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Introduction
DNA methylation is an epigenetic mark as it contributes to changes in the infor-
mation content of DNA without changing the underlying sequence. The majority 
of DNA methylation in the human genome occurs at cytosine-phosphate-guanine 
(CpG) nucleotides. These have long been considered a repressive mark based on 
early studies of promoters where methylation correlated with transcriptional 
repression [1]. Methylation at transcription factor binding sites has previously 
been thought to correlate with the repression of transcription by either disrupting 
the binding of methylation-sensitive transcription factors or by having no effect 
on methylation-insensitive transcription factor binding [2]. However, recent high 
throughput studies have found that methylation within transcription factor bind-
ing sites can lead to increased or decreased transcription factor binding dependent 
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on the position within the motif [3, 4]. Recent work has shown that the strength 
of the effect of methylation on transcription factor binding affinity varies between 
nucleotides within a single transcription factor motif [3, 4]. It is vital to determine 
the specific functional impact of methylation within transcription factor binding 
sites as aberrant methylation is a hallmark of many human diseases, including can-
cer, schizophrenia, and autism spectrum disorders [5–7]. Methods that can better 
predict these effects on gene transcription can assist in identifying and prioritizing 
potentially harmful variations.

The effect of methylation on the binding of individual proteins has been studied 
in vitro using protein binding microarrays (PBMs) and newer systematic enrichment 
of ligands by exponential enrichment (SELEX) based methods [8–11]. Both PBMs and 
SELEX rely on proteins binding to DNA fragments in vitro and may not recapitulate 
endogenous binding patterns within the genome. A recent study of methylation sen-
sitivity in 542 human transcription factors using a high throughput SELEX method, 
methyl-SELEX, found 23% of transcription factors were sensitive to methylation, 34% 
were enhanced by methylation, and 40% were insensitive to methylation [3]. Compu-
tational methods to analyze methyl-SELEX data, such as Methyl-Spec-Seq, provide 
quantitative information on the magnitude and direction of the predicted effect of 
methylation on transcription factor binding [12]. Additional SELEX-based studies 
have also observed differences in methylation sensitivity between different positions 
in a single motif, and is supported by evidence that some bases within transcrip-
tion factor binding motifs are more correlated with disease compared to others [13, 
14]. However, predictions produced from these methods are limited as they rely on 
in vitro SELEX data and may not reflect binding patterns in a native context. Methods 
to determine the methylation sensitivity of transcription factors in  vivo exist, how-
ever they are experimentally rigorous, or do not directly estimate methylation con-
sequence on transcription factor binding, and are therefore challenging to use for 
broad interpretation [4, 15, 16]. A robust method to study the native context of DNA 
methylation within transcription factor binding sites using in vivo data is still needed 
to more accurately model the role these epigenetic marks play on transcriptional 
regulation.

To address this need, we have adapted SEMpl, a computational genome-wide tran-
scription factor binding affinity prediction method, to incorporate whole genome 
bisulfite-seq (WGBS) data. This allows our predictions to include the effects of DNA 
methylation on binding affinity [17]. SEMpl uses open-source in vivo data to generate 
predictions using transcription factor binding data from ChIP-seq and open chroma-
tin data from DNase-seq for a transcription factor of interest. The results are dis-
played as a SNP effect matrix providing predictions for every potential base change 
in a transcription factor’s motif. Our SNP Effect Matrix pipeline with Methylation 
(SEMplMe) method expands these results by incorporating methylation data from 
WGBS, generating predictions that encompass the magnitude and direction of change 
to transcription factor binding for all 4 nucleotide base pairs, and adds two additional 
nucleotide letters: methylated C (M), and G opposite to a methylated C (W). This 
new tool provides improved specificity to determine which variants lead to disruption 
of transcription factor binding by integrating endogenous functional information on 
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methylation states and transcription factor binding, advancing our ability to interro-
gate and prioritize mutations likely to be associated with human disease.

Methods
Usage/accessibility

SEMplMe is open source and can be downloaded from https:// github. com/ Boyle- Lab/ 
SEMpl Me. Precomputed SEMplMe plots are available for more than 70 transcription 
factors (Additional file 2: Table S1).

SNP effect matrix pipeline with methylation

SEMplMe functions as an extension of our previously published expectation–maximi-
zation method, SEMpl [17]. SEMpl uses an estimation-maximization-like algorithm to 
predict the consequence variation to binding in transcription factor binding sites using 
three data types: chromatin immunoprecipitation followed by deep sequencing (ChIP-
seq) data, endogenous measures of transcription factor binding genome-wide, DNase I 
hypersensitive site (DNase-seq) data, a measure of open chromatin genome-wide where 
transcription factors are known to function; and position weight matrices (PWMs), rep-
resenting previous knowledge of the binding motif for a transcription factor. SEMpl uses 
the kmers generated from a given PWM to generate SNP kmer lists by simulating all 
possible in silico variants along each kmer. These kmers are then aligned to the genome 
in regions of open chromatin so that their analogous ChIP-seq scores can be averaged 
for each kmer locus with a shared nucleotide and motif position (i.e. a C in position 3 
of the motif ). SEMpl used these averaged values to estimate the consequence of all pos-
sible variants in a binding site and outputs a matrix of predictions for each of the four 
nucleotides at each position of a transcription factor’s motif. By including whole genome 
bisulfite sequencing (WGBS) data to the final output of SEMpl, we have expanded the 
interpretation of our algorithm to include the contribution of DNA methylation on 
transcription factor binding (Fig. 1). Starting PWM and cell type used to generate this 
SEM and all other data shown in figures in this paper can be found in Additional file 2: 
Table S2.

In order to evaluate the consequence of DNA methylation in transcription factor bind-
ing sites we first gathered WGBS for each kmer aligned to the genome containing an in 
silico SNP. All data shown was generated using matched cell types for ChIP-seq, DNase-
seq, and WGBS data. As the vast majority of sites in WGBS data methylation are not 
binary, the contribution of the proportion of methylation on binding for C and G SNPs 
at each position within a motif is calculated. Methylation is calculated for each aligned 

Fig. 1 SEM pipeline with methylation predicts the effect of methylation on transcription factor binding 
affinity. A Using SEMpl all kmers with a PWM score under the TFM-P VALUE threshold are generated for 
the given transcription factor [18]. B SEMpl then generates all possible ‘in silico variants’ for each position 
of a transcription factor’s motif. These enumerated kmers are aligned to the genome in regions of open 
chromatin by DNase-seq, and the average ChIP-seq signal is determined for each alignment to generate 
SEMpl predictions for each base individually. SEMplMe then expands on this SEMpl output by adding WGBS 
to divide ChIP-seq signal peaks of C and G into the proportion of their signal affected by DNA methylation 
using a weighted sum. C SEMplMe output is displayed as all 6 nucleotides, including methylated C (M), 
and G opposite to methylated C (W), at every position along the motif. All values are displayed as log 2 and 
normalized to an endogenous binding baseline set to 0 (dark gray line). A scrambled baseline is also included 
(dashed gray line)

(See figure on next page.)

https://github.com/Boyle-Lab/SEMplMe
https://github.com/Boyle-Lab/SEMplMe
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SNP list using the equation: n

k=1
(Mk ∗ Sk)/n

 , where M represents the proportion of 

methylation for an aligned kmer, S represents the ChIP-seq signal for it’s alignment, and 

1 2 3 4 5 6 7 8 9 10 12
Position

0

0.5

1

1.5

2

In
fo

rm
at

io
n 

co
nt

en
t

11

PWM of ATF2

Position around Motif

C
hI

P
−

S
eq

 S
ig

na
l

−50 −25 25 500.
0

0.
2

0.
4

0.
6

Position around Motif

C
hI

P
−

S
eq

 S
ig

na
l

−50 −25 25 500.
0

0.
2

0.
4

0.
6

AGTGACGTGACA
AGTGACGTCACA
AGTGAAGTCACA
AATGAAGTCACA
CATGAAGTCACA
CATGAAGTCAGA
CATGAAGTCTGA
CATGGAGTCTGA
CATCGAGTCTGA

...

C

1 2 3 4 5 6 7 8 9 10 12

−3
−2

−1
0

SNP Effect Matrix of ATF2

Location on ATF2 motif

S
E

M
 S

co
re

A A

A

A

A

A

A A

A

A

A
AT

T

T

T

T T

T

T

T

T

T T

C C

C C C

C

C

C

C

C

C
CG

G

G

G

G

G

G

G
G G

G
G

M

M

M

M

M
M

M M

M

M M

MW

WW

W

WW

W

W

W

W

W

W

11

Position around Motif

C
hI

P
−

S
eq

 S
ig

na
l

−50 −25 25 500.
0

0.
2

0.
4

0.
6

Position around Motif

C
hI

P
−

S
eq

 S
ig

na
l

−50 −25 25 500.
0

0.
2

0.
4

0.
6

Position around Motif

C
hI

P
−

S
eq

 S
ig

na
l

−50 −25 25 500.
0

0.
2

0.
4

0.
6

Position around Motif

C
hI

P
−

S
eq

 S
ig

na
l

−50 −25 25 500.
0

0.
2

0.
4

0.
6

B

A

av
er

ag
e 

b
in

d
in

g
sc

ra
m

b
le

d
 b

ac
kg

ro
u

n
d

AGTGACGTGAMA
AGTGACGTCAMA

...

AGTGACGTGAWA
AGTGACGTCAWA

...

AGTGACGTGACA
AGTGACGTCACA

...

AGTGACGTGAGA
AGTGACGTCAGA

...

AGTGACGTGATA
AGTGACGTCATA

...

AGTGACGTGAAA
AGTGACGTCAAA

...
N11 A N11 T

N11 C N11 G

N11 M N11 W

E
nu

m
er

at
e 

al
l v

al
id

 k
-m

er
s

Generate in silico SNPs

Fig. 1 (See legend on previous page.)



Page 5 of 14Nishizaki and Boyle  BMC Bioinformatics          (2022) 23:317  

n represents the total number of kmers in the list. Therefore, the equation:  
∑

n

k=1
(1− (Mk ∗ Sk))/n

  represents the signal contribution of the non-methylated kmer. 

Using this method, cytosines are divided into methylated and non-methylated compo-
nents for each position within the motif of a transcription factor. Following this, all 6 
nucleotides are included in a SNP effect matrix at each position along the motif of the 
transcription factor and plotted for an easy to visualize model of transcription factor 
binding (Fig. 1C).

SEMplMe is written in C++ , perl and R. In addition to a the matrix file (.me.sem) 
and the pdf of the visualized sem (*_semplot.me.pdf), the output also includes a matrix 
of standard error (.sterr) and a matrix of total ChIP-seq signal (.me.totals). New align-
ment and baseline files are also generated for SEMplMe (.me). A quality control file was 
used, which provides the -log10(P-value) of the average of 100 t-tests from 1000 ran-
domly chosen kmers from the signal files versus the scrambled signal files from SEMpl 
(Additional file 2: Table S1). A threshold of 3.15 was set to report confidence in a SEM 
plot, with runs falling under this threshold highlighted in red.

SEMplMe sequence scoring

Scoring a full sequence with SEMplMe can be done in the same manner as PWMs or 
SEMpl, where the log2 score analogous to the nucleotide of interest at each position is 
added to reflect the predicted binding score of the sequence. This allows predictions to 
be made for motifs carrying more than one variant.

EMSA

Kd values for CEBPB and ATF4 were calculated from a previously published EMSA 
reaction by densiometric scanning by ImageJ and the Excel Solver Package [9, 19, 20]. 
All EMSA scores are represented as a ratio to the unmethylated control.

Correlation with ChIP‑seq and illumina 450 k data

All kmers likely to bind CTCF were recovered from the final iteration of SEMpl. For each 
kmer with at least 50 occurrences, the average ChIP-seq signal and standard error were 
calculated. Correlation cutoffs for SEMplMe were defined as the scrambled baseline for 
the final iteration of SEMpl.

Illumina 450 k microarray M-values are previously published and publically available 
[21]. Microarray probes were mapped to the genome and transcription factor binding to 
each probe loci was determined using the JASPER CORE 2022 predicted transcription 
factor binding site database [22]. 61  bp sequences encompassing the predicted CTCF 
binding sites were scored using CTCF specific matrices from SEMplMe, SEMpl, and 
Methyl-Spec-seq.

Correlation comparisons were completed using the cocor R package using one tailed-
tests and a 0.95 CI [23].
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Results
SEMplMe provides quantitative predictions based on in vivo measures of binding affinity

SEMplMe integrates endogenous functional data encompassing transcription factor 
binding, open chromatin, and DNA methylation to provide a quantitative prediction of 
the effect of methylation on transcription factor binding affinity at every position within 
a binding motif. By including measures of DNA methylation, SEMplMe is able to cal-
culate the relative average transcription factor binding affinity of methylated genomic 
sequence by using a weighted sum of ChIP-seq signal and the proportion of methylation 
at the site from WGBS (Fig. 1). Averaging this signal genome-wide for methylated and 
unmethylated sequence separately allows for the generation of a quantitative prediction 
matrix of the effect methylation has on transcription factor binding affinity (Fig.  1C). 
SEMplMe represents an advancement over currently existing methods as its predictions 
are generated from in vivo functional data, it is generally accessible without additional 
experimental work, and the resulting matrix is both quantitative for a single position and 
across an entire motif.

SEMplMe recapitulates differences in methylation sensitivity between transcription factors

Transcription factor differences in methylation sensitivity were examined by calculat-
ing the absolute difference between methylated and unmethylated bases at each position 
within SEMplMe matrices for previously classified methylation sensitive and insensitive 
transcription factors. Methylation sensitive transcription factors examined here include 
CREB, cMYC, USF, NFkB, E2F, MYC, and ZFX [2, 11, 24, 25]. Methylation insensitive 
transcription factors examined here include SP1, REST, CEBPa, FOXA1, RXRA, and 
ARNT2 [2, 8, 11, 25–27]. As expected, transcription factors previously associated with 
methylation sensitivity show a larger average difference in SEM scores between C and 
M, and G and W nucleotides compared to transcription factors previously defined as 
insensitive (Fig.  2). This pattern is driven by methylation sensitivity across an entire 
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motif, with methylation sensitive transcription factor binding sites containing a larger 
proportion of sensitive loci on average (sensitive = 62%, insensitive 85%, P-value 0.027). 
Altogether, this suggests that prior definitions of methylation sensitivity and insensitivity 
may reflect general trends of transcription factor methylation sensitivity.

DNA methylation drives cell type specific transcription factor binding

DNA methylation is hypothesized to contribute to cell type specific transcription fac-
tor binding by altering the availability of DNA sequence. In support of this, the ChIP-
seq and WGBS cell type used in SEMplMe analysis was found to influence the output 
plot for a transcription factor known to have cell-specific activity. JUN, a transcription 
factor known to be differentially regulated in HepG2 cells, shows high correlation of 
SEMplMe outputs for methylated sites (MW) between H1-hESC and K562 cell lines 
 (R2 = 0.91), and a reduced correlation to HepG2  (R2 = 0.43) (correlation comparison: 
HepG2 v. H1-hESC p-value <  = 0.01, HepG2 v. K562 p-value <  = 0.01, H1-hESC v. K562 
p-value <  = 0.07) (Fig. 3) [28]. This is supported by MethMotif data, in which JUN shows 
many more methylated binding sites, most of which fall into a mid- to highly-methylated 
state in HepG2, as opposed to comparatively few overlapping methylated sites in K562 
and H1-hESC [15]. This pattern of reduced correlation was not observed when looking 
across the entire SEMplMe output, suggesting methylated sites are driving this differ-
ence (Additional file 1: Figure S1). Of note, this pattern is not seen for another transcrip-
tion factor, CEBPB, where the SEMplMe output for methylated sites is highly correlated 
between all cell types examined (K562, IMR-90, HepG2, and GM12878), suggesting that 
not all transcription factors are subject to cell type specificity due to methylation differ-
ences (Additional file 1: Figure S2 Interestingly, SEMpl data without methylation appears 
to be primarily cell type agnostic, providing evidence that methylation plays a meaning-
ful role in cell type specificity for only some transcription factors [17].
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SEMplMe validation using in vitro measures of transcription factor binding affinity

To evaluate SEMplMe on a metric external to ChIP-seq data, our predictions were com-
pared to previously published PBM data, which has been used by previous studies to 
examine the occupancy of individual transcription factors to potential target sequence 
in vitro [8, 9]. SEMplMe predictions were compared to microarray Z-scores data from 
PBMs, which represent transcription factor binding affinity to an individual oligo which 
is either methylated or unmethylated. The best-bound 8-mers for each of the 8 transcrip-
tion factors with both PBM Z-scores and SEMplMe scores were assessed. A modest level 
of agreement was observed between SEMplMe predictions and PBM data for 16 DNA 
sequences across 8 transcription factors (Fig. 4A)  (R2 = 0.67) (CEBPA, CEBPB, CEBPD, 
CREB1, ATF4, JUN, JUND, CEBPG) [9]. This agreement is reduced when using SEMpl 
scores without methylation  (R2 = 0.56), suggesting that the inclusion of methylation in 
our model improves scores for methylated sequences (Fig. 4B) (correlation comparison: 
p-value = 0.33). Discrepancies between SEM predictions and PBM data may be attrib-
uted to differences in in vivo versus in vitro methods of generation.

To further functionally validate SEMplMe, data from in vitro electrophoretic mobility 
shift assays (EMSAs) were utilized to examine our predictions. EMSA data can be used 
to analyze the binding of transcription factors in the presence of variation in a quan-
titative manner by comparing dissociation constants between oligos of interest [Zuo, 
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2017]. Previously published EMSA data was evaluated for two transcription factors, 
ATF4(CREB) and CEBPB. This measure of in vitro binding showed marginal agreement 
with our predictions  (R2 = 0.65) (Fig.  4C) [9]. This observed low agreement is driven 
entirely by CEBPB which has relatively low correlation with our predictions  (R2 = 0.17), 
as opposed to ATF4  (R2 = 0.92). CEBPB has been reported to preferentially bind to 
methylated sequence, thus the discrepancy in predictions has previously been thought 
to be a result of limited genome methylated sequence availability, a necessity for cal-
culating more accurate predictions in SEMplMe [9]. SEMplMe identified comparatively 
few methylated sites throughout the genome, leading to a much higher standard devia-
tion for the effect of methylated sites (Additional file 1: Figure S3). This unavailability of 
methylated sites is consistent with previous data showing methylated CEBPB motifs to 
bind well in vitro, but poorly in vivo [29].

SEMplMe predictions are consistent with previous findings for CTCF

CTCF is a well studied transcription factor previously shown to be methylation sensitive 
[30, 31]. CTCF binding predictions using SEMplMe found the majority of positions to 
be methylation sensitive for both M and W. Notably, a handful of sites had methylated 
sequence scores at or slightly above their unmethylated counterparts, and likely repre-
sent methylation insensitive positions. These results are consistent with CTCF’s role as 
a methylation sensitive transcription factor. As CTCF is widely used in research stud-
ies, its binding to sites containing methylated positions within its motif have been previ-
ously surveyed by a variety of methodologies, including qualitative EMSA, observation 
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of binding following demethylation of cells, and SELEX-based methods [4, 12, 30, 32]. 
When SEMplMe results were compared to measures of binding at individual positions 
within the CTCF motif, a general agreement was observed for the direction of binding 
for all positions predicted to decrease binding affinity (Fig. 5). Though the majority of 
sites identified by previous studies within the CTCF motif were found to be overwhelm-
ingly methylation sensitive, two sites were predicted to lead to increased binding affinity 
when methylated. Though SEMplMe did not identify these positions, one site overlaps 
a SEMplMe position consistent with methylation insensitivity, and the other was found 
to not significantly increase binding by all prior studies [4]. Overall, our predictions are 
consistent with previous studies of CTCF binding direction.

Correlation between the entirety of the CTCF matrices generated by SEMplMe and 
the recently published Methyl-Spec-seq method, which uses in  vitro SELEX to pre-
dict methylation effects on transcription factor binding affinity, was assayed  (R2 = 0.56) 
(Additional file 1: Figure S4)[12]. SEMplMe outperformed Methyl-Spec-seq by perfor-
mance comparison when comparing scores across entire kmers to their average ChIP-
seq signal (SEMplMe  R2 = 0.25, Methyl-Spec-seq  R2 = 0.04, correlation comparison 
p-value <  = 0.01) (Fig.  6A and B). The kmer set used is associated with active CTCF 
binding and includes both methylated and unmethylated sequences. Additionally, 
we compared SEMplMe SEM scores, SEMpl SEM scores without methylation, and 
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Methyl-Spec-seq ePWM scores to in vitro metrics of CTCF protein binding by analyzing 
all motifs corresponding to CTCF, including to 6 methylated and 6 unmethylated oli-
gos, from a previously published Illumina 450 k microarray. In doing so we found SEM-
plMe predictions to have a more robust inverse correlation with methylation occupancy 
(SEMplMe  R2 = 0.176, SEMpl  R2 = 0.04, MethylSpec-seq  R2 = 0.096, correlation com-
parison p-values > 0.132) (Fig. 6C–E) [21]. This is expected, as CTCF is predicted to be 
methylation sensitive along the majority of its motif. Interestingly, though no statistical 
differences in correlation comparisons were noted with this small sample size, both tools 
implementing methylation data outperformed SEMpl without methylation, support-
ing the importance of including measures of methylation in determining transcription 
factor binding disruption in the presence of methylation. Altogether, this provides fur-
ther evidence that predictions of change to transcription factor binding affinity perform 
better when generated from in vivo data, rather than in vitro data such as from SELEX 
methods.

Discussion
SEMplMe is poised to advance our understanding of the effects of methylation on tran-
scription factor binding affinity through its generation of quantitative predictions using 
in vivo functional data. SEMplMe will both improve our ability to predict putative dis-
ease loci affected by aberrant DNA methylation and increase predictions of transcrip-
tion factor binding affinity in general [25]. This is expected to hold true regardless of 
whether reduced methylation in a transcription factor’s motif contributes to its bind-
ing or is caused by its binding [33]. The nucleotide W was included to capture not just 
position dependent, but stand dependent methylation, as strand specificity due to hemi-
methylation has previously been found to influence transcription factor binding [12]. 
This is likely driven by changes in DNA structure.

SEMplMe has similar limitations to its predecessor SEMpl, such as a dependence on 
available ChIP-seq, DNase-seq, and WGBS data. It is further restricted by the limited 
number of methylated sites in the genome available for use in generating models of bind-
ing. In instances where few sequence specific sites also contain methylation, our meas-
ure of standard deviation increases considerably. Though the low confidence in these 
sites can be visualized by error bars, predictions of methylation at these loci are limited. 
Cell type should be carefully considered before running SEMplMe for optimal predic-
tions as cell type specificity contributes to the final SEMplMe plot, and methylation sen-
sitivity has been previously found to be paralog specific [13]. Additional cell type specific 
factors such as transcription factor co-binding may also affect the final SEMplMe plot as 
seen for MYC in SEMpl, though is expected to be rare due to the genome-wide nature 
of the predictions [17]. Starting PWMs should also be carefully considered for transcrip-
tion factors known to recognize different methylated and unmethylated motifs [8].

The inclusion of CpG methylation provides additional information to help fully under-
stand context-specific transcription factor binding. However, the addition of more 
nuanced molecular mechanisms that contribute to transcription factor binding are likely 
to further improve our predictions. This includes additional types of DNA methylation, 
such as hydroxymethylation and nonCpG methylation, as well as measures of structural 
changes to the genome [10, 13, 34–36].
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Conclusions
DNA methylation is a key epigenetic mark known to act in a regulatory capacity, 
allowing transcription factors to bind in a cell-type specific manner. Counter to the 
idea that all methylation is able to disrupt transcription factor binding, recent stud-
ies have revealed that certain methylated loci impact binding more than others. Pre-
dicting the locations of these methylation sensitive loci and quantifying the effect of 
methylation on transcription factor binding affinity is challenging. Here we introduce 
an expansion to our previously released software SEMpl, called SEMplMe, which 
integrates predictions of the effect of cytosine methylation on transcription factor 
binding affinity based on WGBS data. These predictions agree with in  vitro data of 
transcription factor binding, are cell-type specific, and show a general agreement 
with data from transcription factors previously annotated as methylation sensitive 
and insensitive.

The improved predictions provided by SEMplMe will contribute to a better under-
standing of the key positions within transcription factor binding sites affected by 
DNA methylation. These predictions are accessible and can be generated without 
undertaking methylation specific binding assays. This advancement is central to 
improving our ability to prioritize mutations associated with aberrant methylation 
contributing to human disease.
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