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Introduction
Background

Human cancer is a heterogeneous disease triggered by random somatic mutations and 
driven by multiple genomic alterations due to uncontrolled abnormal cell proliferation 
and spreading to other cells and tissues [1, 2]; cancer disrupts the intracellular homeo-
stasis of an individual and thus seriously threatens the lives of humans. To shift to per-
sonalized treatment plans, cancers in specific tissues can be classified into subtypes 
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Motivation:  Studies have shown that classifying cancer subtypes can provide valu-
able information for a range of cancer research, from aetiology and tumour biology to 
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sion data to perform cancer subtype classification. However, cancer samples are scarce, 
and the high-dimensional features of their gene expression data are too sparse to allow 
most methods to achieve desirable classification results.

Results:  In this paper, we propose a deep learning approach by combining a con-
volutional neural network (CNN) and bidirectional gated recurrent unit (BiGRU): our 
approach, DCGN, aims to achieve nonlinear dimensionality reduction and learn 
features to eliminate irrelevant factors in gene expression data. Specifically, DCGN first 
uses the synthetic minority oversampling technique algorithm to equalize data. The 
CNN can handle high-dimensional data without stress and extract important local fea-
tures, and the BiGRU can analyse deep features and retain their important information; 
the DCGN captures key features by combining both neural networks to overcome the 
challenges of small sample sizes and sparse, high-dimensional features. In the experi-
ments, we compared the DCGN to seven other cancer subtype classification methods 
using breast and bladder cancer gene expression datasets. The experimental results 
show that the DCGN performs better than the other seven methods and can provide 
more satisfactory classification results.
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based on the molecular characteristics of the primary tumour. These subtypes are the 
key basis for providing personalized and precise treatment [3, 4] to cancer patients and 
have important implications for aetiology, tumour biology and prognoses in a range of 
cancer research.

Gene expression data reflect the direct or indirect measurement of the abundance of 
gene transcript mRNA in cells. These data can be used to analyse which gene expression 
characteristics have changed, the correlations among genes, and how the activities of 
genes are affected under varying conditions. These data thus have important applica-
tions in medical clinical diagnoses, drug efficacy judgements, and in revealing disease 
mechanisms. Hence, gene expression data can be used in cancer subtype classification 
research, and many methods based on gene expression data have been presented.

Related work

The cancer subtype classification task can be formulated as a supervised learning prob-
lem in which established tumour subtypes are used as category labels to ensure that 
the features learned by the model are relevant to prior biological knowledge [5]. Early 
research on cancer subtype classification methods usually used traditional machine 
learning methods. In recent years, deep learning methods have been widely used in 
many fields with good results, and many deep learning models are now applied in this 
field. Current methods can be divided into two categories.

Methods based on traditional machine learning approaches

In 2017, Soh et al. [6] developed tumour classification models based on random forests, 
logistic regression and support vector machines (SVMs) [7]. The data they used included 
somatic mutations, copy number variants and a combination of both, and their methods 
achieved a 77.7% accuracy with only 50 features. Ye et al. [8], in 2018, proposed a clas-
sification method using gene expression data based on the artificial bee colony (ABC) 
algorithm [9] and SVM. They used the ABC algorithm to optimize the kernel function 
parameters and penalty factors of SVM and obtained a relatively high classification 
accuracy by comparing and analysing other classification methods on a public dataset. 
In 2021, Duan et al. [10] used an extreme random tree model as a classifier to reduce 
the dimensionality of gene expression data using linear discriminant analysis, thus effec-
tively improving the classification accuracy compared to several ensemble algorithms.

Methods based on deep learning approaches

In 2019, Yang et al. [11] used a stacked autoencoder (SAE) [12] neural network to learn 
high-level representations of gene expression data and transcriptome selective splic-
ing data separately and then integrated all these learned high-level representations to 
classify patients into different cancer subtype groups, thus providing an effective and 
useful method for integrating multiple types of transcriptomics data to identify cancer 
subtypes. Zhuang et  al. [13] proposed a method based on a combination of SAE and 
boosting to classify gene expression data in 2020. After detrending the gene expression 
data by principal component analysis, the SAE was used as a base classification algo-
rithm for learning and training using boosting. Finally, multiple SAEs were combined 
for decision making. The authors found that the classification accuracy was improved 
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by 5% to 10% over the use of SAE alone, exhibiting a good classification performance. 
Xiao et  al. [14] proposed a deep learning model based on the Wasserstein generative 
adversarial network for unbalanced gene expression data in the same year by increasing 
the sample sizes in a few categories to achieve balance and further expanding the sam-
ples to improve the model performance. Majumder et al. [15] considered a combination 
of three deep learning models (the multilayer perceptron (MLP) and two convolutional 
networks) and two feature selection methods in 2022 and performed experimental anal-
yses on four cancer datasets, achieving good performance.

In past studies applying the above methods, different measures have been taken to 
address the characteristics of cancer gene expression data through either linear dimen-
sionality reductions or data equalizations. However, linear dimensionality reduction 
methods are easily affected by irrelevant information, some methods cannot handle 
high-dimensional gene table data well, and the classification results are thus not ideal [5]. 
To address these existing problems, we first used the synthetic minority oversampling 
technique (SMOTE) [16] algorithm to equalize samples. Cancer datasets are usually 
small, and the numbers of samples representing different categories can vary greatly. For 
example, in the breast cancer (BRCA) dataset used in this paper, there are only 150 sam-
ples in the sixth category, 202 in the fifth category, and 721 in the third category. Thus, 
we proposed a method, DCGN, by combining a convolutional neural network (CNN) 
[17] and bidirectional gated recurrent unit (BiGRU) [18] to achieve nonlinear dimen-
sionality reduction in the process of learning important features. To extract key features 
from high-dimensional and sparse gene expression data, a relatively complex neural net-
work is generally needed. CNNs have special structures with local weight sharing; the 
neuron weights (convolution kernels) on the same feature map are shared, so the neural 
network can learn in parallel, thus effectively reducing the complexity of the network 
[19]. However, a simple CNN network is prone to losing some important features during 
the learning process. A BiGRU can bidirectionally analyse the feature matrix of a CNN 
in the middle of the neural network and retain the information that may be lost through 
the update gate. Moreover, compared to other networks, BiGRUs are more efficient and 
have fewer parameters, thus expanding the model while improving its efficiency [20, 21]. 
Such a combined network has low complexity, is mutually complementary, and can cap-
ture comprehensive and effective features.

The main contributions can be summarized as follows. (1) By combining CNN and 
BiGRU, we proposed a deep learning method named DCGN that can obtain more 
credible features from high-dimensional sparse gene expression data. The experimen-
tal results prove that the DCGN method can obtain ideal classification results. (2) The 
Gaussian error linear unit (gelu) activation function is applied to the cancer classifica-
tion task, and we prove through experiments that its performance is superior to those 
of the rectified linear unit (relu), exponential linear unit (elu), etc. (3). The DCGN per-
forms well when applied to five high-dimensional datasets and has a good generalization 
ability.
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Methods
DCGN adopts gene expression data to perform cancer subtype classification. It consists 
of three modules (see Fig. 1). 1. The data-processing module: first, the data are enhanced 
by the SMOTE algorithm to solve the sample imbalance problem. Then, feature nor-
malization is performed. 2. The feature-learning module: the most important part of the 
neural network. This module captures key features in the gene expression data during 
training. 3. The classification module: this module performs multiclassification predic-
tions using the feature learning module outputs and compares them with the true labels 
to calculate the classification loss.

Data processing module

First, considering the problem of small and unbalanced cancer samples, in this paper, we 
uses the SMOTE algorithm to enhance the utilized cancer datasets. The basic idea of the 
SMOTE algorithm is to analyseanalyze the minority class samples, artificially synthesize 
new samples according to the minority class samples and add them these new samples 
to the datasetdata set. Comparative experimental results of random undersampling and 
SMOTE algorithm results are provided in the Additional file 1: Table S1. The algorithm 
flow of SMOTE is described as follows:

1.	 First, classes for which the sample size is less than 15% of the total sample size are 
specified as minority sample sets ( Smin ). For each sample xi = (d1, d2 . . . dm) in a 
class with few samples ( Smin ), m represents the dimension of the sample. We calcu-
late the Euclidean distance to all samples in the minority class sample set Smin and 
obtain the K-nearest neighbours.

Fig. 1  DCGN architecture
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2.	 Then, we determine the sampling multiplier N according to the sample imbalance 
ratio. For each minority class sample xi , a number of samples Xn are randomly 
selected from its K nearest neighbours.

3.	 For each randomly selected nearest neighbour xn , a new sample is constructed sepa-
rately from the original sample according to Eq.  (1), where xi represents a sample 
point from the minority class and xn represents a sample point randomly selected 
from the K nearest neighbours. The term rand(0,1) represents a randomly generated 
number between 0 and 1.

Next is the feature normalization step. Feature normalization is performed on the 
gene expression data before model training so that all features in the dataset have means 
of zero and unit variance. Specifically, assuming that the mean of a feature is u and its 
standard deviation is σ , the utilized feature standardization formula is defined as follows:

where the calculation acts on each column, x represents the feature matrix of the data, u 
is the mean of the data, σ is the standard deviation of the data, and X ′ represents the data 
after feature normalization.

Feature learning module

The feature-learning module includes a fully connected layer (FC layer), a convolution 
layer, a BiGRU layer, and another convolution layer. The input layer first goes through 
the FC layer, and the FC layer computation process is essentially matrix multiplication. 
Then, the computational result is output by the activation function. The calculation 
formula is expressed as follows, where x represents the input matrix, W is the weight 
parameter, b represents the bias, GELU is the activation function of this layer, and Y rep-
resents the nonlinear output through the activation function.

Activation function

The activation function is the "switch" that determines whether a neural network trans-
mits information or not; this function is crucial in neural networks. Different activa-
tion functions greatly impact the training effect of neural networks. At present, the 
most commonly used activation functions are the relu(Recitified Linear Unit) function, 
sigmoid function, elu(Exponential Linear Unit) function, etc. In this paper, an activa-
tion function called gelu(Gaussian Error Linear Unit) is selected. Some experiments 
have shown that gelu is superior to other activation functions, such as relu and elu, for 
tasks ranging from computer vision to natural language processing [22]. We conduct 

(1)xnew = xi + (xn − xi)∗rand(0, 1)

(2)X ′
=

x − u

σ

(3)σ =
(x1 − u)2 + (x2 − u)2 + . . . (xn − u)2

n

(4)Y = GELU(W ∗ x+ b)
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comparative experiments on these activation functions in “Activation function compari-
son experiment” section.

Gelu can be seen as a combination of relu and dropout ideas. For high-dimensional 
gene expression data, excessive features may affect the feature-learning procedure. 
Sometimes we want to regularize unimportant information to zero, and the nonlinear 
variation feature of the gelu activation function can perform stochastic canonical trans-
formation. It can be understood that a given input value should be multiplied by 1 or 
0 according to its specific situation. For a more mathematical description, each input 
value x that obeys the standard normal distribution N(0,1) is multiplied by a Bernoulli 
distribution. In Fig. 2, for the gelu activation function, when x is larger, y is more likely to 
be retained, while the smaller x is, the more likely y is to be set to 0; however, but when 
x is less than 0, y has a certain probability not to be 0; under the relu function, outputs 
below 0 are set to 0. As x decreases, the probability of y being set to zero increases, and 
the limit is 0.

The gelu function has the following form:GELU(X) = x · φ(x), x ∼ N(0, 1) (5), where x 
is the input, φ(x) = P(X ≤ x) , X is a Gaussian random variable with zero mean and unit 
variance, and P(X <  = x) is the probability that X is less than or equal to a given value x. 
The mathematical formula applied to obtain the approximate calculation is provided in 
the original paper [22] as follows:

Convolutional layer

The outputs of the FC layer are next subjected to convolution operations. Because 
CNN are mostly used for image processing, the calculation process typically involves a 
number of image channels (generally images have three channels: red, green, and blue 
(RGB)); however, the data used in this article are characterized by numerical matrices 
of gene expression data, which differ from image data, so it is necessary to describe 
the calculation process. The CNN calculation is different from that of the FC layer. The 
input matrix format includes four dimensions: the number of samples, height, width, 
and number of channels. The output matrix format has the same dimensional order 

(6)GELU(x) = 0.5x
(

1+ tanh
(

√

2/π
(

x+ 0.044715x3
)))

Fig. 2  Function image of activation functions
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and meaning as the input matrix, but the sizes of the last three dimensions are changed 
by the convolution operation. The meaning of the weight matrix (convolution kernel) 
dimensions is different from those of the above two matrices. These are the height of the 
convolution kernel, the width of the convolution kernel, the number of input channels 
(the number of channels in the input matrix), and the number of output channels (the 
number of convolution kernels).

Taking the first convolutional layer as an example, the FC layer output as (N,1024) 
becomes (N,32,32,1) after a Reshape operation is applied, where N represents the number 
of samples in the batch, the height and width are both 32, and the number of channels is 
only one. The first convolutional layer is the conv2D layer with 128 convolutional kernels of 
size (3,3,1), padding = same, strides = 2. The term "padding = same" indicates that the out-
put size is equal to the input size divided by the strides and rounded up. The calculation 
process is shown in Fig. 1. Thus far, the conv2d layer has slid and multiplied the feature 
matrix through the convolution kernel to extract features and reduce the dimensionality. 
At the same time, the conv2d layer has a special structure with local weight value sharing, 
and this effectively reduces the training parameters of the neural network. To explore the 
impacts of these two convolutional layers on the DCGN, we conducted comparative experi-
ments on different datasets, and the detailed experimental results are provided in the Addi-
tional file 1: Table S2 and Fig. S1.

The convolution layer also contains a maximum pooling layer. This layer can reduce 
the size of the model, improve the calculation speed, and improve the robustness of the 
extracted features. However, the maximum pooling layer has no parameters to learn and 
can only takes the maximum value from the target area; thus, the numbers of input and 
output channels do not change..

BiGRU layer

The gated recurrent unit (GRU) uses an update gate and a reset gate. The update gate deter-
mines how much information from the past should be allowed to pass through the gate, 
while the reset gate decides how much information from the past should be discarded. 
First, we obtain the two gating states from the last transmission down state ht−1 and the 

Fig. 3  Structure of the GRU (where σ represents the sigmoid function)
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input xt of the current node. In Fig. 3, zt performs the update gate operation,rt performs the 
reset gate operation, and the gate uses a sigmoid function to determine which values to let 
pass or discard.

When the gating signal is obtained, we first use reset gating to obtain the reset data 
h′t−1 ; then, we splice h′t−1 with the input xt and deflate the data to the range of − 1~1 by 
the tanh activation function.

Finally, the most critical step in GRU is the “update memory” step, in which we per-
form both forgetting and remembering tasks. The update gate zt is equivalent to the for-
getting gate, and 1-zt is equivalent to the input gate. The current moment memory unit 
can be expressed as follows:

where (1− zt)h
′

t denotes the selective memory of h′

t containing information about the 
current node, retaining some important information, and ztht−1 denotes the selective 
obliviousness of the originally hidden state. The operation of this step is to forget the 
information of some passed-down dimensions in ht−1 and add some dimensional infor-
mation entered by the current node.

The above process represents forward delivery, and the BiGRU layer contains both for-
ward and reverse gated recurrent units, as shown in Fig. 1b. At each moment t, the input 
is provided to the gated unit in both directions, while the output is determined by the 
joint bidirectional output.

Classification module

The DCGN takes the output of the feature-learning module into the classification mod-
ule composed of four fully connected layers after a straightening operation is performed. 
We use a dropout layer after each fully connected layer to improve the generality of the 
network and to mitigate the interactions between neurons. The last layer directly out-
puts the tensor computed by the network, which may be optimally numerically stable.

Loss function

The loss function of the neural network is the SparseCategoricalCrossentropy function; 
this function can convert digital coding into a one-hot coding format and then apply the 

(7)zt = σ(Wz · [ht−1, xt ])

(8)rt = σ(Wr · [ht−1, xt ])

(9)h
′

t−1 = ht−1 ∗ rt

(10)h
′

t = tanh
(

W ·

[

h
′

t−1, xt

])

(11)ht = (1− zt)h
′

t + ztht−1
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cross entropy loss function to the data (real label value) and the predicted label value. 
The multicategorical cross-entropy loss function is actually an extension of the bicat-
egorical cross-entropy loss function, as expressed in Eq. (12), where M is the number of 
categories;yic is the symbolic function (0 or 1) (if the true class of sample i is equal to c, 
this term takes a value of 1; otherwise, it takes a value of 0); and pic is the predicted prob-
ability that sample i belongs to category c.

Experiment
Experimental data

To demonstrate the validity of the proposed method, we conducted experiments on 
breast and bladder cancers. The breast cancer dataset used herein was obtained from a 
previous Molecular Taxonomy of Breast cancer International Consortium (METABRIC) 
[3] study. Chen et al. [5] processed this dataset to obtain gene expression profiles from 
1989 primary breast tumour samples and 144 normal breast tissue samples with Predic-
tion Analysis of Miroarray 50 (PAM50) subtypes [4] used as classification labels. The 
bladder cancer dataset was derived from The Cancer Genome Atlas (TCGA) project and 
contains the gene expression profiles of 408 bladder cancer samples. Four currently pub-
lished molecular classifications, MD Anderson (MDA) [23], TCGA [24], Curie Institute 
(CIT)-Curie [25], and Lund [26], have been widely used in bladder cancer classification 
studies. We used the R package BLCAsubtyping [27] to label each cancer sample sepa-
rately according to these four classification systems. The details are provided in Table 1.

Experimental Setting

The number of nodes in the feature learning module was set to 1024, 128, 64, and 64, 
while the number of nodes in the classification module was set to 128, 64, 32, and 10. For 
the model construction and performance evaluation steps, we randomly divided the data 
into a training set, a validation set, and a test set containing 80%, 10% and 10% of the 
samples, respectively. To improve the memory utilization and parallelization efficiency 
in the large matrix multiplication process, we set the batch size to 256. Then, we used 
the Adam method [28] to tune the model parameters with the learning rate set to 1e-3 
and the dropout layer ratios set to 0.6 and 0.7.

(12)Loss = −
1

N

∑

i

M
∑

c=1

yiclog
(

pic
)

Table 1  Cancers and their specific subtypes

Cancer category Classification 
systems

Specific typology Genes Number of 
samples

BRCA​ PAM50 Basal, HER2 + , luminal A/B, normal-like, normal 20,000 4221

BLCA MDA Luminal, basal, p53-like 20,087 1010

TCGA​ Luminal_infiltrated, Luminal_papillary, Luminal, 
Neuronal, Basal_squamous

20,000 761

CIT-Curie MC1, MC2, MC3, MC4, MC5, MC6, MC7 20,087 909

Lund UroA-Prog, UroB, UroC, Uro-Inf, GU, GU-Inf, Mes-
like, Ba/Sq, Sc/NE-like, Ba/Sq-Inf

20,000 1185
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Comparative methods

To prove the robustness of the method proposed in this paper, we selected seven meth-
ods based on machine learning or deep learning approaches to conduct experiments. 
The following text briefly introduces the compared methods, among which gcForest 
[29], SAE, BiGRU, and DCNN belong to the deep learning methods.

The basic SVM model is a linear classifier with the largest interval defined on the 
feature space; in the gradient boost decision tree (GBDT) [30], the decision tree (DT) 
and gradient boosting (GB) components provide the learning strategy, and the DT 
model is trained with the gradient boosting strategy. In the light gradient boosting 
machine (LightGBM) [31], a distributed gradient boosting framework based on a 
decision tree algorithm provides a framework based on the GBDT algorithm to sup-
port efficient parallel training, low memory usage and high accuracy. The gcForest 
method, involving a deep forest model with a cascading function, applies the prin-
ciples of deep neural networks to the traditional "random forest" machine learning 
algorithm. SAE is a deep neural network model composed of multiple layers of Sparse 
AutoEncoder (sparse self-encoder); in this model, the output of the previous self-
encoder layer is used as the input to the subsequent self-encoder layer, and the last 
layer is a classifier. In BiGRU, the bidirectional GRU layer in a recurrent neural net-
work (RNN) retains important features through various gate functions. Compared to 
the long short-term memory (LSTM) model, BiGRU has fewer parameters and a bet-
ter effect. DCNN is a deep learning method based on CNNs that has exhibited a good 
performance on gene expression datasets characterizing various cancers.

Results and analysis

Evaluation metrics

Evaluation metrics are critical criteria used to measure whether a method performs 
well when facing a given problem. For classification problems, metrics such as the 
accuracy, precision, recall, F1-score, and confusion matrix [32] are normally used. 
The accuracy rate represents the proportion of the number of correct samples pre-
dicted by the method to the total number of samples, and the precision rate refers 
to the proportion of samples that are actually positive among the samples that are 
predicted to be positive. Recall refers to the proportion of samples that are predicted 
to be positive among the true positive samples. The F1-score is the harmonic mean of 
the precision and recall scores. By running the results of each model under the same 
experimental settings, we can intuitively identify the strengths and weaknesses of the 
model classification performance. When evaluating multiclassification problems, the 
problem is usually decomposed into multiple 2-classification problems, i.e., n clas-
sifications can be decomposed into n 2-classifications, with one of the classes set 
as the positive class and the remaining classes uniformly set as the negative class in 
each iteration; then, various 2-classification indexes are calculated. Finally, the multi-
classification evaluation indexes are averaged. Although this paper uses the SMOTE 
algorithm to balance the data, it properly generates only some minority samples, so 
different proportions of categories may occur. Therefore, when calculating the mul-
ticlass evaluation metrics, we chose the weighted average method. When calculating 
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the precision and recall scores, the scores of each category were multiplied by the 
percentage of the category in the total sample to obtain summed scores. In formulas 
(13) and (14), L represents the number of categories, precisioni and recalli represent 
the precision and recall rates of class i, respectively, and wi represents the proportion 
of the i-th sample in the total sample.

Activation function comparison experiment

To prove the influence of the gelu activation function selected in this paper on the 
model, we selected three other activation functions, relu, elu, and tanh, as the activation 
functions of the model and conducted comparative experiments on the bladder urothe-
lial carcinoma (BLCA)-TCGA dataset. The experimental results are shown in Fig.  4. 
Gelu exhibited the fastest convergence speed, and its accuracy rate was as high as 99.3%. 
Both elu and relu performed slightly worse. Tanh had the worst training effect, with an 
accuracy of only 70%.

(13)Precision =

∑L
i=1 precisioni*wi

L

(14)Recall =

∑L
i=1 recalli*wi

L

(15)F1 =
2 ∗ Precision ∗ Recall

Precision+ Recall

Fig. 4  Activation functions accuracy curve (experimental results of different activation functions on other 
datasets are provided in the Additional file 1: Fig. S2)
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Ablation experiment

There are many robust network structures in deep learning, and different combina-
tions of networks may perform differently. To demonstrate that the DCGN proposed in 
this paper can provide better results than other network structures, we used different 
neural networks to obtain free combinations and verified the networks on the BRCA 
20,000-dimension dataset. The experimental results are shown in Fig. 5.

From Fig. 5, it can be found that the closer the curves of the three metrics are to the 
edge of the hexagonal graph, the better the classification performances of the networks 
are. The three evaluation metrics obtained for the DCGN are very close to the edge of 
the hexagon, and all are higher than those of the other network models, indicating that 
the classification performance of the model proposed in this paper is best compared to 
the other analysed deep learning neural networks. In addition, the number after each 
network combination in the figure indicates the total number of parameters trained by 
the deep learning model. During the backpropagation process, each model minimizes 
the loss by updating the parameters corresponding to each layer. The number of model 
parameters has a certain relationship with the model performance. The consideration of 
too few parameters may affect the classification performance of a model.

Comparison experiments based on BRCA​

To further validate the effectiveness of the proposed approach, we compared DCGN 
with the seven methods mentioned in “Comparative methods: section on the BRCA 
20,000-dimension dataset. The dimensionality of the data matrix after data enhance-
ment was (4221, 20,000), and the specific results are shown in Table 2.

From Table 2, at the highest level, it can be seen that the DCGN exceeded the other 
seven models in all four metrics. In particular, DCGN achieved performance improve-
ments of ~ 3–5% in terms of the F1 scores; DCGN was the only model whose evaluation 

Fig. 5  Ablation experiment results
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metrics exceeded 95% on average. The experimental results tentatively demonstrate that 
the classification performance of the DCGN is best when applied to high-dimensional 
datasets, indicating that the proposed method can exhibit a good classification perfor-
mance on high-dimensional gene expression data. To further prove this conclusion, we 
verify the proposed model on the BLCA dataset.

A confusion matrix is a situation analysis table that summarizes the prediction results 
of a machine learning classification model. In the form of a matrix, the situation in the 
dataset can be summarized according to two standards: the real category and the cat-
egory predicted by the classification model. A confusion matrix thus gives a more intui-
tive picture of how well a model performs, because all correct predictions are shown 
on the diagonal and all wrong predictions are shown off the diagonal; thus, it is very 
straightforward to identify incorrect predictions. Figure 6 shows the confusion matrix 
obtained for several models with relatively high classification performances on the 
BRCA 20,000-dimension dataset. It can be clearly seen that the DCGN has the few-
est prediction results outside the diagonal line, with only 24 samples, while the fewest 
number of predictions outside the diagonal among the other models is 42. The result 
equally proves that the classification performance of the DCGN is optimal on the BRCA 
20,000-dimensional dataset.

In addition, two multiclassification metrics, the Kappa coefficient [33] and Hamming 
distance [34], can also reflect the classification performance of a model to some extent. 
The Kappa coefficient is a model evaluation parameter obtained based on the calculation 
of the confusion matrix with the following equation:

(16)Kappa =
P0 − Pe

1− Pe

Table 2  BRCA20000-dimension dataset results

Dataset BRCA​

Methods DCNN SVM GBDT LightGBM gcForest SAE BiGRU​ DCGN

Highest level

Accuracy 90.2 94.7 94.3 94.6 95.2 94.2 95 96

Precision 95.1 94.9 94.5 94.7 95.4 95.3 95.4 98.7

Recall 94.8 94.8 94.3 94.5 95.2 94.8 94.7 98.7

F1-score 94.6 94.8 94.3 94.6 95.3 94.7 94.8 98.6

Average level

Accuracy 88.7 94 93.2 93.6 94.1 93.7 94 94.8

Precision 92.5 94 93.4 93.7 94.2 93.1 93.9 96.8

Recall 92.2 94.1 93.2 93.5 94.2 93.2 94 96.7

F1-score 92.3 94 93.2 93.6 94.3 93.2 94.1 97

Fig. 6  Confusion matrix derived for several well-performing methods
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where P0 represents the overall classification accuracy and Pe denotes the number of true 
samples in each category multiplied by the number of predicted samples in each cate-
gory and then divided by the square of the total number of samples. The closer the Kappa 
coefficient is to 1, the better the classification performance is. The Hamming distance is 
also applicable to multiclassification problems and is simply a measure of the distance 
between the predicted label and the true label; this term takes a value between 0 and 1. A 
distance of 0 means that the predicted result is exactly the same as the true result, while 
a distance of 1 indicates that the model is exactly the opposite of the desired result. The 
experimental results are shown in Table 3. The Kappa coefficient of the DCGN reaches 
0.984, indicating that the prediction results are very close, almost identical, to the actual 
classification results. Moreover, the Hamming distance of the DCGN is also the small-
est, at only 0.013, the same as the expected experimental results. These results are strong 
proof that the DCGN has the best classification effect on high-dimensional datasets.

Comparison experiments based on the BLCA

As is widely known, the generalization ability of a model is an important criterion for 
judging its quality. Our proposed model performed well on the BRCA 20,000-dimen-
sion dataset. To demonstrate the generalization ability of the proposed model, we 
next conducted experiments on four high-dimensional BLCA datasets. The BLCA 
datasets were processed separately according to the four molecular typing systems 
as described in “Experimental data” section. After data enhancement, we loaded the 
data matrix and labels into each model to perform the experiments.

The experimental results of the BLCA datasets are shown in Tables 4 and 5. From 
the results of the four datasets in Table  4, it is obvious that the DCGN exhibits an 
excellent performance no matter which dataset is analysed. The DCGN performance 
is especially high for the BLCA-CIT-Curie and BLCA-TCGA datasets, and although 
the results of the other methods are also very good, the four indicators of DCGN at 
the highest level are nearly maximized, and the average results exceed 98%, indicating 
the best classification performance. Table 5 records the Kappa coefficient and Ham-
ming distance values of all methods on the BLCA datasets. Table  5 shows that the 
DCGN has the highest Kappa coefficient and the smallest Hamming distance values 
on all datasets. On the TCGA and CIT-Curie datasets, the Kappa coefficient of the 
DCGN indicates that this was the only method to exceed 0.99, while the Hamming 
distances are only 0.005 and 0.006. In conclusion, the method proposed in this paper 
has a superior generalization ability and can learn different effective features to pre-
dict different classification tasks according to different datasets.

Table 3  Kappa coefficient and Hamming distance values of each model on the BRCA 
20,000-dimension dataset

Methods DCNN SVM GBDT LightGBM gcForest SAE BiGRU​ DCGN

Kappa 0.937 0.947 0.937 0.937 0.936 0.953 0.937 0.984

Hamming distance 0.051 0.043 0.052 0.052 0.053 0.039 0.051 0.013
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Discussion
The method proposed herein still has some limitations. In this study, our method 
exhibits decent classification performances when applied to breast cancer and blad-
der cancer datasets. The subtype classifications of these cancers have been estab-
lished; however, there are many cancers for which subtypes have not been accurately 
identified. Therefore, supervised learning of these other cancers is not yet possible. 
In addition, our approach to cancer classification is based solely on gene expression 
data. However, several recent studies have shown [35] that combining genomic data 
from different platforms can reveal more valid information about cancer subtypes; 
thus, this will characterize the next step of our research.

Conclusions
In this paper, we proposed the DCGN, a deep learning method for cancer multiclas-
sification tasks; this proposed model can better handle high-dimensional cancer data 
than other available models. In terms of classification evaluation indicators, such as 
the accuracy and precision, the DCGN performs well on all five analysed datasets, 
especially on the BLCA-TCGA and BLCA-CIT datasets, with values exceeding 99%. 
These results show that the method proposed in this paper can obtain ideal classifica-
tion results and has a superior generalization ability. However, this paper considers 

Table 4  Experimental results of BLCA datasets

The value in front of () represents the highest-level result, and the value in () represents the average result over ten iterations

Methods DCNN SVM GBDT LightGBM gcForest SAE BiGRU​ DCGN

Dataset BLCA-MDA

Accuracy 91.5 (90) 93 (91.1) 92.5 (91.4) 92.5 (90) 92.7 (89.5) 93 (92.1) 93.5 (92.7) 95.5 (94.2)

Precision 94.3 (92) 93.4 (91.2) 92.9 (90.6) 93 (90.4) 92.7 (90) 93.2 (92.2) 93.6 (92.6) 97.4 (94.5)

Recall 93 (91.8) 93.3 (91) 92.5 (90.4) 93.2 (90) 92.7 (90) 93 (92) 93.5 (92.4) 97.3 (94.2)

F1-score 93.3 (92) 93.4 (91) 92.6 (90.4) 93.3 (90) 92.6 (89.7) 93 (92.1) 93.4 (92.4) 97.3 (94.2)

Methods DCNN SVM GBDT LightGBM gcForest SAE BiGRU​ DCGN
Dataset BLCA-Lund

Accuracy 91.8 (90) 94 (91) 93.2 (90.2) 91.2 (90) 92.4 (90) 89.8 (88) 93.6 (92.5) 94.5 (93)

Precision 93 (91.5) 94 (91.2) 93.7 (91.8) 91.7 (90) 94 (91.5) 89.7 (88.1) 93.8 (92.7) 94.9 (93.7)

Recall 92.5 (90.7) 94 (91.1) 93.2 (90.4) 91.5 (89.6) 92.4 (90) 89.8 (88.4) 93.6 (92.5) 94.5 (93.4)

F1-score 92.6 (90.8) 94 (91) 92.9 (90.3) 91.6 (89.5) 92.6 (90) 89.6 (88.2) 93.7 (92.6) 94.5 (93.4)

Methods DCNN SVM GBDT LightGBM gcForest SAE BiGRU​ DCGN
Dataset BLCA-TCGA​

Accuracy 93.3 (91.5) 98.3 (97) 98.4 (96.7) 98.5 (96.4) 98.5 (97.3) 95.4 (94.7) 97.4 (96.2) 99.3 (98.2)

Precision 97.3 (95.8) 98.5 (97.2) 98.3 (97) 98.6 (96.4) 98.6 (97.5) 95.7 (95) 97.4 (96.5) 99.4 (98.4)

Recall 96 (94.2) 98.4 (97) 98.3 (96.7) 98.4 (96.3) 98.6 (97.3) 95.4 (94.3) 97.3 (96.4) 99.3 (98.2)

F1-score 96.4 (94.8) 98.4 (97) 98.2 (96.8) 98.4 (96.5) 98.4 (97.4) 95.5 (94.6) 97.4 (96.4) 99.3 (98.2)

Methods DCNN SVM GBDT LightGBM gcForest SAE BiGRU​ DCGN
Dataset BLCA-CIT-Curie

Accuracy 96.1 (94.3) 98.5 (97) 98.2 (97.2) 97.8 (95.7) 98.3 (97.3) 98.3 (97.4) 97.8 (96.8) 99.4 (98.5)

Precision 98.5 (97) 98.5 (97.2) 98.3 (97.5) 98 (96) 98.4 (97.4) 98.4 (97.3) 97.9 (97) 99.5 (98.7)

Recall 98 (96.9) 98.4 (97.1) 98 (97) 97.8 (95.7) 98.2 (97.4) 98.2 (97.4) 97.6 (96.8) 99.4 (98.5)

F1-score 98.1 (96.8) 98.3 (97) 98.1 (97.2) 97.7 (95.6) 98.2 (97.3) 98 (97.3) 97.8 (96.9) 99.4 (98.5)
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only gene expression data, and we will integrate multiomics data to further study can-
cer subtype classification in future work.
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