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Background
Polypharmacy, the concurrent administration of multiple drugs, has been increasing 
among patients in recent years [1–3]. When administering multiple drugs, interactions 
might arise among them, often termed drug–drug interactions (DDI). The intended 
effect of a drug may therefore be altered by the action of another drug. These effects 
could lead to drug synergy [4], reduced efficacy or even to toxicity [5]. Thus, DDI inter-
action extraction is an important step towards improved patient treatment and safety.
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Background:  Extraction of drug drug interactions from biomedical literature and 
other textual data is an important component to monitor drug-safety and this has 
attracted attention of many researchers in healthcare. Existing works are more pivoted 
around relation extraction using bidirectional long short-term memory networks (BiL-
STM) and BERT model which does not attain the best feature representations.

Results:  Our proposed DDI (drug drug interaction) prediction model provides multi-
ple advantages: (1) The newly proposed attention vector is added to better deal with 
the problem of overlapping relations, (2) The molecular structure information of drugs 
is integrated into the model to better express the functional group structure of drugs, 
(3) We also added text features that combined the T-distribution and chi-square distri-
bution to make the model more focused on drug entities and (4) it achieves similar or 
better prediction performance (F-scores up to 85.16%) compared to state-of-the-art 
DDI models when tested on benchmark datasets.

Conclusions:  Our model that leverages state of the art transformer architecture in 
conjunction with multiple features can bolster the performances of drug drug intera-
tion tasks in the biomedical domain. In particular, we believe our research would be 
helpful in identification of potential adverse drug reactions.
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Traditionally, doctors have obtained the latest information on DDI from two main 
sources: reading numerous biomedical papers to learn about DDI or querying DDI from 
biomedical databases. In the biomedical field, the number of biomedical literature has 
been increased rapidly. Obviously, reading a large number of papers is inefficient. As for 
biomedical databases, it seems possible, but in the consideration of the quantity of the 
biomedical literature, it requires a lot of resources to update and revise a professional 
database manually. So, two of these methods are not ideal for obtaining DDI.

The DDI extraction task [6] aims to extract DDI from free texts in the biomedical field. 
DDIExtraction 2013 task seeks to classify each DDI candidate according to one of five 
types (“Advise”, “Effect”, “Mechanism”, “Int” and “False”).

In the early days, people often adopt the pattern-based methods and feature-based 
machine learning methods [7, 8], but methods based on pattern requires the annotator 
to have certain domain knowledge, and the main drawback of this method is both time-
consuming and inefficient.

Deep learning is the most widely applied and effective method to solve this problem 
at present, mainly including CNN-based methods [9–15], RNN-based methods [16–22] 
and currently the best methods based on pre-training. In general, RNN is suitable for 
NLP applications due to cyclic connections [23, 24], but RNN has the problem of explo-
sion and vanishing gradient [25]. To address these problems, the long term short term 
memory (LSTM) [26, 27] unit and the gated recurring unit (GRU) [28] network were 
proposed.

In recent years, methods based on pre-training [29, 30] have achieved good results. 
Lee et al. introduced BioBERT (bidirectional encoder representations from transform-
ers for biomedical text mining) to improve DDI extraction [31], the authors pre-trained 
BioBERT on PubMed abstracts (PubMed) and PubMed Central full-text articles (PMC). 
Boukkouri et al. put forward a new variant of BERT [32], it is completely abandoned the 
chunk system, and use a character-CNN module instead of by query their characters to 
represent whole words. Recently, Sun et al. [33] further improved the extraction effect of 
DDIExtraction 2013 task by introducing Gaussian vector and other external knowledge 
on the basis of BioBERT.

The above mentioned solutions come with some drawbacks. First, as shown in Fig. 1, 
in the sentence that contains the DDIs, there are multiple complex drug drug interac-
tions. For example, drug ‘alosetron’ and the other three drugs (‘isoniazid’, ‘procaina-
mide’, ‘hydralazine’) all have effects. We called this relationship overlap, for this kind of 

Fig. 1  An example of overlapping relationships. Drugs entities are labeled. This example shows that there are 
multiple drug entities and multiple interactions in a sentence
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complex relationship overlap, the above methods do not have good solutions. The newly 
proposed attention vector is designed to better deal with the problem of overlapping 
relationships. Second, there is a plethora of drug feature information available for many 
approved drugs, including molecular structure, drug SMILES, and more. All of the above 
methods ignore this additional but very useful information. Therefore, we obtained the 
SMILES molecular formulas of the drugs through the DrugBank [34] database, and 
transformed the SMILES molecular formulas into the fingerprints and adjacency matri-
ces through the RDKit toolkit [35] to get drug molecular features. In addition, the loca-
tion of drug entities in the text is also very helpful to extract specific drug relationships. 
For this purpose, we introduce T-distribution and Chi square distribution to obtain the 
sentence feature which focus on drug entities.

Rest of our work is organized as follows. We first discuss our approach in detail i.e sys-
tem architecture, then experimental setup, training and evaluation metrics. This is fol-
lowed by a discussion of the experimental results and in the end we make a conclusion.

Methods
In this section, we introduce our system architecture (Fig. 2) and explain different mod-
ules it invokes in a sequential manner. Figure 2 shows the architecture of our approach. 
Our model is divided into four parts. First we use Biobert to encode the input sen-
tence, and get the last hidden state ( Hseq ) of Biobert. Then, we generate attention vector 
according to the positions of DRUG1 and DRUG2 and obtained ‘interaction features’ 
which are helpful to identify overlapping relation, and we got ‘entities attention features’ 
which focus on entities by introducing Chi-square distribution and T-distribution. Last, 
we obtained the drug structure according to the DrugBank database and the RDKit tool 

Fig. 2  Architecture of the proposed model. Our model is mainly distributed in four parts. First, BioBERT is 
used to encode the input sentences, and meanwhile, molecular graph neural network is used to encode the 
drug structure. Then, Interaction attention vector and Entities attention vector are respectively generated to 
combine the output of Biobert. Finally, all the obtained information is sent to the classifier for prediction
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library, and we use molecular graph neural network [36] to generate high quality molec-
ular representations. Finally, we combined all the information to make the classification 
of DDI. We will introduce our model and method in detail in the following content.

Data pre‑processing

Drug mask

For the two drug entities in the sentence that need to classify the type of relationship, 
‘DRUG1’ and ‘DRUG2’ were used to replace them, and for other drug entities in the sen-
tence, ‘DRUGOTHER’ was used to replace them.

Over‑sampling and under‑sampling

DDI 2013 dataset has long-tail distribution phenomenon. Therefore, under-sampling 
and over-sampling methods are adopted to optimize the training set. Compared with the 
original data, a large number of repeated negative samples are filtered out after under-
sampling while oversampling can significantly increase the number of sparse samples.

Sentence encoder

The goal of this component is to obtain the context-aware representation of each token 
in a sentence. Given the impressive performance of recent deep transformers trained on 
variants of language modeling, we utilize the BioBERT model as the sentence encoder. 
The BioBERT was pre-trained on a lot of PubMed abstracts and PubMed Central full-
text articles, and see Fig.  3 for the overview of the pre-training. Given an sequence 
( S = {x1, x2, . . . , xn} ) as input, BioBERT can be formulated as follows:

Fig. 3  Overview of the pre-training of BioBERT [31]. BioBERT is a domain-specific language representation 
model pre-trained on large-scale biomedical corpora. With almost the same architecture across tasks, 
BioBERT largely outperforms BERT and previous state-of-the-art models in a variety of biomedical text mining 
tasks when pre-trained on biomedical corpora
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where xi is the i-th token, L is the total number of layers for BERT, l (1 < l < L ) is the 
l-th layer. Equation (1) indicates input embeddings, Eq. (3) denotes the representation 
of the i-th token, and Eq. (4) denotes the representations of the sequence. The trans-
former_block in Eq. (2) contains multi-head attention layers, fully connected layers, 
and the output layer. Furthermore, the parameters W e , W b , and transformer_block are 
pre-trained on large-scale corpora using two unsupervised pre-training tasks, masked 
language model and next sentence prediction. The output of the BioBERT model is the 
context-aware embedding of tokens, and is denoted as H seq ∈ Rn×d , where n is the sen-
tence length (including [CLS] and [SEP], two special start and end markers), and d is the 
number of hidden units in the BERT model.

Interaction attention vector

In this part, we will introduce the interaction attention vector. As shown in the sentence in 
Fig. 1, if the two drugs have some interaction, they will be far apart in the sentence, whereas 
if they do not interact, they will be closer together, suggesting that the important informa-
tion characterizing the interaction is often between the two entities. In addition, we found 
this pattern in the vast majority of biological texts. So when dealing with overlapping rela-
tionships we should focus on the information between the current pair of drugs. In Table 1, 
we give the statistics of the interaction information between entities in SEMEVAL-2013 
DATA SET. We have performed the statistics for the training set, validation set and test set 
separately, and the results show that the large batches of data among the datasets fit this 
pattern. That is to say we should pay more attention to the content between entities. In the 
following we will explain in detail how to generate the interacting attention vector and how 
to use it.

We define a high weight range and a lower weight range:

(1)h0i = Wexi +Wb

(2)hli = transformer_block hl−1
i

(3)tLi = hLi

(4)Hpooled_out = hLCLS

(5)highweight range = (hw0 = 0.9,hw1 = 1.1)

Table 1  Data of interaction information between entities as a percentage of total data

Relation Train Dev Test All

Mechanism 0.89 0.90 0.92 0.90

Effect 0.87 0.91 0.88 0.89

Advice 0.85 0.83 0.85 0.84

Int 0.84 0.86 0.86 0.85
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We assign the high weight to the information between the two drugs, and lower weight 
to the rest of the sentence. In order to keep this range of weights elastic, we add an oscil-
lation factor σ to the weight range. The weight after adding the shock factor are as fol-
lows, W hign is the weight range we will assign to the information between the two drugs, 
W low is the weight range we will assign to the rest of the sentence:

where σ is the oscillation factor (here we take 0.1).
We define a sentence S = {x1, x2, . . . , xn} , the final Interaction attention vector we pro-

posed is defined as follows:

where start and end means the start and end of a sentence, j and k means the positions 
of head enity and tail enity in the sentence, H int is the final Interaction attention vector, 
and its visual representation is as follows:

The output of the BERT model ( Hseq ∈ Rd×1 ) is the context-aware embedding of 
tokens. Then we do a matrix operation with H int , the output of this step is like Fig. 4, 
each word embedding of H seq is given a different weight, the formulas are as follows:

where input_sentence is the original input of the sentence, H it ( H it ∈ Rd×1 ) is the syn-
thesis vector obtained after the fusion of H int and H seq , ⊗ means matrix multiplication.

We also apply the average operation on the comprehensive vector representation H it:

where H interaction_attention is the output after the average processing of H it and a fully 
connected layer, j and k are the positions of first drug and second drug.

For the hidden state output H seq , we first get pooled output from it, then add an acti-
vation operation and a fully connected layer, which is formally expressed as:

where matrices Wint ∈ Rn×1 , W0 ∈ Rn×1 are weight matrices and they have the same 
dimensions, bint , b0 are bias of neural network.

(6)low weight range = (lw0 = 0.3, lw1 = 0.5)

(7)W high = [hw0 − σ ,hw1 + σ ]

(8)W low = [lw0 − σ , lw1 + σ ]

(9)H int = W low
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∑
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Entities attention features

In this study, we introduce the Chi-square probability distribution and T-distribution 
to enhance the weights of the target entity and its adjacent words, so that the model 
can learn the local structure of entities. We refer to these two modified distributions 
together here as the Entities attention vector. The Chi-square probability density 
function is:

the Chi-square probability distribution function is:

the T probability density function is:

the T probability distribution function is:

(14)f (x; k) =







x(k/2−1)e−x/2

2k/2Ŵ

�

k
2

� , x > 0

0, other

(15)P(x)c =
∫ x

−∞
f (x; k)dx −

∫ x−t

−∞
f (x; k)dx

(16)f (x; n) =
Ŵ

(

n+1
2

)

√
nπŴ

(

n
2

)

(

1+
x2

n

)

n+1
2

Fig. 4  Visual representation of the Interaction attention vector. The horizontal axis represents each token 
in the sentence, and the vertical axis represents the different weights assigned to them according to the 
Interaction attention vector. The information between the two drug entities is important that it is given a 
high weight, and the rest is given a low weight
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where x is a real value, Ŵ is the Gamma function , k is the degree of freedom in Chi-
square distribution, n is the degree of freedom in T distribution and t is the step size of 
the Chi-square function, w is the step size of the T function.

We first get the values of the distribution and then locate the position of the two enti-
ties in the sentence. We map 15% before the first entity according to the rule of right-to-
left position and high-to-low value, and 25% after the first entity according to the rule of 
left-to-right position and high-to-low value, and then do a symmetric operation on the 
right entity.

Finally, we obtained the Entities attention vector H ent as Fig. 5, then we do a matrix 
multiplication with the last hidden state output of BioBERT ( H seq ), and add an activa-
tion operation and a fully connected layer. The formula is as follows:

where Hent is the Entities attention vector, H et ( Het ∈ R1×d ) is the synthesis vector 
obtained after the fusion of H ent and H seq , and H entities_attention is the output after an 
activation operation and a fully connected layer, Went ∈ Rn×1 is the weight matrix, bent 
is the bias of fully connected layer.

Molecular structure

DrugBank is a freely available drug database containing more than 10,000 drugs. Accord-
ing to the name of drugs, we first found the SMILES formulas of the corresponding drugs 
in the DrugBank database, and then extracted the corresponding drug structures using the 

(17)P(x)t =
∫ x

−∞
f (x; n)dx −

∫ x−w

−∞
f (x; n)dx

(18)H et = H ent ⊗H seq

(19)H entities_attention = Went

(

tanh
(

H et
))

+ bent

Fig. 5  Visual representation of the Entities attention vector. The horizontal axis represents each token in the 
sentence, and the vertical axis represents the different weights assigned to them according to the Entities 
attention vector (combination of modified T-distribution and Chi-square distribution)
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extraction method provided by Tsubaki et al [36]. Figure 6 shows the molecular structure of 
the drug that we obtained. We use r-radius subgraphs which are induced by the neighbor-
ing vertices and edges within radius r from a vertex. This r is the number of hops from the 
current vertex to the nearby vertexes, and we take radius r 1 here.

We use molecule graph neural network to encode molecular graph structures. GNNs 
convert a drug molecule graph G into a fixed size vector. We represent atoms as nodes and 
bonds as edges in the graph. Then we feed the fingerprint vectors into the molecule graph 
neural network which takes the input ngerprint vectors as the initial vectors and updates 
them according to the structure of the molecular graph. We dene the vector of the i-th 
atom in a drug molecule as mi and the set of its neighboring atoms as Ni . The vector mi is 
updated in the ℓ-th step as follows:

where f() denotes a ReLU function. The drug molecular vector is obtained by summing 
up all the atom vectors and then the resulting vectors are fed into a linear layer.

where M is the number of fingerprints, Hmol is the output of MGNN, and we thus 
obtained the molecular structure output of the two drug entities: Hmol1 and Hmol2.

Softmax layer

In this step, we combine the output obtained earlier to make the fusion representations H . 
Then a fully connected neural network is employed to learn the representations H . Finally, 
the softmax function is used to calculate the probability P belonging to the DDI type r:

where W∗ and b∗ are weight parameters and bias parameters, and we use the cross-
entropy function as the loss function.

(20)mℓ
i = mℓ−1

i +
j∈Ni
∑

j

f
(

ω
ℓ−1
hiddenm

ℓ−1
j + bl−1

hidden

)

(21)Hmol = f

(

ωoutput

M
∑

i

mL
i + boutput

)

(22)H = concat[H seq;H interaction_attention;H entities_attention;Hmol1;Hmol2]

(23)P(r | H) = softmax(W∗H + b∗)

Fig. 6  Examples of drug molecular structure. First we can obtain the corresponding drug molecular formula 
through DrugBank database, and then convert it into a molecular map using RDkit, a tool in chemistry
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Dataset and experimental settings

DDIExtraction 2013 corpus is a manually annotated drug–drug interaction (DDI) cor-
pus based on the DrugBank database and MEDLINE abstracts. This corpus contains 
four DDI types for evaluation purposes which are ‘Advice’, ‘Effect’, ‘Mechanism’ , ‘Int’, and 
a label named ‘False’ which indicates no interaction. We formulate DDI extraction into a 
multi-class classification problem. We follow DDIEXTRACT-2013 shared tasks (seme-
val-2013 Task9.2), here we refer to the DDI corpus provided by Asada et al. [15]. Table 2 
illustrates the statistics for the instances in the DDIExtraction 2013 dataset.

The task defines the following four interaction labels.

•	 Mechanism: this type is assigned when a pharmacokinetic mechanism is described 
in an input sentence.

•	 Effect: this type is assigned when the effect of the DDI is described.
•	 Advice: this is assigned when a recommendation or advice regarding the concomi-

tant use of two drugs is described.
•	 Int (Interaction): this type is assigned when the sentence simply states that an inter-

action occurs and does not provide any detailed information about the interaction.

In the experiments, we employed the PyTorch (https://​pytor​ch.​org/) framework 
to implement our proposed model. For the selection of BERT model, we chose the 
BioBERT model to encode the input sentences. All of the DDI extraction methods use 
the standard evaluation measures (precision, recall and F-score) as the evaluation met-
rics. The F-score is defined as: F1 = 2PR/(P + R).

Results

The performances of IMSE on the benchmark datasets and analysis

Table 3 illustrates the experimental results in detail. We compared our model with typi-
cal models based on CNN, RNN and pre-training. BioBERT is pre-trained in PubMed 
Abstracts (PubMed)and PubMed Central Fulle-Text Articles (PMC). CharacterBERT 
model use a character-CNN module instead of by query their characters to represent 
whole words. ChemicalBERT + AGGCN (Parallel) is a model combined GCN with 

Table 2  Statistics of SEMEVAL-2013 DATA SET

Train Test

Drugbank MEDLINE Drugbank MEDLINE

#documents 572 142 158 33

#sentences 5675 1301 973 326

#drug pairs 26,005 1787 5265 451

#positive pairs 3789 232 884 95

#negative pairs 22,216 1555 4381 356

Mechanism 1257 62 278 24

Effect 1535 152 298 62

Advice 818 8 214 7

Int. 179 10 94 2

https://pytorch.org/
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ChemicalBERT for DDI task. In general, LSTM-based models achieve better results than 
CNN-based models because the LSTM structure can handle long text while CNNs focus 
more on local features. In addition, pre-trained-based models perform better than other 
methods, for example, the BioBERT model pre-trained with a large amount of biomedi-
cal text achieves an F1-score of 78.1%. The experimental results show that our method 
(IMSE) outperforms all the latest models, with a 7.06% higher F1-score than the baseline 
model BioBERT, as well as 1.56% and 2.28% higher F1-scores than the latest DESC_MOL 
and ChemicalBERT + AGGCN, respectively. Compared with other pre-training-based 
methods, the Interaction attention operation enables the model to focus more on infor-
mation that facilitates correct classification results, i.e., critical information. The Entities 
attention operation enables the model to focus more on the drug entity itself and ignore 
other interfering drugs. Molecular structure as additional information can also provide 
the model with structural features in addition to text.

Ablation experiments

In this section, to explore the contribution of each component to overall performance, we 
performed an ablation study over our proposed model. We did a total of six comparative 
experiments, and the experimental results are presented in Table 4. As shown in the table, 
the F1-score of BERT(BioBERT) model when we did not add any operations was 78.1%. 

Table 3  Performance comparison with other state-of-art methods on DDIExtraction 2013 dataset

Bold indicates the highest value of the measured metric in each comparison experiment

Methods Precision (%) Recall (%) F1-score (%)

CNN-based SCNN [12] 69.1 65.1 67.0

DCNN [11] 77.2 64.4 70.2

MCCNN [10] 76.0 65.3 70.2

LSTM-based DLSTM [18] 72.5 71.5 72.0

ASDP-LSTM [20] 74.1 71.8 72.9

Tree-LSTM [37] 77.8 69.6 73.5

ATT-BLSTM [19] 78.4 76.2 77.3

Pretraining-based BERT [29] 77.90 77.43 77.66

BioBERT [31] 81.1 75.3 78.1

CharacterBERT [32] 79.18 80.38 81.70

ChemicalBERT + AGGCN [38] 83.96 81.82 82.88

DESC_MOL [39] 84.69 82.53 83.60

IMSE (ours) 85.63 85.17 85.16

Table 4  Ablation experiment over our proposed model

Bold indicates the highest value of the measured metric in each comparison experiment

Models Precision (%) Recall (%) F1-score (%)

BERT 80.1 75.3 78.1

BERT + Int* 82.79 79.19 80.89

BERT + Ent* 85.04 82.73 83.76

BERT + Int* + Ent* 85.54 83.56 84.47

BERT + Int* + Ent* + MOL 85.63 85.17 85.16
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Then when we add only Entities attention vector, the F1-score increases by 2.79% compared 
with BERT, which indicates that adding the Entities attention information is helpful in deter-
mining the relationship between the drugs. Next, we evaluated the impact of the Interac-
tion attention vector which we proposed. When the Interaction attention vector is added, 
the F1-score increases by 5.66% compared with BERT, reached an F1-score of 83.76%. Then 
we added the Interaction attention vector and Entities attention vector at the same time in 
the fourth experiment, we label this method as ‘BERT + Int* + Ent*’, as can be seen from the 
table, the precision score, recall score and F1-score of this method reached 85.54%, 83.56% 
and 84.47% respectively, it is fully demonstrated that both the information of Interaction 
attention and Entities attention can be well coordinated. In the fifth experiment (BERT + 
Int* + Ent* + MOL), we examine the influence of molecular structure on the model, we add 
molecular structure on the basis of the fourth experiment, the F1-score increases by 0.41% 
compared with the fourth experiment. Experimental results show that this method is effec-
tive, and also got the highest score (85.16%) currently compared to the existing model.

Performance on fivefold cross validation

We used fivefold cross validation to further explore the stability of the experimental 
results and the practicability of our method. As can be seen from Table 5, in the experi-
mental results, the Interaction attention vector we proposed played a strong role in 
promoting the baseline model. For each of the four relationship categories we focused 
on, Interaction attention vector contribute to the performance of the model. Molecular 
structure also performed well in most of the results, but the effect was not as strong as 
Interaction attention vector. Finally, the performance of the model is greatly improved 

Table 5  F1-scores on fivefold cross-validated data set

Bold indicates the highest value of the measured metric in each comparison experiment

Methods Adv. (%) Effect (%) Int (%) Mech. (%)

Fold 1 Only-BERT 79.5 76.7 64.8 82.1

+ Interaction_attention 83.9 77.0 70.3 84.6

+ Int_attention + MOL 82.0 78.2 69.1 83.9

+ All 84.7 79.2 79.2 86.4
Fold 2 Only-BERT 75.5 61.0 67.5 70.1

+ Interaction_attention 80.3 69.9 70.2 77.6

+ Int_attention + MOL 74.3 64.5 69.9 74.2

+ All 81.3 69.7 74.5 80.2
Fold 3 Only-BERT 68.5 72.5 70.3 74.4

+ Interaction_attention 70.2 79.9 69.3 82.1

+ Int_attention + MOL 69.1 74.4 65.5 79.6

+ All 70.1 80.6 72.3 83.6
Fold 4 Only-BERT 73.3 76.6 71.4 74.3

+ Interaction_attention 83.2 75.5 81.0 75.0

+ Int_attention + MOL 76.3 73.3 69.1 74.5

+ All 82.4 78.5 79.5 77.6
Fold 5 Only-BERT 70.3 78.8 74.2 77.6

+Interaction_attention 76.5 82.4 80.8 85.2

+ Int_attention + MOL 77.5 80.4 75.2 79.2

+ All 79.3 85.8 81.3 86.6
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after we add all the useful information, and the experimental results also show that our 
method has strong generalization ability and stability.

Discussion
Error and analysis

In order to ensure the fairness of the results, we only adopt over-sampling and under-
sampling processing for the training set. Although this is effective, the long-tail distri-
bution of the test set itself cannot be solved, which is also a major feature and difficulty 
of biological data. In our test set, the data is very unevenly distributed. So, this was an 
important reason that affected the final results. Then the Interaction attention vector 
is mainly to better extract the information between two entities in a sentence, some 
sentences are very short, which can provide very little information to judge the rela-
tionship. Therefore, the performance can be improved by the Interaction attention 
vector is limited, and it is inevitable that there will be wrong classification results.

In addition, in the process of obtaining drug structures from drug names, we first 
need to derive the molecular formulas of drugs from medical knowledge base. In this 
process, some drugs could not find the corresponding molecular formulas. On the 
other hand, in the process of obtaining molecular structures from SMILES, we got a 
plane structure or wrong information, and the actual molecular structures of drugs 
is three-dimensional, which will cause us to lose a lot of information outside a plane 
structure. All these errors will have a great impact when transferred to the model.

Interpretability

The performance of IMSE benefits from several major factors. (1) Interaction infor-
mation contains key information of drug–drug interaction, and the introduction of 
Interaction attention vector improves the accuracy of features. (2) The introduction 
of entity information can fully extract the local information of entities in the feature 
space, which effectively reduces the interference of other entities to the model. (3) 
The addition of molecular structure effectively improves the richness of the feature 
space and provides information other than text.

Conclusion
In this paper, we propose a DDI extraction model based on BioBERT to improve the 
performance of DDI extraction, termed IMSE. In our model, we use Interaction atten-
tion vector which we proposed to enhance the interaction information in sentences to 
better deal with relationship overlap problem. The molecular structure information 
we add can take advantage of knowledge that cannot be learned in text and can bet-
ter characterize the drug feature space. In addition, we added entity attention vectors 
to enhance the weights around the entities so that the model can better capture the 
information around the drug entities without being distracted by other drugs. Com-
parative experiments on benchmark datasets showed that IMSE had a better predic-
tive performance than existing prediction models, improving DDI identification. The 
performance of the model in the ablation experiment also shows that each part of the 
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model is indispensable, which also provides new ideas for subsequent research, that 
is, we can obtain a better feature representation from the characteristics of the data.

Although our proposed approach exhibits promising performance for DDI extrac-
tion from biomedical literature, there is still some room to improve. In future work, 
we will continue to explore the characteristics of biomedical data and combine it with 
deep learning methods to better solve the problems of biomedical applications.
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