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Introduction
Tea, produced from the dried leaves of tea plant, Camellia sinensis, is one of the most 
widely consumed drink in the world, which has large economic, medicinal and cultural 
significance [1]. Many studies demonstrated that the characteristic secondary metabo-
lites in tea leaves such as polyphenols, caffeine, theanine, vitamins, have numerous 
health and medical benefits for humans [2, 3]. Plant microRNAs (miRNAs) are highly 
conserved and play an important role in gene expression regulation by targeting specific 
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mRNA [4]. Furthermore, it is proven that miRNAs are involved in the development pro-
cedures, stress responses or biosynthesis of the secondary metabolites in Camellia sin-
ensis var.assamica (CSA) [5, 6]. Thus, the identification of CSA miRNAs can not only 
improve the understanding of miRNA targeted gene regulation but also the evolution of 
miRNAs.

Although experiment methods to identifying CSA miRNA-target have high accu-
racy [7], they may suffer from time-consuming, laborious and expensive. As a result, it 
is necessary to develop computational methods for predicting miRNA-target associa-
tion. Machine learning or deep learning-based methods have been generally adopted to 
solve various association pair prediction problems in biology. For example, many clas-
sification algorithms regard the associations as samples firstly, and the feature vectors of 
the edges are used to represent these samples. Then the classifiers are trained to recog-
nize the real-existing associations in the graph [8, 9]. Nevertheless, the above machine 
learning methods are heavily dependent on the negative data sampling and the feature 
extraction. Therefore, more advanced machine learning methods, such as label propaga-
tion [10], regularized least squares [11], semi-supervised graph cut [12], sparse subspace 
learning [13], matrix factorization [14] and matrix completion [15, 16], are introduced 
to solve these kinds of problems. Matrix completion and matrix factorization methods 
are popular in community due to their flexibility in aggregating apriori information [17]. 
However, deploying them on high-dimensionality data is challenging because of the high 
computational complexity of matrix operations.

Deep learning methods have recently shown excellent performance in many fields, 
such as perception, planning, localization, and control [18]. The excellent capabilities 
of deep learning methods for learning representations from the complicated data make 
it extremely suitable for predicting association pairs in biology. Graph neural network 
(GNN) uses different node neighborhood aggregating schemes, representing a signifi-
cant progress in directly processing network/graph structure data [19]. Each node fea-
ture can be updated by aggregating features of its neighboring nodes during the layer 
propagation and the node embedding will naturally capture the graph structure. GNNs 
have been extensively applied in multifarious problems, achieving superior perfor-
mance in biological tasks, such as disease-gene association identification [20, 21], drug-
drug interaction predictions [22, 23], miRNA-disease association predictions [24, 25], 
etc. As an extension of convolutional neural network for processing graph data, graph 
convolution network (GCN) [26], an important branch of GNN, has achieved excellent 
performance in different tasks. It is an end-to-end architecture and captures the graph 
structural information through messages passed between graph nodes, thereby retains 
explainability. In recent years, it shows superior performances in biological network 
analysis [27, 28].

In this paper, we developed a graph convolutional network model (MTAGCN) for 
predicting CSA miRNA-target associations. At first, we constructed heterogeneous 
networks by exploiting the CSA miRNA-target associations, miRNA-miRNA simi-
larity matrix and target-target similarity matrix. Next, the graph convolution opera-
tion was conducted on the heterogeneous network to learn CSA miRNAs and targets 
embeddings. Considering that the embeddings from different convolution layers repre-
sent the proximity of nodes in the network at different levels [29], we introduced the 
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attention mechanism [30] to combine useful neighborhoods representation adaptively 
and dynamically. Finally, we defined a score function which based on the integrated 
embedding, giving predictive scores for unobserved miRNA-target associations. Com-
prehensive experiment results on two tasks, i.e. the balanced task and the unbalanced 
task, showed that our proposed MTAGCN model had a better performance than five 
machine learning and three existing state-of-the-art methods.

In summary, our main contributions are as follows:

• We constructed the heterogeneous network to effectively integrate rich biological 
information, including CSA miRNA-target associations, CSA miRNA information 
and CSA target information.

• We proposed MTAGCN, a novel GCN-based method for predicting CSA miRNA-
target associations. To our knowledge, this is the first work to adapt deep learning 
method for CSA miRNA-target association prediction.

• We designed the attention mechanism to integrate the embeddings information 
from multiple convolutional layers, leading to more useful representation from miR-
NAs and targets.

Methods and materials
Data

The data we used in this study was collected from the 2020 version of the CSA miRNA-
target associations released in the work of Suo et  al. [7]. This dataset contains 5264 
relationships between CSA miRNAs and targets which include 356 miRNAs and 4041 
targets. For the lack of some miRNA sequences and target information, we removed 
the relationships between miRNAs and targets, including 66 miRNAs and 1166 targets. 
Therefore, the resulting dataset we obtained contains 3745 miRNA-target pairs, includ-
ing 290 different types of CSA miRNAs and 2876 targets. Then, we acquired the CSA 
target gene locations from http:// teacon. wchoda. com, a database of gene co-expression 
network for CSA plant [31]. According to the CSA target gene locations, we extracted 
target sequences from CSA whole genome data in the Tea Plant Information Archive 
[32]. The details are shown in Table 1.

To perform the five-fold cross validation, we developed a balanced and an unbalanced 
dataset, respectively, to evaluate the CSA miRNA-target prediction models. In the train-
ing dataset, four-fifths of the positive samples and all the negative samples are used. As 
for test set in the unbalanced task, we use the remaining one-fifth of the positive samples 
(749 positive samples) and draw 20 times number of positive samples as negative sam-
ples (14,980 negative samples). Then the class of negative data vastly outnumbers that 

Table 1 Summary of the statistics of the miRNA-target associations

Original, the original data from the work of Suo et al., Used, the data after filtering

Data MiRNA Target Association

Original 356 4041 5264

Used 290 2876 3745

http://teacon.wchoda.com
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of positive data, causing a class imbalance problem (Table 2). As for test set in the bal-
anced task, we used the same number of negative samples as positive samples (Table 2). 
In addition, in order to acquire CSA miRNA similarities and target similarities, Kmer 
[33], an algorithm based on nucleic acid composition, is used to transform the CSA tar-
gets sequences and miRNAs sequences into feature vectors.

Construction of heterogeneous network

Construction of similarity network

As mentioned above, we used Kmer to obtain CSA miRNA and target features. For one 
miRNA or target binary feature vector, each element means whether the feature descrip-
tor is present or absent. In this work, we adopted the Jaccard index to calculate the 
miRNA-miRNA and target-target similarities. Jaccard index [27] is a prevailing measure 
for calculating similarity based on these features. Thus, we further constructed miRNA 
similarity matrix and target similarity matrix. The Jaccard index measure between two 
vectors xi and xj is defined as follows:

where 
∣

∣xi ∩ xj
∣

∣ denotes the number of features where both elements in xi and the related 
ones of xj equal to 1, and xi ∪ xj  denotes the numbers of features where either the ele-
ments of xi or the related ones of xj equal to 1.

Herein, we also considered other similarity calculation measures to construct similar-
ity network, including cosine similarity, Gaussian kernel-based similarity, and Pearson 
similarity. These measures are widely used in constructing similarity network and have 
achieved great performance in many biological prediction tasks [22, 34, 35].

Heterogeneous network for CSA miRNAs and targets

The heterogeneous network is constructed based on miRNA-target associations, 
miRNA-miRNA similarity and target-target similarity.

The miRNA-target associations are denoted as an adjacent matrix A ∈ {0, 1}M∗N , M 
and N represent the number of miRNAs and targets, respectively. If a CSA miRNA ri is 
associated with a target tj , Aij = 1; otherwise Aij = 0. The miRNA-miRNA similarity net-
work is derived from the CSA miRNA similarity matrix Sm with Smij  as its (i,j)th element. 
And the target-target similarity network is derived from the CSA target similarity net-
work Sn with Snij as its (i, j)th element. Furthermore, we adapt ∼ Sm = D

− 1
2

m SmD
− 1

2
m  and 

∼ Sn = D
− 1

2
n SnD

− 1
2

n  to normalize the similarity matrices, where Dm = diag

(

∑

j

Smij

)

 and 

(1)Srij =

∣

∣xi ∩ xj
∣

∣

∣

∣xi ∪ xj
∣

∣

Table 2 Summary of the samples on the balanced and unbalanced data

All, all miRNA‑target pairs except for the positive samples

Data Training Test

Positive Negative Positive Negative

Balanced 2996 All 749 749

Unbalanced 2996 All 749 14,980
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Dn = diag

(

∑

j

Snij

)

 . Finally, the heterogeneous network defined by the adjacency matrix 

comes to be

Graph convolution

Regarding known associations between miRNAs and targets as a bipartite graph, the 
prediction problem in this paper can be defined as a semi-supervised link prediction 
task on such a graph.

We assume that a bipartite graph G = (ν, ε) with ν = (νm,νt) including nm miRNA nodes 
and nt target nodes, which have numerical features Xm =

[

x1m, x
2
m, . . . , x

nm
m

]T
∈ Rnm∗M 

and Xt =
[

x1t , x
2
t , . . . , x

nt
t

]T
∈ Rnt∗N , respectively. Supposing that partial links (denoted 

as ε in G) are given labels, our goal is to predict whether there are any potential links 
between miRNA and target that have not been determined previously. Thus, how best 
to effectively utilize both graph topology and the attribute information of the nodes is a 
problem we need to address.

There have recently been some attempts to use deep learning techniques to graph-
based data analyses. A graph convolutional network (GCN) is proposed in Kipf et  al. 
[26]. Graph convolution is defined on graph as the multiplication of an input signal with 
a filter gθ in the Fourier domain [19]. Given an adjacent matrix A with its Laplacian L: 
D-A, and attributes of each node on graph (denoted as s), spectral graph convolution 
tries to decompose s on the spectral components. We assume that L can be decom-
posed by L = U�UT , U is eigenvector matrix and Λ is the diagonal matrix. Hence, 
gθ *s = UgθU

T s is a graph Fourier transform of UTs . Defferrard used a truncated expan-
sion in terms of Chebyshev polynomials [36]Tk(s) up to Kth order, approximating the 
spectral filter in order to avoid the issue of computationally costly eigende-composition 
of L

where θ ′ is a vector about Chebyshev coefficients and Tk is the Chebyshev polynomials. 
A further research simplified this definition by approximating the largest eigenvalue of L 
by Formula (4) [26]. The convolution operator is

Prediction framework of the proposed MTAGCN

The workflow of our model is shown in Fig. 1. Our proposed MATGCN model con-
sists of three parts, i.e., similarity network integration, encoder construction and 
decoder construction. We integrate similarity networks by combining rich biologi-
cal information to construct the heterogeneous network. And the encoder is a GCN 

(2)AH =

[

∼ Sm A

AT ∼ Sn

]

(3)gθ *s ≈

K
∑

k=0

θ ′kTk(LN )s

(4)gθ *s = θ

(

I+ D− 1
2 AD− 1

2

)

s
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model with layer attention mechanism, capturing network structure information 
using GCN. We design a decoder, a fully connected layer network, to transform fea-
tures into the original space.

For graph convolution, we adopted the simplified definition. As mentioned above, 
the prediction of associations between CSA miRNAs and targets can be considered 
as a semi-supervised link prediction problem. But current GCN-based approaches 
tackle node classification problem on homogeneous network and are not applicable to 
the issue involving prediction of associations. Thus, we extend the current graph con-
volution idea to solve link prediction problem defined on heterogeneous, bipartite, 
attributed networks. For this goal, we proposed the GCN-based framework called 
MTAGCN to solve the novel prediction problem. The Algorithm 1 shows the detailed 
training steps of the MTAGCN for predicting CSA miRNA-target association.

GCN is a multilayer connected neural network and its propagation rule is defined 
as follows:

where σ is an adjustable activation function, D is the diagonal degree matrix, A is the 
adjacency matrix, H (l) is the nodes embedding in the lth layer and W (l) is the layer-wise 
trainable weight.

For constructing the encoder of MTAGCN, we consider how to fully use the CSA 
miRNA-miRNA similarity network, the CSA target-target similarity network and the 
miRNA-target associations through graph convolution network on the heterogeneous 
graph AH . Specifically, we set the input graph G as

(5)H (l+1) = σ

(

D− 1
2AD− 1

2H (l)W (l)
)

= f
(

H (l),G
)

(6)D = diag





�

j

Gij





Fig. 1 The workflow of MTAGCN for CSA miRNA-target association prediction
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where μ is a penalty factor that controls the contribution of the similarity in MTAGCN’s 
propagation process,Sm is the CSA miRNA-miRNA similarity matrix and Sn is the tar-
get-target similarity matrix. To initialize embeddings, we introduce graph convolution 
into the latent factor model in the light of the nature ‘miRNA-target’ associations and 
the embedding matrix is reconstructed as

with the above setting, the MTAGCN encoder for first layer can be defined as

where H (1) ∈ R(M+N )∗k denotes the first-layer node embeddings in the heterogeneous 
matrix AH , k is the embedding dimensionality and W (0) ∈ R(M+N )∗k is the trainable 
weight matrix of the first-layer. The MTAGCN encoders for subsequent layers follow 
the Formula (5) and G is defined in Formula (7). Herein, after L iteration, L k-dimen-
sional CSA miRNA and target embeddings can be obtained. Furthermore, we introduce 
SELU (scaled exponential linear unit) [37] as the activation function used in MTAGCN 
graph convolution layers to accelerate learning procedure and enhance generalization 
performance.

Different layers of the embeddings capture different structural information. Such as, the 
first layer obtains direct edge information and other layers obtain the multi-hop neighbor 
information by iteratively updating the embeddings [38, 39]. Considering that different 
embeddings in different layers have various contributions, we introduce a self-attention 
mechanism, which adaptively combines embeddings and harvests final embeddings of CSA 

miRNAs and targets as 
[

HI

HG

]

=
∑

alH
l , where HI ∈ RM∗k is the final embeddings of 

miRNAs,HG ∈ RN∗k is the final embeddings of targets, al is auto-learned by a single-layer 
feed-forward network.

To reconstruct adjacency matrix for CSA miRNA-target associations, a bilinear decoder 
A′ = f(HI ,HG) is built as follows:

where W ′ ∈ Rk∗k is the trainable matrix. We denoted A′

ij as the predicted scores of the 
CSA miRNA-target association, which is given by corresponding (i, j)th entry of A′.

(7)G =

[

µ ∼ Sm A

AT µ ∼ St

]

(8)H (0) =

[

0 A

AT 0

]

(9)H (1) = σ

(

D− 1
2GD− 1

2H (0)W (0)
)

(10)A′ = sigmoid
(

HIW
′HT

G

)
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Optimization

In the dataset with M CSA miRNAs and N targets, the miRNA-target association pairs 
are taken as the set of all positive association pairs γ+ and other pairs as the set of nega-
tive pairs γ− . Although it is a binary classification problem to differentiate two types 
of miRNA-target pairs, the number of negative miRNA–target pairs are much higher 
than that of the positive pairs. Herein, MTAGCN learns parameter by the loss function 
(weighted cross-entropy):

where (i, j) is the instance for CSA miRNA ri and target tj, � =
|γ−|
|γ+|

 , 
∣

∣γ+
∣

∣ and 
∣

∣γ−
∣

∣ denote 

the corresponding pairs. The balance factor λ emphasizes the known associations and 
decreases the impact of data imbalance.

The Xaiver initialization method [40] is used to randomly initialize all trainable weight 
matrices. Then, as is shown in the 9 rows of Algorithm 1, we use the Adam optimizer 
[41] for the optimization. In order to balance the training speed and the experimental 
result, we also use a simple cycle learning rate [42] during the optimization, that is mak-
ing a change from 0.01 to 0.1. Furthermore, we introduce fine-grained edge dropout [43] 

(11)loss = −
1

M ∗ N



�∗
�

(i,j)∈γ+

logA′
ij +

�

(i,j)∈γ−

log
�

1− A′
ij

�
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and coarse-grained node dropout [44] in the graph convolution layers to prevent over-
fitting. The fine-grained edge dropout is applied to convolution layers and dense layers, 
randomly drops out edges. And the coarse-grained node dropout can efficiently enforce 
dropout at the node level.

Negative sampling

Recent arts usually focus on positive sampling, while the strategy for negative sampling 
is left insufficiently explored. However, many studies theoretically proved that negative 
sampling is important as positive sampling in determining the optimization objective 
and the resulted variance [45]. Hence, negative sampling has wide application in many 
fields for its simplicity and efficiency, such as natural language processing [46], computer 
vision [47], recommender system [48] and graph embedding [49]. Inspired by previous 
study [50], we adopted three strategies of negative sampling, including random negative 
sampling, sampling by CSA miRNA (SCM) and sampling by CSA target (SCT).

For random negative sampling, the negative samples were generated by randomly 
drawing from the total negative samples. Furthermore, we proposed two negative sam-
pling methods, SCM and SCT. The two methods are similar in some ways and the details 
are shown in Algorithm  2. For SCM/SCT, we first computed all numbers of positive 
sample based on the per miRNA/target. Then the negative sample was drawn based on 
the corresponding miRNA/target. For the unbalanced task, we executed the SCM/SCT 
in a loop to get enough negative samples. Compared with the random negative sampling 
without regularity, the other two sampling methods can be based on one CSA miRNA or 
target. It is worth pointing out that SCM/SCT can ensure that every miRNA/target be 
sampled, greatly increasing the sampling range of negative samples. In the following, we 
will compare the above sampling strategies.

Results and discussions
In this section, we briefly introduced the experimental setup. Next, we carried out to 
evaluate the performance of the proposed MTAGCN model and the effect of layer atten-
tion mechanism, then demonstrated the performance of our model by comparing with 
five machine learning methods and three existing link/association prediction methods 
on balanced and unbalanced tasks (Table 2), respectively.



Page 10 of 18Feng et al. BMC Bioinformatics          (2022) 23:271 

Experimental setting

To evaluate the effectiveness of our model, we performed five-fold cross validation on 
the two tasks. We randomly divided known miRNA-target associations into five sub-
sets with equal size. For five-fold cross-validation, we randomly used the 80% known 
miRNA-target associations for training and the remaining 20% for test. We employed 
the AUPR (area under precision-recall curve) and the AUC (area under ROC curve) as 
primary metrics during cross validation which are widely used for pair-wise link pre-
dictions [51]. Besides, we also calculated other metrics, i.e. recall, specificity, precision, 
ACC and F1-score.

We set the embeddings dimensionality k as 64 by conducting the parameter sensitivity 
analysis. The layer number L, the initial learning rate lr, the coarse-grained node dropout 
α and the fine-grained edge dropout β, are respectively set to 3, 0.01, 0.6 and 0.6. In addi-
tion, the total training epochs of MTAGCN γ was set to 500, and the penalty factor μ 
was set to 0.06. Our experiment code was implanted on the open-source machine learn-
ing framework Tensorflow. All experiments were conducted on Ubuntu operating 20.04 
system with a NVDIA GeForce GTX3090 GPU and 32G memory.

The influence of different heterogeneous networks

MTAGCN takes advantage of the CSA miRNA-target heterogeneous network to con-
struct the model. And we built the heterogeneous network by aggregating miRNA-
miRNA similarities, target-target similarities and known miRNA-target associations. 
Since we took into account four similarity measures, MTAGCN could be trained on var-
ious heterogeneous networks, which may have a certain effect on the predictive ability.

MTAGCN models based on heterogeneous networks with different miRNA-miRNA 
and target-target similarities were evaluated by five-fold cross validation, and Table  3 
shows the corresponding results. The Jaccard index achieved slightly better performance 
than the other similarity measures we used. And these results reflected that our model 
is robust. Based on the analysis, we ultimately employed Jaccard index to calculate CSA 
target-target similarity and CSA miRNA-miRNA similarity. In the following study, 
the heterogenous network was construct by fusing two similarity networks and CSA 
miRNA-target associations.

Analysis of negative sampling

As mentioned above, we adopted three negative sampling strategies motivated by previ-
ous studies. We tested our model on these sampling strategies and then discussed how 
they influence the performances of MTAGCN. Table 4 shows that SCT achieves better 

Table 3 Performances of MTAGCN based on different similarity measures

The maximum value of each metric is bold

Measure AUPR AUC F1 Accuracy Recall Specificity Precision

Jaccard 0.9207 0.8756 0.8555 0.8669 0.7886 0.9453 0.9356
Cosine 0.8966 0.8805 0.8011 0.8212 0.7202 0.9222 0.9028

Pearson 0.8908 0.8699 0.7880 0.8123 0.7020 0.9226 0.9022

Gaussian 0.8360 0.7666 0.6928 0.7475 0.5733 0.9218 0.8788



Page 11 of 18Feng et al. BMC Bioinformatics          (2022) 23:271  

results than both SCM and random negative sampling methods. That is maybe due to 
the number of targets is much more than that of miRNAs, resulting in a larger sampling 
range and reducing the sampling imbalance. To this end, we performed SCT strategy, 
setting the ratio of positive and negative samples to a rate of 1:1 (balanced task) and 1:20 
(unbalanced task) in the follow-up test sets.

Results of MTAGCN

To develop the MTAGCN, we used the embeddings for diverse layers to construct mod-
els which denoted as MTAGCN-L1, MTAGCN-L2 and MTAGCN-L3. Table  5 shows 
the performance of the above models using five-fold cross validation. MTAGCN-L1 and 
MTAGCN-L2 performed better than MTAGCN-L3, showing that the lower layer cap-
tures more information than the higher layer because of the over-smoothing. However, 
MTAGCN that combines the embeddings for all three layers produced the best results 
on the balanced task.

The lth layer of MTAGCN captures the lth-order proximity value between nodes, and 
the attention weights represent the relative contribution of the corresponding convo-
lution layers. We implemented 20 runs of 5-cv, and the Fig.  2 visualizes the attention 
weights of diverse convolution layers. Different convolution layers have diverse weights, 
and that of the lower layer is greater than those of the higher layers, revealing that the 
lower-order proximity is of more important than the higher. Therefore, it also helps to 
illustrate the performance of MTAGCN-L1, MTAGCN-L2, MTAGCN-L3 (Table 5).

Furthermore, we considered MTAGCN-AVE and MTAGCN-CON, which integrate 
embeddings from different convolution layers. MTAGCN-AVE adopts the average of 
weights for different embeddings. As to MTAGCN-CON, we stack the embeddings 
for three layers directly. In Table 5, the results indicate that the MTAGCN with atten-
tion mechanism achieved more encouraging performance than MTAGCN-AVE and 

Table 4 Performances of MTAGCN based on different negative sampling strategies on the balanced 
task

The maximum value of each metric is bold. SCT, sampling by CSA target; Random, random negative sampling; SCM, 
sampling by CSA miRNA

Sampling AUPR AUC F1 Accuracy Recall Specificity Precision

SCT 0.9207 0.8756 0.8555 0.8669 0.7886 0.9453 0.9356
Random 0.8945 0.8824 0.7893 0.8110 0.7081 0.9140 0.8919

SCM 0.8914 0.8502 0.8332 0.8400 0.8003 0.8796 0.8695

Table 5 Performances of MTAGCN based on different embeddings for the balanced task

The maximum value of each metric is bold

Performance AUPR AUC F1 Accuracy Recall Specificity Precision

Models

 MTAGCN 0.9207 0.8756 0.8555 0.8669 0.7886 0.9453 0.9356

 MTAGCN-AVE 0.9134 0.8695 0.8208 0.8331 0.7648 0.9015 0.8863

 MTAGCN-CON 0.9166 0.8657 0.8117 0.8348 0.7148 0.9549 0.9416
 MTAGCN-L1 0.9052 0.8516 0.8347 0.8498 0.7583 0.9413 0.9284

 MTAGCN-L2 0.8638 0.8288 0.7884 0.8084 0.7143 0.9025 0.8799

 MTAGCN-L3 0.8499 0.8274 0.7409 0.7696 0.6617 0.8774 0.8438
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MTAGCN-CON. Additional file 1: Table S1 shows the results under unbalanced task, 
from which we can obtain similar conclusions.

Comparison with the machine learning methods

To investigate the performance of our proposed MTAGCN model for CSA miRNA-
target association prediction, we compared it with some classic machine learning 
algorithms, including random forest (RF), extremely randomized tree (ERT), decision 
tree (DT), Gaussian naïve Bayes (GNBS), deep neural network (DNN). The results for 
the above machine learning models on the balanced and unbalanced task are shown 
in Fig. 3.

According to the results, MTAGCN outperforms all classic machine learning meth-
ods, strikingly for the balanced task in Fig. 3 (A). As to the unbalanced task, the accu-
racy and the specificity of the MTAGCN are lower than most of the classic machine 
learning models, but the primary metrics AUPR and AUC are higher than these mod-
els. It is believed that both the accuracy and specificity are threshold-based metrics, 
which are greatly affected by data imbalance [52]. Overall, MTAGCN has a better 
performance than the methods used. These classic machine methods all have a low 
AUPR, F1, and recall, which means the proposed model produces more robust per-
formances across two tasks.

Comparison with the state‑of‑the‑art methods

As mentioned before, there has few existing methods developed specifically to 
solve CSA miRNA-target association prediction problem. Therefore, we compared 
MTAGCN with three state-of-the-art approaches proposed to address other associa-
tion prediction tasks in the computational biology.

Fig. 2 The attention weights of diverse convolution layers in MTAGCN
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• GCMDR [53] constructed a graph convolutional network based model to identify 
miRNA-drug resistance relationships.

• GATMDA [54] proposed a graph attention networks model with inductive matrix 
completion to predict human microbe-disease associations.

• GCNMDA [55] deployed a conditional random field on the graph convolution net-
work to predict human microbe-drug associations.

We compared them with our proposed model under the same experimental condi-
tions, including balanced and unbalanced tasks. The results are shown in Fig. 4. We can 
observe that among all the methods under the balanced task in Fig.  4 (A), MTAGCN 
achieves the best performance. For the unbalanced task, although GCMDR, GCNMDA 
have slightly higher accuracy and specificity values than MTAGCN, overall, MTAGCN 
has better performance on the other metrics in Fig. 4 (B). As mentioned above, accuracy 
and specificity are greatly affected by data imbalance. In addition, MTAGCN outper-
formed all compared deep-learning methods in the most evaluation metrics. Further-
more, we would explain the reason why GCMDR obtained such low F1, recall and 
precision, finding that predicted scores of the true positive samples are almost close to 
0. It is believed that the robustness of the GCMDR model is not good for CSA miRNA-
target prediction problem.

Parameter sensitivity

There are several important parameters influence our model performance, such as the 
coarse-grained node dropout rate α, fine-grained edge dropout rate β, the embedding 
dimensionality k and the total training epoch T. In order to assess the parameter sen-
sitivity, we evaluated the influences using five-fold CV for all parameters based on bal-
anced task. The node dropout rate α plays an important role in our model. We ranged α 

Fig. 3 Performance comparison between MTAGCN and five types of classic machine learning methods on 
(A) the balanced task and (B) the unbalanced task, including RF (random forest), ERT (extremely randomized 
tree), DT (decision tree), GNBs (Gaussian naïve Bayes), DNN (deep neural network). F1, Acc, Rec, Spe and Pre 
represent the F1-score, accuracy, recall, specificity and precision, respectively
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from 0.1 to 0.6 with a step value of 0.1. As shown in Fig. 5, we can achieve the best per-
formance when α = 0.6 and a small value of α is not good for the model performance. β 
is the regular dropout rate of the edge. We evaluated the performance of model by vary-
ing β from 0.1 to 0.6 with a step of 0.1. From Fig. 5, we could conclude that this param-
eter has a relatively slight influence on our model performance, which indicates that our 
model is robust against the regular dropout rate β. In addition, we used k to control the 
dimensionality of embeddings. In our experiment, we varied k from the range of {8, 16, 
32, 64, 128, 256}. It can be observed that the best performance is achieved when k is 64 

Fig. 4 Performance comparison between MTAGCN and the state-of-the-art methods on (A) the balanced 
task and (B) the unbalanced task. F1, Acc, Rec, Spe and Pre represent the F1-score, accuracy, recall, specificity 
and precision, respectively

Fig. 5 Parameter sensitivity under balanced task across node dropout (α), adjdp dropout (β), embedding 
dimensionality (k) and total training epoch (T). F1, Acc, Rec, Spe and Pre represent the F1-score, accuracy, 
recall, specificity and precision, respectively
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and the performance decreases if the value of k further increases in the Fig. 5. Lastly, 
we also considered the influence of total training epoch T. Results in Fig. 5 show that, 
our model produces the robust performances to the training epoch, which first slightly 
increases and then decreases, with epoch = 500 achieving the best performance.

Case study

To verify the performance of the proposed model on CSA miRNA-target predic-
tion task, we conducted case studies for CSA miRNA associated with targets. csn-
MIR156j_5p is a conserved miRNA in the leaf and root degradomes of CSA, which plays 
an important role in organ/tissue-specific physiological and developmental process [7]. 
It has high expression levels with the functions of photosynthesis and transmembrane 
transport, regulating target CSA019508.1 and CSA015924.1 respectively. Some stud-
ies also proved that this miRNA could bind to the target CSA018458.1 to inhibit the 
secretion of resistance proteins [56]. csn-MIR319e_5p is a miRNA that influences the 
ATPase activity and ATP metabolic process related gene expression. For example, it can 
combine with the target TEA00633.1 and TEA000574.1 to reduce CSA respiration [31]. 
csn-MIR390b_3p is a conserved miRNA that relates to the structural constituent ribo-
some and oxygen-containing compound. Recent studies show that there is a close rela-
tionship between this miRNA and the CSA photosynthesis when targeting CSA024193.1 
and CSA016339.1 [56]. However, huge challenges remain to reveal the mechanism of 
miRNA because of its functional complexity. Table 6 lists the results of the three case 
studies. It is obvious that they all show superior performances, demonstrating that the 
proposed MTAGCN model is capable of predicting the undiscovered potential miRNA-
target associations for CSA miRNAs and targets.

Conclusion
In this paper, we proposed a novel deep learning framework, named MTAGCN, based 
on graph convolution network with layer attention for CSA miRNA-target association 
prediction. Compared with existing methods utilizing the topological graphs, MTAGCN 
integrates the graph information of the heterogeneous network built from CSA miRNA-
target associations, CSA miRNA-miRNA similarity network and CSA target-target 
similarity network. Furthermore, MTAGCN adaptively combines embeddings at diverse 
convolution layers. Extensive experimental results demonstrate that MTAGCN outper-
forms the existing link/association prediction methods in predicting CSA miRNA-target 
associations.

However, although our model has good prediction performance, there is still room 
to enhance MTAGCN through further refinement. Due to the noise in the features 
extracted from similarity networks, our model is far from perfect, and the prediction 

Table 6 The summary of case studies for csn-MIR156j_5p, csn-MIR319e_5p and csn-miR390b_3p

CSA miRNA AUPR AUC F1 Accuracy Recall Specificity Precision

csn-MIR156j_5p 0.95536 0.9999 0.8333 0.9993 0.8333 0.9997 0.8333

csn-MIR319e_5p 0.95536 0.9999 0.7692 0.9990 0.8333 0.9993 0.7143

csn-miR390b_3p 0.96621 0.9998 0.8333 0.9986 0.9091 0.9990 0.7692
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results can be further improved. As a fast-growing research field, graph construction 
and multi-source feature fusion methods are boosting the model performance. For 
later versions of MTAGCN, we aim to further work closely with other study groups and 
develop the model on more experimentally verified data about CSA miRNA-target link 
associations.
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