional associations of two genes but not the direction of association. Further work 
includes extending the prediction to directional relationship of two genes by integrating 
more functional genomic datasets, such as those from ChIP-Seq or gene perturbation 
experiments.
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