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Introduction
The technology of “omics” (genomics, proteomics, transcriptomics, metabolomics, etc.) 
is an emerging practice. We can more accurately predict and understand disease risks 
and formulate treatments for more specific and homogeneous populations by using big 
data, technologies, and methods [1, 2] (Fig.  1A). Since the advent of high-throughput 
and ultra-high-throughput sequencing technologies, clinicians and molecular biologists 

Abstract 

The recent global focus on big data in medicine has been associated with the rise of 
artificial intelligence (AI) in diagnosis and decision-making following recent advances in 
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share the concern of discovering individual differences in disease based on the individual 
genome and transcriptome, which enables better clinical management [3–5]. Due to the 
discovery of specific proteins associated with human disease, the field of protein chem-
istry and subsequent proteomics devote to the search for new or better disease mark-
ers and therapeutic targets [6, 7]. In addition to the development of fundamental omics, 
clinical omics are also improving. For example, the application of emerging radiomics 
supported personalized clinical decisions and individualized treatment choices. A high-
throughput method was used to extract and analyze a large number of image features 
from radiographic images to develop diagnostic, predictive, or prognostic imaging mod-
els [8, 9].

The clinical laboratory is the department that provides valuable test results and aux-
iliary clinical diagnosis by using visual observation, physical, biochemical, or molecu-
lar biological methods to examine specimens of patients, such as blood, urine, effusion, 

Fig. 1  A The technology of “omics” e.g. genomics, proteomics, transcriptomics, metabolomics radiomics etc. 
can be used for more accurate predicting and understanding disease risks and formulating treatments for 
more specific and homogeneous populations by machine learning and statistical approaches. B Differences 
in the data structure between the different omics
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and tumor tissue [10]. Although current clinical laboratory testing indexes are less than 
the variables of transcriptomics, genomics, and even radiomics. The data dimension of 
Clinlabomics is lower than other omics. However, the clinical laboratory produces a 
large amount of data every day and many diseases currently need the assistance of the 
clinical laboratory test results. Besides, the clinical laboratory data also is quantita-
tive. The clinical data collected by the clinical laboratory are larger and more intuitive 
than the imaging data (Fig.  1B). Therefore, we speculate that it is possible to develop 
clinical laboratory medicine omics models for promoting the development of all areas 
of medicine by integrating the test data information. By 2021, searches using "AI" and 
"Medicine" in PubMed would produce nearly 6,000 articles compared to 4,000 articles 
in 2020. We used search pattern: ("Artificial Intelligence"[Title/Abstract] OR "Artifi-
cial Intelligence"[MeSH Terms] OR "Machine Learning"[Title/Abstract] OR "Machine 
Learning"[MeSH Terms] OR "Data Mining"[Title/Abstract] OR "Data Mining"[MeSH 
Terms] OR "Deep Learning"[MeSH Terms] OR "Big Data"[MeSH Terms] OR "Big 
Data"[Title/Abstract] OR "Deep Learning"[Title/Abstract] OR "Data Science"[MeSH 
Terms] OR "Data Science"[Title/Abstract]) AND ("clinical laboratory"[Title/Abstract] 
OR "laboratories, clinical"[MeSH Terms] OR "clinical laboratories"[Title/Abstract] OR 
"laboratory medicine"[Title/Abstract] OR "Medical Laboratory Science"[MeSH Terms] 
OR "Clinical Laboratory Information Systems"[MeSH Terms] OR "laboratory sci-
ence medical"[Title/Abstract] OR "clinical biochemistry"[Title/Abstract] OR "blood 
routine"[Title/Abstract] OR "urine routine"[Title/Abstract] OR "coagulation test"[Title/
Abstract] OR "pretransfusion tests"[Title/Abstract] OR "clinical immunoassay"[Title/
Abstract] OR "Blood Coagulation Tests"[MeSH Terms] OR "clinical microbiology"[Title/
Abstract]) to retrieval relevant articles in PubMed from 2010 to 2022 and approximately 
got 445 papers. Through manual title and abstract review, we finally identify related arti-
cles of the clinical laboratory in combination with AI and some articles in references 
for review and the workflow see Fig. 2. We excluded some laboratory work that did not 
belong to the hospital clinical laboratory department combined with AI work, including 
pathology, iconography and other laboratories combined with AI work research.

Progress in clinical laboratory medicine
The development of laboratory technology has created conditions for the establishment 
of Clinlabomics (Fig. 3). In the past decade, clinical laboratory medicine has progressed 
in four distinct areas.

Development of medical equipment

Before the 1980s, clinical laboratory equipment was relatively straightforward. And this 
situation led to the type of clinical laboratory test indexes being limited [11]. Whereas, 
with the continuous development and the progress of society and science, clinical labo-
ratory medicine has reached an unprecedented prosperous stage from the era of manual 
medical tests to semi-automatic and full-automatic analysis. Now, clinical blood, bio-
chemistry, and microbial testing in the clinical laboratory have been automated [12–14]. 
Automated equipment rapidly and efficiently increased the throughput of a laboratory 
and has enabled us to monitor and manage the raw data produced more effectively than 
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before [11, 15]. In brief, the renewal of laboratory equipment increases the efficiency of 
clinical tests so that we can get more data from clinical laboratory testing.

Clinical laboratory standardization

For clinical laboratory test data, the quality of the data is as crucial as the quantity of 
data [16, 17]. In the past, most medical institutions carried out clinical laboratory tests 
by medical institutions themselves and there was no global quality assurance guideline. 
Until the international quality assurance of the ISO15189 standard was accepted. The 

Fig. 2  The workflow for searching and filtering articles

Fig. 3  The development of the time has created conditions for the establishment of Clinlabomics. Mainly 
include the advantage of the development of clinical laboratory and the coming of the era of big data
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ISO15189 is still the internationally accepted standard that has high credibility in qual-
ity management systems for all fields of laboratory medicine [18, 19]. The standardiza-
tion of clinical laboratory test methods and the unified quality control standards make 
the clinical laboratory test results of different clinical laboratories more comparable [20]. 
A correct diagnosis and treatment decision is based on accurate clinical laboratory test 
results.

New clinical significance of traditional test items

The sensitivity and specificity of different clinical laboratory test indexes for diagnos-
ing a particular disease are different, so each item has its default clinical significance. 
In addition to the further study of various diseases and a deeper understanding of the 
physiological and pathological changes caused by diseases, some conventional clinical 
laboratory items have been found to possess more undiscovered clinical significance. 
For example, platelets were widely known to play a key role in hemostasis and throm-
bosis disorders [21, 22]. But now, it is known that platelets also contribute to immune 
and inflammatory activities in health and disease, including cancer progression [23–25]. 
For many years, prealbumin has been used as a measure of body nutritional status [26]. 
Now, the prognostic role of prealbumin in some tumor patients is recognized. A Study 
proved that for early relapse lung cancer patients, perioperative serum prealbumin lev-
els were significantly lower than those in non-recurrence lung cancer patients and the 
serum prealbumin level can be used as a biomarker to predict early recurrence of lung 
cancer [27]. Besides, serum prealbumin level has also been confirmed as an independent 
prognostic factor for the patients of postoperative esophageal squamous cell carcinoma 
[28], liver cancer[29], and gastric cancer [30]. Notably, the practical markers cannot 
be found in time during the global outbreak of Coronavirus (COVID-19) infection in 
2020. Many researchers have had to shift their focus to routine blood tests in the hope 
of finding cheap and accessible tests [31–33]. Brandon et al. found that some hemato-
logic, biochemical, and immunologic biomarkers have discriminative ability. These clini-
cal laboratory test items include interleukins 6 (IL-6) and 10 (IL-10) and serum ferritin 
which all potential aid in predicting severe and fatal COVID-19 were identified [34]. 
Moreover, other clinical studies also have shown significant changes in blood parameters 
in patients with COVID-19. These clinical laboratory items, include lactate dehydroge-
nase (LDH), white blood cell (WBC), C reactive protein (CRP), aspartate transaminase 
(AST), and alanine transaminase (ALT), which  can play a crucial role in COVID-19 
diagnosis and prognosis [35].

Clinical significance of combined blood test items

Over the past several decades, the combinations of clinical laboratory test data also have 
gradually been applied to clinical diagnosis and treatment choices. Clinical evaluations 
of disease progression have even used combinations of test items as a score. For exam-
ple, many studies found that the change of the ratio of AST/ALT is not only an item of 
hepatocyte injury but suitable for more diseases. Zhou et al. have shown that the high 
AST/ALT ratio can increase the pathogenetic risk of prostate cancer [36]. Besides, stud-
ies have reported a significant association between the pre-treatment AST/ALT ratio 
and survival in oropharyngeal squamous cell carcinoma patients [37], non-metastatic 
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renal cancer patients [38], urothelial carcinoma [39], and metastatic renal cell carcinoma 
[40]. The combined neutrophil-to-lymphocyte ratio (NLR) also has been confirmed that 
is an adverse prognostic factor in many diseases at present, especially malignant tumors, 
including gastric cancer [41], and colorectal cancer [42], and non-small cell lung cancer 
[43, 44]. And the score of clinical evaluation of disease development composed of some 
routine test items is also widely used. The modified Glasgow prognostic score (mGPS) is 
an inflammation-based prognostic score that consists of CRP and albumin (ALB). The 
score is not only an independent prognostic factor in early esophageal cancer patients 
[45] but is considered an essential prognostic indicator in a study on prognostic factors 
in colon cancer [46]. The control nutritional status (CONUT) score consists of serum 
albumin, cholesterol, and total lymphocyte count. It is associated with the postoperative 
survival of patients undergoing hepatectomy [47] and gastric cancer resection [48], and 
can predict the survival of patients with hypertension over 80 years old [49]. It is not dif-
ficult to find that the combination of inexpensive, available and routine clinical test items 
seems to play an increasingly important role in clinical diagnosis and treatment.

Combining AI with clinical laboratory
AI is a field of computer science that is designed to mimic human thinking processes, 
learning abilities, and knowledge storage [50]. In the age of big data, AI technology can 
use sizeable clinical data sets to support clinical decisions, uncover occult disease sub-
types, associations, and prognostic indicators, and generate new testable hypotheses. AI 
is gradually changing the way that doctors make clinical decisions and diagnoses. AI has 
now been applied to several aspects of medicine, from diagnostic applications in radiol-
ogy and pathology [51, 52] and the classification of various eye diseases in ophthalmol-
ogy [53] to more therapeutic and interventional applications in cardiology and surgery 
[54, 55].

Machine learning (ML), is a significant branch of AI, and one of its advantages is learn-
ing from data [56, 57]. ML and deep learning (DL) techniques can handle large, com-
plex, nonlinear, and multidimensional data better than conventional statistical methods 
[58, 59]. The development of clinical laboratory automation and the unification of data 
standardization have gradually transformed the clinical laboratory department into a 
large and credible clinical database in medicine. In addition, in the clinical laboratory 
department and the potential diagnostic value of clinical testing data and the value of 
the joint diagnosis of clinical testing items are gradually explored [60]. Therefore, the 
multifaceted development of clinical laboratories and the development of AI provide the 
conditions for their combination in the era of big data [61].

From routine blood or body fluid test data, Clinlabomics extracts, analyzes, screens, 
and identifies certain reproducible and prominent clinical laboratory test indexes for 
patients with clinically relevant diseases. A relationship is then analyzed between the 
selected characteristic test items and the diagnosis and treatment results. Through 
in-depth ML of a large amount of data and the establishment of predictive models for 
related diseases, the aim is to provide accurate disease diagnosis, risk stratification, and 
prognosis (Fig. 4). Analysis of clinical laboratory test data can provide additional infor-
mation not currently available. Furthermore, Clinlabomics can evaluate the added value 
of routine laboratory test items to common predictors of related diseases. The use of 
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Clinlabomics can reduce unnecessary expenses and the time for diagnosing and treating 
clinical diseases. However, with a lack of such definitions as transcriptomics, metabo-
lomics, radiomics, and other complete keywords, many research projects cannot be 
classified very well, which does not support the development of the field. We propose 
a concept of Clinlabomics to summarize some of these studies for diagnosing, treating, 
and predicting diseases by using clinical laboratory data along with AI.

At present, using clinical laboratory testing data combined with AI to perform disease 
diagnosis, prediction, monitoring, and prognosis research is booming [62, 63]. In the 
following sections, we summarized some relevant studies obtained using Clinlabomics 
(Table 1).

The application of clinlabomics
Clinlabomics and clinical prediction

The prediction of biological aging has been widely concerned. However, there are cur-
rently no informative tests to assess the impact of smoking on biological aging rates. 
Researchers collected data from 149,000 fully anonymized individual records. They 
trained a set of supervised feed-forward deep neural networks (DNNs) on the non-
smokers to predict their chronological age. Then, they included smoking status as one of 
the input features and performed a feature importance analysis. Eventually they trained 
a set of supervised feed-forward deep neural networks to predict the smoking status of 
patients using only their sex and blood feature, including 66 kinds of blood biochem-
istry items and cell count markers. The model demonstrated that smoking accelerates 
human aging, and that smoking status could also be predicted from blood biochemical 
and cell count results. Although this blood aging clock model proved to be less accurate 
than predictors based on DNA methylation, it is cheaper and more practical, and only 

Fig. 4  The Clinlabomics workflow. Collecting blood or body fluid sample and testing. From this clinical 
laboratory data to extract the features e.g. features based on range of clinical test data from healthy or patient 
with various diseases. These features are used for analysis, e.g. the features are assessed for their diagnostic 
prognostic power or linked with stage. Ultimately, it could lead to precision medicine and personalized 
medicine
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Table 1  The partial representative research of the application of Clinlabomics

Application fields Year Sample size Best models of 
analysis

Objective and 
achievement

Clinical prediction 2019 [64] 149,000 physical 
samples

Deep Neural Network 
(DNN)

Biological aging predic-
tion

2016 [65] 62,419 physical 
samples

Deep Neural Network 
(DNN)

Biological aging and 
Smoking status predic-
tion

2021 [71] 285,965 diabetes 
patients and 1,221,598 
healthy human 
samples

Extreme Gradient 
Boosting (XGBoost)

Risk prediction for 
diabetes

2017 [72] 79 paraquat poisoning 
patients (41 living and 
38 deceased)

Support Vector 
Machine (SVM)

Predicting the prognosis 
of paraquat poisoning 
patients

2020 [73] 235 patients (89 
benign ovarian tumors 
and 146 ovarian 
cancer)

Decision Tree Model Predicting ovarian cancer

2021 [80] 1823 COVID-19 
patients

Extreme Gradient 
Boosting (XGBoost)

Predicting the mortality 
of patients with COVID-
19

Clinical diagnosis 2012 [75] 203 iron deficiency 
anemia patients

Artificial Neural Net-
work (ANN)

Iron deficiencyanemia 
diagnosis and iron serum 
level prediction

2020 [76] 355 asthma patients 
and 1,480 Healthy 
individuals

Mahalanobis–Taguchi 
System (MTS)

Asthma diagnosis

2019 [77] 551 chronic kidney 
disease patients

Logistic Regression 
Model (LR)

CKD severity diagnosis 
and surveillance

2020 [79] 177 positive subjects 
and 102 negative 
subjects

Random Forest (RF) COVID-19 infection 
diagnosis

2019 [81] 15,176 Neurological 
patients

The Smart Blood 
Analytics (SBA) 
Machine Learning (ML) 
Algorithm

Brain tumors diagnosis

2019 [82] 183 lung cancer 
patients and 94 
patients without lung 
cancer

Random Forest (RF) Lung cancer diagnosis

2021 [83] 1168 colorectal cancer 
patients and 1269 
healthy subjects

Logistic Regression 
Model (LR)

Colorectal cancer 
diagnosis
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involves standard blood tests [64]. Additionally, Putin designed a modular ensemble of 
21 DNNs of varying depth, structure and optimization to predict human chronological 
age using a basic blood test and used over 60,000 samples from common blood biochem-
istry and cell count tests from routine health exams to train DNNs. The best performing 
DNNs achieved an accuracy of 81.5% when testing human chronological age. Moreover, 
they found that albumin, glucose, alkaline phosphatase, urea, and red blood cells were 
five of the most important markers of predicting chronological age [65].

Clinlabomics also can predict many diseases, including cancer [66–69]. As everyone 
knows, diabetes is a global epidemic, chronic and incurable and long-term exposure 
to hyperglycemia can cause chronic damage to various tissues [70]. Early prediction 
can drastically reduce the risk of diabetes occurrence. Yang collected 1,507,563 physi-
cal examination data from healthy individuals and diabetes patients, as well as 387,076 
physical examination data from the follow-up records. They fused three types of physi-
cal examination data: laboratory values (fasting blood glucose (FBG), high-density lipo-
protein (HDL), low-density lipoprotein (LDL), serum creatinine (SC), triglyceride (TG), 
total cholesterol (TC), blood urea nitrogen (BUN), urine glucose (UGLU)) demograph-
ics, and vital signs in their computational model. They used mutual information, analysis 
of variance and Gini impurity to rank the features, and then, the incremental feature 

Table 1  (continued)

Application fields Year Sample size Best models of 
analysis

Objective and 
achievement

Clinical labortory 
management

2018 [85] 10,799 training sam-
ples and 9839 testing 
samples

Support Vector 
Machine (SVM)

Identifying wrong blood 
in tube errors prior to 
test reporting

2021 [86] 141,396 samples Artificial Neural Net-
work (ANN)

Identifying mislabeled 
samples

2021 [90] 192 clotted samples 
and 2889 normal blood 
samples

Back Propagation Neu-
ral Network (BPNN)

Identifying clotted 
specimens in coagula-
tion testing

2018 [91] 4619 samples of urine 
steroid profiles

Tree-based Model Aiding the Interpretation 
of urine steroid profiles

2022 [92] 202 consecutive 
chronic lymphocytic 
leukemia patients

Deep Neural Network 
(DNN)

Improving flow cytom-
etry workflow efficiency 
for detecting of minimal 
residual disease of 
chronic lymphocytic 
leukemia

2022 [95] 254 healthy samples, 
8800 physical exami-
nation population 
and 7700 outpatient 
samples

Normally distributed 
data: Transformed 
Hoffmann, Transformed 
Bhattacahrya, Kosmic 
and RefineR Algorithms 
Data with obvious 
skewness: Expectation 
Maximization (EM) 
Algorithm combined 
with Box-Cox Transfor-
mation

Establishing referencein-
tervals for thyroid-related 
hormones in older adults

2019 [99] 212,554 urine samples Extreme Gradient 
Boosting (XGBoost)

Screening urine micro-
biological inoculation 
samples
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selection strategy was combined with XGBoost. Finally, they created a diabetes risk 
assessment model with high accuracy in detecting diabetes (AUC = 0.8763)[71]. This 
study result showed that the application of Clinlabomics could help the high-risk group 
take medicine or change lifestyle timely and reasonably so they can effectively reduce 
the risk of diabetes and prevent diabetes effectively. Besides, Chen developed a method 
based on a support vector machine combined with the blood routine indexes feature 
selection technique to accurately predict toxic paraquat (PQ) poisoning risk status. The 
results showed that there are significant differences in blood routine indexes between 
dead and living PQ-poisoned individuals (p value < 0.01) and the most important corre-
lated indexes are WBCs and neutrophils [72]. Therefore, the toxicity or prognosis of PQ 
poisoning can be preliminarily predicted by blood routine testing. Finally, a simple deci-
sion tree model was constructed by applying the Minimum Redundancy-Maximum Rel-
evance feature selection method to the 235 patients’ data (89 benign ovarian tumors and 
146 ovarian cancer samples). The results demonstrated that the decision tree model had 
strong predictive power for distinguishing ovarian cancer from benign ovarian tumors, 
and human epididymis protein 4 (HE4) and carcinoembryonic antigen (CEA) were val-
uable markers for ovarian cancer prediction [73]. Clinlabomics has good potential for 
providing predictive models for complex diseases, using the cheaper and more practical 
standard blood tests to support some clinical predictions.

Clinlabomics and clinical diseases diagnosis

Clinlabomics not only plays a great role in clinical prediction, but also plays a significant 
role in clinical diagnosis. Recently, the research on the application of Clinlabomics in the 
diagnosis of clinical diseases has gradually increased. Muhsen summarized the applica-
tion of ML in the field of hematology diagnosis, including Clinlabomics [74]. Azarkh-
ish developed an artificial neural network (ANN) and an adaptive neuro-fuzzy inference 
system (ANFIS) to diagnose iron deficiency anemia (IDA) and to predict serum iron 
levels based on four accessible laboratory data (Mean corpuscular volume (MCV), 
Mean corpuscular hemoglobin (MCH), Mean corpuscular hemoglobin concentration 
(MCHC), Hemoglobin /red-blood-cell (Hb/RBC)) [75]. The ANN was the best model 
for diagnosing IDA with an accuracy of 97% for patients with IDA and 96% for patients 
without it.

Zhan used 14 routine blood test data (basophil count, eosinophil count, lymphocyte 
ratio, lymphocyte count, mean corpuscular hemoglobin, mean corpuscular hemoglobin 
concentration, monocyte ratio, monocyte count, mean platelet volume, platelet distribu-
tion width, platelet count, red blood cell count, red blood cell distribution width, and 
white blood cell count) from healthy individuals to construct a Mahalanobis space (MS). 
To ensure the efficiency of MS, they calculated Mahalanobis distances of blood data 
from 355 asthma patients and 1480 healthy individuals. Orthogonal arrays and signal-
to-noise ratios were used to optimize blood biomarker variables the receiver operat-
ing characteristic (ROC) curve was used to determine the threshold value. Ultimately 
Mahalanobis-Taguchi system (MTS) correctly classified 94.15% of patients. In addition, 
97.20% of healthy individuals were correctly classified [76]. Due to there being no gold 
standard for asthma diagnosis currently, we can see that the use of Clinlabomics offers 
the potential to simplify diagnostic complexity and optimize clinical efficiency.
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Chronic kidney disease (CKD) severity can be assessed using urine protein con-
centration, but it can be inconvenient to collect 24-h urine for follow-up. 9 models 
were developed and compared using 13 routine blood test indexes and five demo-
graphic characteristics. These models as non-uretic clinical variables combine sta-
tistical, machine learning, and neural network methods to predict urinary protein 
progression in patients with chronic kidney disease. Their results showed that linear 
models including Elastic Net, lasso regression, ridge regression and logistic regres-
sion have overall predictive power, with an average AUC and precision above 0.87 
and 0.8, respectively. Among them, LR obtained the highest AUC value of 0.873 [77].

Clinlabomics is also extremely important for detecting COVID-19 [78]. Based on 
hematochemical values from routine blood tests, Brinati developed two machine-
learning classification models whose accuracy ranges between 82 and 86%, and 
sensitivity ranges between 92 and 95% [79]. Besides, Domínguez-Olmedo also devel-
oped a model to predict the mortality of patients with COVID-19, which can assess 
mortality from laboratory values with a high degree of accuracy [80].

In addition, Clinlabomics also plays a vital role in the diagnosis of some can-
cers. Simon used the routine blood tests from 15,176 neurological patients via the 
smart blood analytics (SBA) ML algorithm to build a machine learning predictive 
model for brain tumor diagnosis. Moreover, they validated the model by retrospec-
tive analysis of 68 consecutive brain tumors and 215 control patients presenting to 
the neurological emergency service. The sensitivity and specificity of the adapted 
tumor model in the validation group were 96% and 74%, respectively [81]. That 
result demonstrated the feasibility of brain tumor diagnosis by routine blood tests 
combined with machine learning. At the same time, it proved that the application 
of Clinlabomics can compensate for the low accuracy and expensive disadvantage of 
computed tomography (CT) imaging in the diagnosis of brain tumors. Similarly, Wu 
used a random forest machine-learning algorithm to build an identification model 
between routine blood indexes and lung cancer. A correlation between 19 regular 
blood indexes and lung cancer patients was found, and lung cancer patients could 
be identified from other patients, especially those with tuberculosis (which has simi-
lar symptoms to lung cancer), with a sensitivity of 96.3%, specificity of 94.97%, and 
accuracy of 95.7% for the cross-validation results, respectively [82]. Li also used 
laboratory data, including liver enzymes, lipid profiles, complete blood counts, and 
tumor biomarkers to develop five machine learning models to identify colorectal 
cancer (CRC). The results showed that the logistic regression model achieved the 
highest performance in identifying CRC (AUC: 0.865, sensitivity: 89.5%, specificity: 
83.5%, PPV: 84.4%, NPV: 88.9%) [83]. Studies of Clinlabomics in diagnosing disease 
have increased, both in general and severe diseases, and have achieved remarkable 
diagnostic results. In addition to facilitating more convenient and accurate diagnos-
tic methods, it also decreases the cost of diagnosing related diseases. In the age of 
big data, we can see that Clinlabomics is becoming more and more important for 
precision medicine. The routine blood test results contained much more informa-
tion than is usually recognized even by the most experienced clinicians.
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Clinlabomics and clinical laboratory management

Clinlabomics also correctly conducts laboratory management to some extent, includ-
ing laboratories formulate reference ranges, clinical laboratory quality control, and 
automated interpretation of laboratory testing results. Clinlabomics has the poten-
tial to improve laboratory efficiency and quality in a setting of limited staff resources 
[84]. One concerning the type of preanalytic error in laboratory medicine is the wrong 
blood in the tube (WBIT) error because blood specimens collected from one patient 
occasionally get mislabeled with identifiers from another patient. Continuous monitor-
ing of specimen acceptability, collection and transport can result in the prompt identi-
fication and correction of problems, leading to improved patient care and a reduction 
in unnecessary redraws and delays in reporting results [85–88]. Rosenbaum simulated 
WBIT errors within sets of routine inpatient chemistry test results to develop, train, and 
evaluate five machines learning based WBIT detection algorithms. The results showed a 
best-performing WBIT detection algorithm based on a support vector machine to iden-
tify WBIT errors before test reporting. This algorithm achieved an area under the curve 
of 0.97 and considerably outperformed traditional single-analyte delta checks [85]. For 
evaluating the performance of identifying mislabeled samples, Farrell developed eight 
different machine learning models using different algorithms: artificial neural networks, 
extreme gradient boosting, support vector machines, random forests, logistic regression, 
k-nearest neighbors, and two decision trees (one complex and one simple). Moreover, it 
was compared with the ability to manually identification of mislabeled samples. The best 
performing machine learning model, the artificial neural network (92.1% accuracy), out-
distanced human performance for identifying mislabeled samples(77.8% accuracy) [86]. 
Serum quality is also a key consideration in the pre-analytical phase of a laboratory anal-
ysis [89]. Fang retrospectively retrieved the coagulation test results (Activated partial 
thromboplastin time (APTT), Prothrombin time (PT), Thrombin time (TT), Fibrinogen 
(Fbg), and D-dimer) of 192 clot samples and 2889 clot-free test (NCD) samples to form 
a training and test dataset. Standard and momentum back-propagation neural networks 
(BPNNs) were trained and validated using training datasets and five-fold cross-valida-
tion methods to verify the feasibility of identifying clot specimens through machine 
learning. Surprisingly, the result confirmed that the standard and momentum BPNNs 
could identify the sample status (clotted and NCD) with areas under the ROC curves of 
0.966 (95% CI 0.958–0.974) and 0.971 (95% CI 0.9641–0.9784), respectively [90].

Auto verification and auto-explanation systems might have greatly improved labora-
tory efficiency. Wilkes retrospectively collected 4619 urine steroid profile data to train 
and test various ML classifiers’ abilities to differentiate profiles. The results showed 
the best performing binary classifier could predict the interpretation of profiles with a 
mean area under the ROC curve of 0.955 (95% CI 0.949–0.961). In addition, the best 
performing multiclass classifier could predict the individual abnormal profile interpreta-
tion with a mean balanced accuracy of 0.873 (0.86–0.880) [91]. This provided a proof-
of-concept application of ML algorithms to complex clinical laboratory data. Salama 
developed deep neural networks (DNN) to improve the efficiency of clinical laboratories 
in detecting minimal residual disease (MRD) in chronic lymphocytic leukemia (CLL) 
by flow cytometric immunophenotyping. The result showed that there was an excellent 
correlation between their DNN and expert analysis when CLL cells were reported as a 
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percentage of total white blood cells. In addition, gating time was dramatically reduced 
to 12 s/case by DNN from 15 min/case by the manual process. The proposed DNN dem-
onstrated high accuracy in CLL MRD detection and significantly improved workflow 
efficiency [92].

In addition, reference intervals are critical for the interpretation of laboratory results 
and Clinlabomics also can help to establish the reference interval [93, 94]. Ma validated 
five data mining algorithms using thyroid-related hormones test data from clinical 
laboratories to establish reference intervals of thyroid hormones for older adults. The 
results showed that the transformed Hoffmann, transformed Bhattacahrya, Kosmic, and 
refineR algorithms were the more suitable algorithms to establish reference intervals for 
thyroid-related hormones in older adults and an Expectation maximization (EM) algo-
rithm combined with Box-Cox transformation was recommended for data with obvi-
ous skewness [95]. Poole developed LIMIT, an unsupervised learning method to extract 
reference intervals from the electronic medical record. Results showed that LIMIT 
produces usable reference intervals for sodium, potassium and hemoglobin laboratory 
results. From the above research, we conclude that Clinlabomics represents a fast and 
inexpensive solution for calculating reference intervals, and showed that it is possible to 
establish reference intervals by using laboratory results and AI [96].

The urine samples from patients suspected of urinary tract infection (UTI) generate 
the highest workload in routine clinical microbiology diagnostic laboratories [97]. How-
ever, the actual situation was that many urine samples produce negative culture results. 
There were no significant bacterial isolates or mixed culture results indicating sample 
contamination [98]. The reduction in the number of suspect samples that must be cul-
tured will allow diagnostic services to focus on actual microbial infections, which will 
reduce the workload in the laboratory. Burton retrospectively analyzed a total of 212,554 
urine microscopy, culture, and sensitivity urine reports. He compared the two classifi-
cation methods: a heuristic model using a combination of white blood cell count and 
bacterial count and a machine learning approach testing three algorithms (Random For-
est (RF), Neural Network (NN), and Extreme Gradient Boosting (XGboost)). The clini-
cal laboratory items included in the machine learning approach include urine items of 
microscopic analysis, and biochemical dip-stick testing such as NIT, WBCUF, EC, 
and haematuria. Based on their initial findings, the machine learning algorithms out-
performed the heuristic model in terms of relative workload reduction at a classifica-
tion sensitivity above 95%. Using this method has a potential decrease of about 41% in 
the cultivation workload. XGboost achieved the highest AUC of 0.910among the three 
machine learning approaches [99].

From the above research, we concluded that Clinlabomics can help with clinical labo-
ratory management and improve the efficiency of clinical diagnosis. Besides, Clinlabom-
ics also may improve service efficiency when demand exceeds the resources of public 
health service providers.

The challenge and opportunity of clinlabomics
The 2016 World Economic Forum listed the open AI ecosystem as one of the top 10 
most important emerging technologies [100]. Since 2017, China, the United States, and 
the European Union have successively issued national-level artificial intelligence (AI) 
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strategic development plans, in the field of clinical laboratory testing, the explosive 
growth of AI theories and technologies also provides a new direction for the develop-
ment of medical testing theory, methods and applications [101–104].

By reviewing some recent studies of ML applications in the field of clinical laboratory 
medicine. It was not difficult to find that Clinlabomics in the clinical laboratory can con-
duct more rapid and efficient analytical processing of complex detection data. Not only 
that, Clinlabomics can correctly conduct laboratory management to some extent, which 
can play an important role in the future development and construction of laboratory 
medicine. Besides, Clinlabomics will certainly go further beyond its current boundaries 
in the field of clinical laboratory medicine. Just as during the global period of COVID-19 
spread, Clinlabomics can further expand the scope of disease diagnostic tools, which is 
particularly promising to make up for the lack of skilled laboratory staff and adequate 
testing instruments in developing countries [32, 35, 79, 80, 105].

It is undeniable that the development of artificial intelligence has brought opportu-
nities to the development of Clinlabomics but there are still a series of challenges and 
problems in the development process of Clinlabomics [106, 107].

On the one hand, although the current Clinlabomics to improve the efficiency of 
clinical laboratory testing and supplementary diagnosis of clinical diseases has great 
potential [108], a lot of clinical laboratory technicians for big data age and AI com-
bined with clinical laboratory test data understanding is not deep [109]. In addition, the 
replacement of human labor with technological development has caused panic in the 
whole society, and clinical laboratory personnel also have the same concern [14, 109]. 
The clinical laboratory staff has not willing to further study and develop Clinlabom-
ics resulting laboratory’s lack of bioinformatics professional knowledge, leading to this 
field is limited and the development slow. On the other hand, ML models rely on the 
type and quality of the data used for training, and often tend to perform better on data 
from the same cohort than on the new data. Different regions, different people, and 
even different hospitals’ laboratory equipment, and methods may result in instability in 
Clinlabomics-related diagnosis models. The development of Clinlabomics requires the 
standardization of testing methods and data for each region, each country, each species, 
and each laboratory. Biological variation data and external validation is a necessary prac-
tice in Clinlabomics evaluation [110–113]. Besides, laboratory medicine, like other areas 
of medicine, is obliged to adhere to high ethical standards [114–117]. Informed consent 
is essential to maintaining patient autonomy [118]. However, it is sometimes difficult to 
balance patient autonomy with the idea of contributing to the development of medicine 
[119]. The use of remaining or stored samples is essential for research and the develop-
ment of Clinlabomics, but it creates problems with consent. There is no doubt that this 
is a huge project for the current situation.

Discussion and conclusion
In general, routine clinical laboratory test results usually contain more information 
than is usually recognized. Even the most expert clinicians are challenged to extract 
all the information contained in routine clinical laboratory tests [60, 63]. According 
to the relevant representative research reports in this review, it is not difficult to see 
that combining AI and clinical laboratory data has been applied, including disease 
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prediction, diagnosis, and monitoring of disease status. Besides, it also is very con-
ducive to laboratory management. Therefore, our proposed Clinlabomics is a new 
concept aimed at collecting valuable information obtained from routine laboratory 
tests. Although the research of combining AI and clinical laboratory data is still in 
its infancy, most studies focus on details information on routine testing items in the 
blood. From some research we summarized, combining blood-related testing items 
data and AI have achieved some results in the diagnosis, monitoring, and prognosis 
evaluation of clinical diseases and their conclusions. Many authors presented oppor-
tunities related to combining clinical laboratory data and AI methods, and some also 
made their algorithms available. However, extensive data clinical trials are still lack-
ing to verify and the establishment of standardization. On the other hand, there are 
few studies combining AI with body fluid-related detection items (such as urine, and 
cerebrospinal fluid) in the clinical laboratory. In the future, we can carry out dis-
ease diagnosis and treatment-related research on body fluid-related detection items 
through the deep learning method. In addition, there are many studies combining AI 
and other medical fields, especially imaging and pathology. Therefore, using patient 
clinical information and laboratory data, combining data from other diagnostic facili-
ties (such as pathology and radiology) and pharmacies) has the potential to further 
improve the accuracy and reliability of the diagnostic model.

As seen in the previous section, many studies use different models for comparison, 
the best model or algorithm used in combining AI and clinical laboratory data is dif-
ferent whether in disease prediction and diagnosis or laboratory management. Clini-
cal laboratory data must be analyzed with appropriate models and algorithms to solve 
different problems. Logistic regression (LR) is one of the traditional models, its clar-
ity, simplicity and great interpretability of the model are the reasons why LR was fre-
quently chosen [63]. However, due to the simple form of the LR model (very similar 
to the linear model), it is difficult to fit the real distribution of data, so the accuracy 
is not high. Therefore, the LR model is currently widely used to predict the factors of 
disease pathogenesis [77, 83]. We can use the LR model to analyze and predict disease 
risk through clinical laboratory testing items. We also found that the Random Forest 
(RF) model was frequently used in studies we reviewed [73, 79, 82]. From a techni-
cal point of view, RF is an ensemble algorithm that relies on a collection of decision 
trees that are trained on mutually independent subsets of the original data to obtain 
a classifier with lower variance and/or lower bias [79]. This class of models also has 
generally high accuracy as well as interpretable output [63]. These are some reasons 
why RF is chosen. As a result of its merits, especially high accuracy, we think the RF 
model may be suitable for some applications related to disease diagnosis. A support 
vector machine (SVM) is a dichotomous model that is supported by strict mathemat-
ical theory and has strong explanatory power. It does not rely on statistical meth-
ods, thus simplifying the usual classification and regression problems. SVM has been 
applied to myriad classification tasks and has been demonstrated to be particularly 
effective for medical diagnosis [72]. Studies have reported that NN models (such as 
ANNs and DNNs) are widely used in control and optimization, prediction and man-
agement, pattern recognition and image processing [63, 65]. Since NN models extract 
features automatically, they require more training resources (time and data volume) 
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than traditional ML models [64, 65, 86, 92]. For this reason, we think NN models may 
be more effective at integrating data from different laboratories to extract feature test 
items.

In this article, there are a few limitations. Due to the differences in keywords, some 
related articles may be overlooked since our search query only contains words com-
monly used in the area we intend to study. In addition, we conducted our search only 
using PubMed and focused on nearly 10 years of related research. Finally, we only com-
pared the performance of commonly used models in the research we reviewed. We did 
not discuss some of the less commonly used models specifically.

In conclusion, we believe Clinlabomics, with its advantages of low cost, effective-
ness, avoiding unnecessary treatment, and toxicity risk can provide a new way for per-
sonalized medicine in the future. The potential of Clinlabomics, which applies machine 
learning to laboratory data for diagnostic and prognostic purposes deserves more atten-
tion from clinicians-scientists who wish to take advantage of this new computer-based 
pathology and laboratory medical support. In the future, the establishment of relevant 
databases through standardized and standard clinical test data features in various medi-
cal institutions will provide us with high-quality medical help for accurate diagnosis and 
treatment, thus taking a concrete step towards the realization of precision medicine.
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