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Background
Bacteria are ubiquitous across the biosphere and fulfil crucial roles in environmental, 
clinical, and industrial settings [1–3]. With the advent of low-cost, high throughput DNA 
sequencing technologies and metagenomic studies, the amino acid sequences of millions 
of bacterial proteins have been obtained [4, 5]. This data represents a valuable resource 
for expanding our knowledge of bacteria across many environments and developing new 
biotechnologies. Despite this, current practices for inferring the function of novel pro-
tein sequences involve costly and time-intensive in vitro and in vivo experiments [6]. As 
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a result, an ever-increasing gap persists between the number of known bacterial protein 
sequences and known protein functions.

To annotate sequence data with functional labels, computational pipelines have been 
developed which assign functional annotations to amino acid sequences. These pipelines 
rely on ontologies of protein functional annotations curated into hierarchies by human 
experts. Commonly used ontologies include Gene Ontology [7] and the Kyoto Encyclo-
pedia of Genes and Genomes, with the SEED annotation system [8] the preferred ontol-
ogy for bacterial protein sequences. Specifically, SEED contains four hierarchical levels 
of functional annotations referred to as superclasses, classes, subclasses and subsystems.

Using these ontologies, annotation pipelines usually assign protein functions by com-
paring the homology of novel protein sequences to sequences with known functions. 
This approach generally relies on similarity-based algorithms such as BLAST or profile 
hidden Markov models [9, 10]. An estimated one-third of all known bacterial proteins 
have no known homologs, limiting the number of annotations that can be accurately 
predicted [11]. Additionally, annotations from high-throughput experiments are often 
strongly biased towards a limited number of functions, leaving large regions of the pro-
tein space unexplored [12].

Recent advancements in machine learning have enabled the development of sequence 
embeddings, which predict protein functions using algebraic representations of amino 
acid sequences. Rather than relying on sequence homology, these methods apply natu-
ral language processing models designed to analyze text to biological sequence data. A 
straightforward approach is to apply k-mer frequency, or k-mer counts, where the num-
ber of occurrences of each k-mer in a protein sequence is used to group sequences with 
similar biological properties [13, 14]. This method does not require training a machine 
learning model, however, it produces large, sparse matrices at a high computational 
cost. An alternative sequence embedding method is Protvec which converts amino acid 
sequences to overlapping subsequences of length k (k-mers) and applies the word2vec 
algorithm to embed amino acid sequences as vectors within a 100-dimensional space 
[15]. As Protvec cycles through training data, it learns biophysical and biochemical 
properties of amino acid sequences and generates a hyperspace based on these features. 
As a result, sequences with similar biological functions are proximally located within 
this space. This quality has been leveraged to train classifiers that produce alignment-
free, protein function predictions [16, 17].

As sequence embeddings have quickly become a useful tool for a range of protein pre-
diction tasks [18–20], ongoing research focuses on developing more advanced sequence 
embeddings. This frequently involves applying novel natural language processing algo-
rithms to protein sequence data and reporting high predictive capabilities [21–24]. 
However, functional predictions based on sequence embeddings rely on annotation 
ontologies constructed using incomplete knowledge of possible protein functions. Theo-
retically, sequence embeddings could be used as a systematic framework for improving 
protein annotation ontologies by clustering and comparing amino acid sequences with-
out relying on homology.

Here, we explore the potential use of protein sequence embeddings as a tool for evalu-
ating and improving bacterial annotation ontologies. By embedding and subsequently 
clustering amino acid sequences involved in carbohydrate metabolism from the bacterial 
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genus, Bacillus, we identify inconsistencies between the hierarchical organization of 
embedded sequences and their SEED annotations. Additionally, we demonstrate that 
sequence embeddings can be used to produce clusters of unknown bacterial protein 
sequences which likely possess similar biological functions. The concepts proposed in 
this study present previously unexplored uses of sequence embeddings, beneficial for 
generating a homology-free framework that facilitates higher accuracy annotations of 
bacterial proteins.

Methods
Data collection and filtering

Bacillus amino acid sequences were obtained from the Genome Taxonomy Database 
(GTDB) (release 95) [25] and the Pathosystems Resources Integration Center (PATRIC) 
[26] and annotated with SEED annotations [8] using PATRIC [26]. Sequences were fil-
tered by removing: sequences containing an ambiguous amino acid denoted by an ‘X’, 
sequences shorter than 30 amino acids, and sequences longer than 1024 amino acids. 
These size limits were selected as sequences shorter than 30 amino acids are unlikely 
to form a protein domain and sequences longer than 1024 amino acids are uncommon 
[27–29].

Strategy

Sequence embeddings were used to evaluate the organization of Bacillus sequences in 
the SEED carbohydrate metabolism class. A Protvec model was trained using all the fil-
tered Bacillus sequences from the GTDB database which were annotated with the car-
bohydrate metabolism SEED class (8743 sequences). Filtered Bacillus sequences from 
PATRIC which were also annotated with the carbohydrate metabolism SEED class were 
embedded using this model, excluding the sequences which were also present in GTDB 
and used to train the model (24,836 sequences). This same set of sequences was also 
embedded using k-mer frequency and a Protvec model trained with 324,018 sequences 
from the Swiss-Prot database in previous work [15, 30, 31]. For all three of these embed-
ding methods, the number of clusters present was evaluated. The hierarchical organi-
zation of the sequences in the embedding which showed the greatest clustering (the 
Bacillus Protvec model embedding) was then compared with the SEED annotations of 
the sequences.

Protvec was also used to embed Bacillus sequences with unknown functions. This was 
achieved using the filtered Bacillus sequences, previously downloaded from PATRIC 
which were not assigned a SEED annotation (4,155,438 sequences). These sequences 
were dereplicated at 70% identity using CDHIT [32] to remove redundant sequences, 
resulting in 824,463 distinct sequences. To reduce computational requirements, a ran-
dom sample of 450,000 of these sequences was generated using seqtk (https://​github.​
com/​lh3/​seqtk). A second random sample of 425,000 unannotated sequences was gen-
erated from this sample of 450,000 sequences using seqtk and used to train a Protvec 
model. The remaining 25,000 unannotated sequences which were not used for training 
were then embedded using this model.

https://github.com/lh3/seqtk
https://github.com/lh3/seqtk
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To compare the embedded groupings of unknown sequences with known 
sequences, the Bacillus carbohydrate metabolism sequences from PATRIC which 
were embedded previously (24,836 sequences) were also embedded with the Protvec 
model trained with unannotated Bacillus sequences.

Protvec models

Protvec models were trained by generating all possible 3-mers for a set of train-
ing sequences by representing each sequence as three lists of shifted, non-overlap-
ping 3-mers. Using the Python gensim implementation of word2vec [33] (https://​
github.​com/​RaRe-​Techn​ologi​es/​gensim), these 3-mers were trained through a skip-
gram neural network with a vector size of 100 and a context size of 25 to produce a 
100-dimensional vector for each 3-mer present in the training data.

The length of each 3-mer vector in the Bacillus carbohydrate metabolism Protvec 
model was calculated as the Euclidean  distance of each vector from the origin. The 
kernel density estimate distribution of these lengths was calculated using the python 
SciPy package [34]. The model was then compared with the BLOSUM62 Matrix 
(BLOck Substitution) [35] by determining the count of each amino acid amongst the 
100 longest 3-mer vectors and comparing these counts with the value of each amino 
acid on the diagonal of the BLOSUM62 matrix.

Protvec embedding

Sequences were embedded using Protvec models by converting sequences to strings 
of overlapping 3-mers, matching each 3-mer to the corresponding vector in the Pro-
tvec model and taking the summation of these vectors. The embedded sequence vec-
tors were standardized using Z-score normalization with the Python scikit-learn 
package [36] (Fig. 1).

Sequence embedding vectors were visualized using principal component  analysis 
(PCA). Each sequence vector was colored by its SEED subclass annotation to visualize 
the grouping of sequences with similar biological roles.

K‑mer frequency embedding

Sequences were also embedded using the frequency of each k-mer in a sequence. As 
k-mer count matrices of amino acid sequences are sparse, sequences were converted 
to the murphy10 reduced amino acid alphabet [37]. This alphabet reduces the stand-
ard amino acid alphabet which contains 20 characters to only 10 characters, {A, C, G, 
H, P, L, S, F}, which could be used to fold all protein sequences. Using the murphy10 
alphabet resulted in 103 possible 3-mers, meanwhile, 203 possible 3-mers exist for the 
standard amino acid alphabet.

All 103 possible 3-mers were represented as a zero vector with a 1 at a unique posi-
tion by labelling the rows of an identity matrix of size n = 103 with each possible 
3-mer (Additional File 1: Fig. S1). To embed sequences, the vectors in this matrix cor-
responding to the 3-mers in each sequence were summed and then normalized by 

https://github.com/RaRe-Technologies/gensim
https://github.com/RaRe-Technologies/gensim
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dividing by the length of the sequence. The resulting sequence vectors were visualized 
using PCA with each sequence colored according to its SEED subclass annotation.

Cluster analysis

The number of clusters present in sequence embeddings was estimated using the Calin-
ski-Harabasz index [38]. Agglomerative clustering on the Euclidean distances between 
sequence vectors was applied to 5000 randomly selected sequences embedded using the 
Bacillus Protvec model, k-mer frequency, and the Swiss-Prot Protvec model to create den-
drograms which were cut into K clusters for K = 2:150. For 500 bootstraps of each K, the 
within-cluster sum of squares (WSS) (1) and the between-cluster sum of squares (BSS) (2) 
were calculated,

(1)WSS(K) =
K

k=1

nk

i=1
||xik − xk ||

2

Fig. 1  Procedure to embed amino acid sequences as vectors using Protvec models
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where n is the total number of elements, nk is the number of elements in the k th clus-
ter, xik refers to the i th element in the k th cluster, xk  is the mean of the k th cluster and x 
is the sample mean. Using the WSS and BSS the CH index (3) was calculated for each K.

The resulting CH index was plotted for each embedding and the optimal number was 
clusters was determined as the value of K where the CH index peaks.

Hierarchical clustering

The organization of sequences embedded with the Bacillus carbohydrate metabolism 
Protvec model was compared with their SEED annotations. To do this, 1000 Bacil-
lus carbohydrate metabolism sequences which were embedded previously were ran-
domly selected using seqtk (https://​github.​com/​lh3/​seqtk). A hierarchy was built 
using agglomerative clustering on the Euclidean distance between sequences using 
the R cluster library. This hierarchy was compared with the SEED annotations of the 
sequences by building a tanglegram with the R dendextend library [39]. This tangle-
gram was untangled using the step2side method to minimize entanglement between 
the constructed hierarchy and SEED annotations.

Clustering unknowns

The embedded Bacillus sequences with unknown functions were clustered using 
k-means clustering and visualized using t-distributed Stochastic Neighborhood Embed-
ding (t-SNE) [40]. k-means clustering was used rather than agglomerative clustering 
for unknown sequences as the clusters may not be functionally related. To determine 
the similarity of sequences within each unknown cluster, the sequence similarity of the 
unknown embedded sequences was evaluated using Clustal Omega [41].

Results
Analysis of the protein space

First, we investigated the information captured by the learned protein embedding 
space. Within Protvec models, 3-mer vectors that extend furthest from the origin will 
have the greatest impact on where sequences are embedded within the protein space. 
For the Protvec model trained with Bacillus carbohydrate metabolism sequences, the 
distribution of the 3-mer vector lengths, calculated as the Euclidean distance of each 
vector from the origin, was tailed toward long 3-mer vectors (Fig.  2a). Among the 
3-mers within this tail, the amino acids tryptophan (W), cysteine (C), and methionine 
(M) were most prevalent (Fig. 2b).

(2)BSS(K) =
∑K

k=1
nk ||xk − x̄||2

(3)CH(K) =
BSS(K )

WSS(K )

(n− k)

(k − 1)

https://github.com/lh3/seqtk
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Comparing sequence embeddings

The information used to prepare a sequence embedding may influence how amino 
acid sequences are grouped within the embedding space and the number of clusters 
present. To explore how training data influences vector representations of protein 
sequences, Bacillus carbohydrate metabolism sequences were embedded using the 
Bacillus carbohydrate metabolism Protvec model, k-mer frequency, and the Swiss-
Prot Protvec model (Fig. 3a). Under all three embeddings, sequences belonging to the 
same SEED subclass were visibly located closely together within the protein space. 
These clusters appear tightest for the Bacillus carbohydrate metabolism model fol-
lowed by k-mer frequency and the Swiss-Prot Protvec model.

The CH index was used to determine whether there is an optimal number of clus-
ters in each embedding where the between cluster variance exceeds the within-cluster 
variance (Fig. 3b). Using the Bacillus carbohydrate metabolism model, the CH index 
peaks when the embedding is grouped into 48 clusters, however, under the SEED 
annotation system, these same sequences belong to 29 different subsystems. Further-
more, for the k-mer frequency and the Swiss-Prot Protvec embeddings, a point where 
the between cluster variances exceeds the within-cluster variance is never reached.

Comparing sequence embeddings with SEED annotations

Next, we implemented hierarchical clustering to evaluate how the partitioning of 
sequences using a sequence embedding differed from their SEED annotations. As 
only the Bacillus Protvec sequence embedding demonstrated clear clustering behav-
ior, a hierarchy was built using the Euclidean distance between sequences embedded 
using the Bacillus Protvec model. The tanglegram comparing this hierarchy with the 
SEED annotation hierarchy shows differences in the organization of sequence func-
tions (Fig. 4). Sequences that were grouped in the embedding-based hierarchy mostly 

Fig. 2  A Distribution of the lengths of the 3-mer vectors in the Bacillus carbohydrate metabolism Protvec 
model. The shaded region corresponds to 3-mer vectors with a length greater than 16. B Comparison of the 
Bacillus carbohydrate metabolism Protvec model with the BLOSUM62 matrix. The number of occurrences 
(count) of each amino acid in 3-mer vectors with a length greater than 16 is compared with the value of each 
amino acid on the diagonal of the BLOSUM62 matrix



Page 8 of 14Grigson et al. BMC Bioinformatics          (2022) 23:385 

belonged to the same SEED subsystem. However, the higher-level structure was not 
preserved between hierarchies and closely grouped sequences in the Protvec hierar-
chy had distant SEED annotations. Additionally, many SEED subsystems consisted of 
two groups of sequences that belonged to different clades of the embedding-based 
hierarchy.

Embedding unknown sequences

As many sequences could not be annotated using SEED functional labels, we embed-
ded Bacillus amino acid sequences with unknown functions to cluster sequences with 
similar but unknown biological roles. As shown previously (Figs.  3 and 4), clustering 
is improved when a Protvec model specific to the training data is used. Therefore, we 
trained a Protvec model with unannotated Bacillus sequences to embed and subse-
quently cluster unannotated Bacillus sequences.

Using k-means clustering, the resulting embedding produced twelve distinct groups 
of sequences with unknown functions (Fig. 5, Additional File 1: Fig. S2). To verify that 
these groupings did not arise from homology, the percentage identity between the 
unknown sequences was calculated (Additional File 1: Fig. S3). The sequence similarity 

Fig. 3  A Sequence embeddings of Bacillus carbohydrate metabolism sequences embedded using the 
Bacillus carbohydrate metabolism Protvec model, k-mer frequency and the Swiss-Prot Protvec model. 
Sequences are colored by their subclass and visualized using PCA. B CH index of Bacillus carbohydrate 
metabolism sequences (n = 5000) embedded using the Bacillus carbohydrate metabolism Protvec model, 
k-mer frequency and the Swiss-Prot Protvec model for K = 2:150 clusters. For each value of K, 500 bootstrap 
iterations were used
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within each unknown cluster was low as demonstrated by the most homologous cluster 
having a mean percentage identity of less than 50%.

Finally, by embedding Bacillus carbohydrate metabolism sequences alongside the 
unknown Bacillus sequences we show that some of these unknown sequences cluster 
with sequences that have known functions. Despite this, the majority of the unknown 
sequences group with other unknown sequences (Additional File 1: Fig. S4).

Discussion
The volume of microbial sequencing data is ever-expanding, with an increasing focus 
on understanding microbial functions across diverse environments [42]. Despite this, 
functional annotation ontologies remain incomplete and rely on manual, human-expert 
curation. In this study, we show using Protvec models, that sequence embeddings 
can be utilized to evaluate protein annotation ontologies and cluster bacterial protein 
sequences with unknown functions. Thus, we recommend that sequence embeddings be 
incorporated into the development of robust annotation schemes for bacterial proteins.

Fig. 4  Comparison of Bacillus carbohydrate metabolism sequences grouped using agglomerative clustering 
on sequence embeddings using the Bacillus carbohydrate metabolism Protvec model and the SEED 
annotation hierarchy. The color joining the dendrograms is continuous across the Protvec dendrogram. Boxes 
are drawn around each subsystem in the SEED annotation hierarchy
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Sequence embeddings are beneficial for understanding functional relationships 
between proteins as they implement deep unsupervised models which learn protein 
features, regardless of whether sequence functions are known. These learnt features 
include the mass, volume, polarity, charge and hydrophobicity of each 3-mer present in 
a sequence [15]. We further demonstrate the learning capabilities of Protvec by showing 
that the amino acids tryptophan, cysteine, and methionine have the greatest influence 
on the location of sequences within the embedding space. Excluding methionine, which 
plays an important role in protein folding, these amino acids have the greatest similarity 
scores on the diagonal of the BLOSUM62 matrix used to score the alignment of pro-
tein sequences [43]. This indicates that during training, Protvec captures biologically 
meaningful aspects of amino acid sequences. Similar observations have been made using 
other sequence embedding techniques including convolutional and long-term short-
term memory neural networks which have either mirrored the BLOSUM62 matrix or 
learned similarities between amino acids with chemically similar sidechains [44, 45]. 
These learning abilities indicate that sequence embeddings can be generalized across all 
protein sequences to infer and relate protein functions [21, 46].

While sequence embeddings learn important protein features, these learned features 
vary for different training datasets and may lead to different vector representations of 
sequences. We determined that embedding Bacillus carbohydrate metabolism sequences 
with a Protvec model trained with Bacillus carbohydrate metabolism sequences resulted 
in distinct groups of sequences with similar functional annotations. This indicates that 
using a highly specific, yet relatively small training set (8743 sequences) allowed clus-
tering of functionally similar sequences. However, when these same sequences were 
embedded using a Protvec model trained with 324,018 sequences from the Swiss-Prot 
database, which contains functionally diverse sequences across different organisms, 

Fig. 5  K-means clustering of unannotated Bacillus sequences embedded using a Protvec model trained 
with unannotated Bacillus sequences. Embedded sequences were grouped into 12 clusters and visualized 
using t-SNE. The 100 sequences closest to the centroid of each cluster are shown in separate colors and the 
centroid of each cluster is shown in black
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clusters of sequences did not form. Other implementations of the word2vec algorithm 
have also determined that word vectors constructed from generalized training data are 
less effective than domain-specific vector models [47–50]. Therefore, the choice of data 
used to train sequence embedding models must be carefully considered to produce 
distinct groups of sequences with shared function. In addition, the sequence clusters 
formed using the Bacillus Protvec model may not have high, between-sequence homol-
ogy, but rather arise from properties learnt from the training data.

Alternatively, k-mer frequency embeddings do not require this consideration as a 
trained model is not required to embed sequences While k-mer profiling produces large 
matrices which are often memory intensive, we did not detect distinct clusters for the 
Bacillus carbohydrate metabolism sequences embedded using k-mer frequency. This 
demonstrates that Protvec models learn important biological features which are not 
incorporated into embeddings based only k-mer counts. As a result, we suggest that 
machine learning approaches such as Protvec are used to embed and group amino acid 
sequences.

Using sequences represented as vectors with  Protvec, we show that the sequence 
groupings produced from the embedding can be used to evaluate a protein ontology. 
Specifically, we saw that Bacillus sequences belonging to the carbohydrate metabolism 
SEED subclass produced 48 clusters of embedded sequences despite being annotated 
with 29 different SEED subsystems. Differences between the organization of the embed-
ded sequences and their SEED annotations were further apparent in the hierarchy of the 
embedded clusters. For example, several SEED subsystems were composed of two sepa-
rate clusters of embedded sequences and the higher-level organization of the embedded 
sequences was not consistent with their SEED subclass annotations. These findings indi-
cate that sequence embeddings, based upon algebraic properties of protein sequences 
differ from functional hierarchies constructed by human experts. Previous work has 
also shown that clustering sequences using an embedding may produce annotations 
which contain a higher number of functionally similar sub-groups, allowing more fine-
grained annotations to be generated [51]. Consequently, protein sequence embed-
dings may be used as a framework for designing ontologies that organize sequences 
mathematically, without needing to rely on experimental observations. While we have 
shown that sequence embeddings may be beneficial for designing functional ontologies, 
these improved ontologies will remain incomplete without determining the function of 
unknown sequences. By embedding Bacillus sequences with unknown functions, we 
identified 12 clusters of proteins with unknown functions. Prime experimental candi-
dates will be selected from each of these clusters and characterized experimentally to 
infer the function of the remaining sequences in the unknown clusters. As character-
izing proteins is expensive and labor-intensive, this represents a more efficient strategy 
for annotating the entire protein space [52]. Using our approach will greatly expand 
our knowledge of known protein functions and reduce the growing sequence-function 
gap by allowing additional labels to be included in bacterial protein ontologies. We also 
show that some unknown Bacillus sequences form clusters with sequences involved in 
carbohydrate metabolism. This indicates that sequence embeddings may be used as an 
approach for annotating sequences which cannot be assigned functions using homol-
ogy alone. In this study, we focus on sequences from Bacillus involved in carbohydrate 
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metabolism as a proof of concept. However, future work will use the methods presented 
to interrogate a broad range of protein functions across diverse microbial taxa to auto-
matically learn new ontologies. Furthermore, since the development of Protvec in 2015, 
several machine learning methods which represent amino acid sequences as vectors 
using novel machine learning algorithms have been designed [21–24, 53]. We recom-
mend widespread use of amino acid sequence embeddings to construct protein ontolo-
gies which consider various embedding approaches.

Conclusion
Amino acid sequence embeddings such as Protvec can be used as a systematic frame-
work for developing bacterial protein annotation ontologies. By embedding Bacillus 
proteins involved in carbohydrate metabolism as vectors, we identified inconsistencies 
between the hierarchical organization of the embedded sequences and their SEED anno-
tations. Furthermore, we grouped protein sequences with unknown biological func-
tions into clusters based on a learnt sequence embedding. These findings indicate that 
sequence embeddings can be used to design more complete annotation ontologies and 
develop efficient strategies for discovering unknown bacterial functions.
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