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Abstract 

Background: Here propose a computer-aided diagnosis (CAD) system to differentiate 
COVID-19 (the coronavirus disease of 2019) patients from normal cases, as well as to 
perform infection region segmentation along with infection severity estimation using 
computed tomography (CT) images. The developed system facilitates timely admin-
istration of appropriate treatment by identifying the disease stage without reliance 
on medical professionals. So far, this developed model gives the most accurate, fully 
automatic COVID-19 real-time CAD framework.

Results: The CT image dataset of COVID-19 and non-COVID-19 individuals were 
subjected to conventional ML stages to perform binary classification. In the feature 
extraction stage, SIFT, SURF, ORB image descriptors and bag of features technique were 
implemented for the appropriate differentiation of chest CT regions affected with 
COVID-19 from normal cases. This is the first work introducing this concept for COVID-
19 diagnosis application. The preferred diverse database and selected features that are 
invariant to scale, rotation, distortion, noise etc. make this framework real-time appli-
cable. Also, this fully automatic approach which is faster compared to existing models 
helps to incorporate it into CAD systems. The severity score was measured based on 
the infected regions along the lung field. Infected regions were segmented through 
a three-class semantic segmentation of the lung CT image. Using severity score, the 
disease stages were classified as mild if the lesion area covers less than 25% of the 
lung area; moderate if 25–50% and severe if greater than 50%. Our proposed model 
resulted in classification accuracy of 99.7% with a PNN classifier, along with area under 
the curve (AUC) of 0.9988, 99.6% sensitivity, 99.9% specificity and a misclassification 
rate of 0.0027. The developed infected region segmentation model gave 99.47% global 
accuracy, 94.04% mean accuracy, 0.8968 mean IoU (intersection over union), 0.9899 
weighted IoU, and a mean Boundary F1 (BF) contour matching score of 0.9453, using 
Deepabv3+ with its weights initialized using ResNet-50.

Conclusions: The developed CAD system model is able to perform fully automatic 
and accurate diagnosis of COVID-19 along with infected region extraction and disease 
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stage identification. The ORB image descriptor with bag of features technique and PNN 
classifier achieved the superior classification performance.

Keywords: Computer-aided diagnosis, COVID-19, Computed tomography, Deep 
neural network, Semantic segmentation, Machine learning, Severity score, Classification

Background
The lung is a respiratory organ which is powerless against airborne injuries and con-
taminations. According to World Health Organization (WHO) [1] recent reports, third 
most common cause of death is lung diseases, with about three million people dying per 
year. Even though smoking, genetics, and air pollution are among the causes of lung dis-
eases, the main current reason for the huge rise in lung disease is infection by bacteria 
or viruses. Acute lower respiratory tract infections appear to be a primary cause of death 
and illness in both children and adults. Bacteria or virus lung infections affect the lungs 
functionality and may even lead to death if not treated on time. SARS-CoV-2 (severe 
acute respiratory syndrome coronavirus 2) is a recent human pathogenic virus that 
causes severe lung disease and has impacted several million people worldwide [2]. This 
disease first reported in China’s Hubei Province in or before December 2019 and had 
spread internationally by early. The immune system will experience symptoms within 
two to fourteen days if the virus gets into touch with the mucous membranes that line a 
person’s mouth, nose and eyes. By entering into healthy body cells, the virus kick-starts 
the production of more infected cells. Soon, it multiplies and infects the rest of the cells. 
Viral proteins use angiotensin-converting enzyme 2 (ACE2) receptors to gain entrance 
to healthy cells, where they then seize them. Having taken command of such cells, these 
proteins continue to destroy them completely. As there are more ACE2 receptors in the 
lower airways than in other places, COVID-19 is more likely to travel deeper into the 
respiratory tract. Human respiratory tracts are affected by the virus either at the upper 
or lower parts; then the immune system tries to fight the infection as it passes through 
the respiratory tract. Infection caused by the virus results in lung and airway swelling 
and inflammation. The infection usually starts in one part of the lung and may then 
spread further.

COVID-19 causes lung complications, such as pneumonia, resulting in shortness of 
breath caused by fluid build-up in the lungs. Furthermore, lung inflammation inhibits 
the ability to absorb oxygen. Based on the level of infection within the lungs, the disease 
can be mild, moderate, or severe. Because of the huge rise in patient counts on daily 
basis, hospitals are struggling to provide treatment that keeps up with hospital admis-
sion rates. Chest X-ray (CXR) and CT scans are the medical imaging tools employed to 
diagnose COVID-19. These imaging modalities are also highly helpful in the early diag-
nosis of lung diseases. Samples taken from the nose and throat are used to determine 
whether COVID-19 is present through real-time reverse transcription-polymerase chain 
reaction test (RT-PCR). Some studies, however, have already reported that it is less sen-
sitive during the initial disease stages and that 24 h are required for a result to be con-
firmed. Physicians can identify a more detailed disease picture by using a CT scan than 
by using conventional X-rays. Moreover, a CT scan can identify the exact problem loca-
tion more precisely [3]. The common CT findings of COVID-19 patients are ground-
glass opacities (GGOs), peripheral distribution, multilobar involvement, bilateral lesion 
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involvement, and posterior lesion topography [4]. Largely, however, GGOs are seen with 
crazy-paving patterns, and nodular or rounded features. The lower lobes of the lungs are 
the most affected by this pneumonia and, in most cases, GGO findings are visible even 
in the initial disease stages. Specifically, CT images give clearer and more detailed infor-
mation about the lung region than CXR.

CT scan is selected as the imaging modality for the model development since it can 
identify the exact problem location more precisely. Although simple conventional seg-
mentation methods exist, they are not effective for our purpose due to the database 
diversity. Recently, deep neural networks have attracted many researchers, who have 
used different deep learning (DL) models for semantic segmentation. Here performed 
two classes of segmentation (background and lungs) in the diagnosis stage for the ROI 
extraction, since we were able to achieve computational efficiency in the later stages. 
Once diagnosed with COVID-19, the infected regions were segmented by using a three-
class segmentation (i.e., background, lungs, and COVID-19-infected regions). This 
semantic segmentation was achieved using the most recent, fastest and computationally 
efficient semantic segmentation network DeepLabv3+, which was invented by Google 
[5]. In the feature extraction stage, scale-invariant feature transform (SIFT), oriented 
FAST and rotated BRIEF (ORB) and speeded-up robust features (SURF) techniques [6] 
were implemented to ensure the model was invariant to scale, rotation, distortion, noise, 
etc. Due to the direct feature engineering involved in classical ML, these algorithms are 
quite easy to interpret and understand. Hence, we finalized with conventional ML classi-
fiers for the proposed model development.

The complete workflow is illustrated in Fig. 1. The major contributions of this paper 
are outlined below.

1. Developed an automatic CAD system able to perform COVID-19 diagnosis by utiliz-
ing lung CT images with the help of conventional ML steps. Also, implemented bag 
of features technique followed by SIFT, SURF, and ORB image descriptors in the fea-
ture extraction stage of the CAD system. Applying these image descriptors helps to 

Fig. 1 Workflow diagram
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differentiate between COVID-19 affected and normal lung CT images accurately and 
training the model with this information helps to achieve high performance. To the 
best of our knowledge, this is the first work utilizing this feature extraction technique 
for COVID-19 diagnosis.

2. Developed a DL semantic segmentation method for the segmentation of infected 
regions, as identified via lung CT scans of COVID-19 patients and visualized it.

3. Carried out a severity score evaluation implementation on the developed CAD 
system, allowing for infection stages to be identified without the need for medical 
professionals and for appropriate medical assistance to be given at time of hospital 
admission without delay.

4. Used a diverse dataset with a huge number of CT images to achieve a real-time appli-
cable model. Moreover, here experimented with different networks in the DL model 
and employed transfer learning, grid search (GS), and cross-validation concepts.

Related works
From the starting stage of COVID-19 pandemic itself, researchers from different areas 
started working on diagnosis application to come up with useful findings that will aid in 
automatic diagnosis systems.

DL classification approaches

Majority of the COVID-19 diagnosis research works were purely based on DL networks. 
Silva et al. [7] employed a high-quality DL model for COVID-19 diagnosis with Efficient-
Net by implementing a voting-based approach and cross dataset study, using the two 
largest publicly available datasets. The major limitations on the use of CT scan images 
were that slices from the same patients were treated independently, and images from the 
same patient could be repeated in the train and test dataset studies. In their study, this 
issue was solved by the concept of the voting-based approach. The voting scheme con-
sidered all CT images of a given patient rather than a single CT image; hence, it gave a 
high success rate. Jin et al. [8] developed and deployed a COVID-19 diagnosis system in 
four weeks, using a limited CT image dataset that was available in the COVID-19 pan-
demic initial stage. In this work, the authors performed 3D segmentation and classifica-
tion as key stages using 3DUnet++-ResNet-50. Later, in the research by Santosh et al. 
[9], a type of active learning was used in which the learner had some role in deciding 
the data trained; hence, it was a kind of self-learning. This kind of incremental learning 
helps the model adapt to a new kind of dataset without losing knowledge of an existing 
one. Furthermore, an anomaly detection technique was employed to access the changes 
in data.

In [10], DL was utilized to train X-ray and CT-scan images individually. The upgraded 
VGG16 deep transfer learning models are used to perform COVID-19 classification. 
For COVID-19 CT-scan image binary classification, they employed four pre-trained 
convolutional neural network (CNN) models: VGG16, DenseNet121, ResNet50, and 
ResNet152, and suggested the fast AI ResNet framework in the detection of COVID-19 
CT-scan images with high accuracy of 99%. However due to the limitation regarding the 
metadata, they were unable to incorporate disease severity identification module into 



Page 5 of 28Alshayeji et al. BMC Bioinformatics          (2022) 23:264  

their framework. A novel deep neural network architecture that is tailored for the detec-
tion of COVID-19 cases from CXR images using a human–machine collaborative design 
strategy named COVID-Net was implemented in [11]. When employing COVID-Net 
for accelerated computer-aided screening, COVID-Net produces predictions using an 
explainability method in an attempt to acquire deeper insights into crucial factors con-
nected with COVID cases, which can benefit clinicians in enhanced screening as well as 
promote trust and transparency. This approach achieved 98.9% positive predictive value 
(PPV) but failed in predicting the risk status.

The primary goal of Kassania et  al.’s [12] work was to implement a generic feature 
extraction method using a CNN to eliminate the handcrafted and complex features 
needed for imaging modalities as well as to reduce generalization error and increase 
diagnosis accuracy. In this study, they employed 15 different CNN feature extractors 
and 6 ML classifiers for COVID-19 identification from normal cases, using X-rays and 
CT scan images. Since they lacked sufficiently large training data to develop the model 
from scratch, they used a transfer learning concept which also eliminated the problem 
of overfitting. To achieve better generalization, they also avoided data augmentation and 
extensive pre-processing. Here authors state that avoiding extensive preprocessing helps 
to make the model more robust to noise, artifacts and variations in input images during 
feature extraction phase, and avoiding data augmentation will reduce bias toward the 
model performance. In this work, they concluded that combinations of deep CNN and 
bagging tree classifiers give better classification performances.

All these reviewed models completely relied on the DL networks in taking COVID-19 
diagnosis decisions. Since they were acted like black boxes it is unable to identify the 
criteria based on which network took such decisions. In the DL approach applied by 
Gozes et al. [13], abnormalities were visualized using grad-CAM technique by extracting 
activation functions, since these contribute to the area responsible for a DL network’s 
decision. Similarly, grad-CAM visualization used in [14], where transfer learning imple-
mented to test COVID-19 using CT images and analyzed the effects of various starting 
parameters on the results. They demonstrated that the model, which was pre-trained 
on ImageNet21k, have strong generalizability in CT images and the model achieved an 
accuracy of 99.2%.

Classical ML approaches

Only few research work carried out with classical ML approach in COVID-19 diag-
nosis where hand crafted features come into action. Al-Karawi et al. [15] proposed an 
ML approach to find COVID-19 patients, using a texture analysis concept in the fea-
ture extraction stage by employing a fast Fourier transform (FFT) Gabor scheme. And 
achieved an average accuracy of 95.37%, along with very low false negatives. They were 
also able to visually give evidence by displaying the final features on which the predic-
tion decision was based. In [16], Barstugan et al. used Grey-level co-occurrence matrix 
(GLCM), grey-level run length matrix (GLRLM), grey-level size zone matrix (GLSZM), 
local directional pattern (LDP) and discrete wavelet transform (DWT) algorithms as fea-
ture extraction methods. Abd Elaziz 2020 et al. [17] utilized orthogonal moment feature 
properties and feature selection techniques. Extraction of features were carried out by 
new fractional multichannel exponent moments (FrMEMs), and a new feature selection 
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method was employed by improving manta ray foraging optimization (MRFO) using dif-
ferential evolution (DE). Patel et al. [18] used features such as, clinical, blood-panel pro-
file and socio-demographic data for severity identification and stated that the ML model 
with random forest (RF) gives the most accurate critical and mechanical ventilation 
prediction. The authors in [19] used clinical information along with CT images, includ-
ing count of leukocyte, absolute lymphocyte number, neutrophils and lymphocytes per-
centage. In the classification stage, they used SVM, multilayer perceptron (MLP) and RF 
classifiers, of which the MLP performed well. Finally, the model was created by the com-
bination of radiological and clinical information.

Lung infection segmentation approaches

All the reviewed works lack separate COVID-19 infection region extraction after 
COVID-19 classification. This part is important to help clinicians for taking vital deci-
sions in timely manner. In [20] they present CoSinGAN, a new conditional generative 
model that can be learned from a single radiological picture with a certain condition, 
such as the lungs and infected regions annotation mask. Higher segmentation perfor-
mance was achieved using 2D and 3D U-Net. CoSinGAN can capture the conditional 
distribution of a single radiological image and synthesize high-resolution and diversified 
radiological images that closely fit the input conditions. The work’s drawback is that the 
structural masks of the lungs and diseased regions must still be drawn by hand.

Deng et  al. [21] developed lung infection segmentation network called “Inf-Net”. 
Infected region extraction usually faces problems such as infection extraction variation, 
low density contrast between the infected and normal region etc. Here, a parallel partial 
decoder generates a global map by aggregating high-level features. Explicit edge-atten-
tion and implicit reverse attention are used to model boundaries and improve represen-
tations. The development of a semi-supervised segmentation framework named "Semi 
Inf-Net" removed the limitations of CT images with segmentation annotations. For 
COVID-19 infection segmentation on CT images, a domain adaptation based self-cor-
rection model (DASC-Net) is proposed in [22], which consists of a novel attention and 
feature domain enhanced domain adaptation model (AFD-DA) to solve domain shifts 
and a self-correction learning process to refine segmentation results. An image-level 
activation feature extractor with a focus on lung anomalies and a multilevel discrimina-
tion module for hierarchical feature domain alignment are among the new features in 
AFD-DA. Even though this model outperformed "Semi Inf-Net", it faces limitation that, 
they presumptively annotated all of the source data samples. However, the number of 
well-annotated data samples was restricted, and DA approaches’ performance can suffer 
significantly when there are fewer labeled examples.

Severity prediction approaches

Majority of works focused on COVID-19 classification from normal CT images only. 
But once identified with the disease it is equally importance to get the severity level 
prediction. Mahdavi et al. [23] utilized patients’ clinical, laboratory, and demographic 
features at time of hospital admission to predict mortality prognosis, as these data 
can reduce the rate of mortality by prioritizing appropriate treatments. They imple-
mented three ML models, using an SVM framework with three groups of input data. 
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The first group of input data included demographic and clinical features; the labora-
tory features were in the second set, and the third set comprised a combination of 
both inputs. The criteria used for severity classifications were saturation of peripheral 
oxygen ( SPO2 ) and respiratory rate (RR). SPO2 of less than 90 and an RR greater than 
or equal to 30 were categorized as severe cases. Moreover, the authors stated that 
non-invasive (clinical and demographic) features are able to give a better prediction 
of mortality even when there are fewer of them.

In [24], they collected data from 641 patients and developed a model that calcu-
lates risk-score to predict intensive care unit (ICU) admissions and mortality rates. 
The authors also identified the key clinical features to be considered for ICU admis-
sion and mortality prediction. A reduced lymphocyte count was amongst the top 
predictors of ICU admission, as was history of smoking. The authors also validated 
the developed risk-score model with different internal datasets. Su et  al. [25] used 
another dataset of 93 mild and 32 severe cases of COVID-19 to develop progres-
sion to severe symptoms prediction model. The model achieved 94.1% sensitivity 
and 90.2% specificity, and was under the ROC curve (AUC) of 94.4%. Although the 
authors found that 17 features could be used to distinguish between mild and severe 
cases, they identified that only four such features were independent and plays key role 
in severity prediction that includes, C-reactive protein test (CRP), RR, comorbidities 
and lactate dehydrogenase (LDH). In [26], we observed that CT scores were manually 
calculated by evaluating the lobar involvement in chest CT, incorporating different 
clinical and laboratory features. However, these works employed clinical measures 
to obtain the risk score which required human intervention. After reviewing these 
works, we decided to develop an automatic severity prediction model along with 
COVID-19 diagnosis.

CT images chosen over X-Rays to develop the framework after reviewing the works, 
since CT image contains majority of the COVID-19 infection findings clearly even 
from the primary stages. Many of the developed models faced generalization issues 
due to the dataset limitations. Hence, preferred largest publicly available dataset of 
COVID-19 CT images which was collected from different cohorts so that the model 
could be incorporated into real-time CAD applications. But the conventional seg-
mentation approaches will not work due to the diversity in database. Hence, we opted 
semantic segmentation using DL. Majority of the reviewed works used either DL fea-
tures or scale space variant features in their model development. Hence, we decided 
to develop our model using features that are local and scale, space, distortion, noise 
invariant to make use of COVID-19-related findings from each CT image, irrespec-
tive of the diversity in database. Since direct feature engineering involved in classical 
ML, these algorithms are quite easy to interpret and understand. Hence, we finalized 
with classical ML approaches for classification. To fill the research gap in COVID-19 
diagnosis application, it was necessary to get an infection segmentation model along 
with an automatic disease severity prediction. To get a precise infection segmenta-
tion model even under real-time, DL semantic segmentation concept implemented. 
In total, the framework will give a complete automatic COVID-19 real-time CAD 
model along with infection extraction, severity score prediction and disease stage 
identification.
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Methods
This section contains information on all the materials we used, description of processes 
as well as the methodologies used to create the COVID-19 classification and infection 
segmentation architecture.

Description of materials

CT‑scan database

In this research, we used datasets from the China National Centre for Bioinformation 
[27], which provides a large CT image dataset. In this dataset, COVID-19 is referred as 
novel coronavirus pneumonia (NCP). The images in this collection were compiled from 
the China Consortium of Chest CT Image Investigation cohorts (CC-CCII). They also 
provided the metadata which includes patient ID, scan ID, liver function, lung function, 
age, sex, critical illness and time of progression. CT images and metadata mentioned, 
were acquired at the time of their hospital admission. Across the entire dataset, CT 
images vary in size from 256 × 256 till 2592 × 2592 and are in “jpg” and “png” formats. 
In addition to the complete set of CT images from different categories, they also pro-
vided information regarding 55,692 CT images with lesions belonging to both NCP and 
common pneumonia (CP) in one of the csv files named “lesions_slices.csv”. Moreover, it 
provides a dataset of 750 CT images obtained from 150 patients with manual pixel anno-
tations by radiologists, provided by another study [28] which used the same dataset. In 
the pixel-labelled images, the pixels are annotated as zero for background, one for lung 
field, two for GGOs, and three for consolidation (CL). The complete details of the above-
mentioned dataset are mentioned in Table 1.

SIFT, SURF, and ORB techniques

Both global and local features exist. Global features describe images as a whole, includ-
ing their contour, texture, HOG features, etc., whereas local features give information 
regarding each keypoint in the image, such as SIFT, SURF, ORB, etc. In today’s medi-
cal imaging applications, SIFT [29], SURF [30] and ORB [31] techniques are also widely 
used in the feature extraction stage. As they are scale space invariant and robust against 
distortions, noise, etc., any kind of deformation present in CT images will not affect the 
CAD system diagnosis if we train a system using them. In these techniques, keypoints 
were identified from the ROI, and descriptors of these key points were generated. The 
performance of SIFT is close to real-time performance. Four key stages of SIFT fea-
ture extraction method includes, scale-space extrema detection, keypoint localization, 

Table 1 CT image details of complete database for two classes

NA*: not available

Category NCP Normal

Total number of patients 929 818

Total number of scans 1544 1069

Total number of CT slices 156,071 92,853

Number of CT slices with lesions 21,872 NA*

Data size 17.4 GB 9.1 GB
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orientation assignment, and keypoint descriptor. Here, keypoint description is con-
structed by taking into account the 16 × 16 neighborhood surrounding the keypoint, 
which is partitioned into 16, 4 × 4 subblocks, each with an 8-bin orientation histogram. 
Hence, if N keypoints are detected from the input CT image lung region using SIFT, it 
provides a descriptor of size N × 128.

SURF is similar to SIFT but offers faster computation, making it suitable for real-time 
applications. The two main steps of SURF are feature extraction and feature description. 
The detector is based on the Hessian matrix, while descriptor describes the distribu-
tion of Haar-wavelet responses in the vicinity of the interest point. The feature descrip-
tion stage consists of two steps: first, fix a reproducible orientation based on information 
from a circular region surrounding the keypoint, and then construct a square region cen-
tered on the keypoint that is oriented along the previously determined orientation. Then, 
the region is divided into 4 × 4 subregions. A few simple features are computed for each 
sub-region at 5 × 5 regularly spaced sample points. A four-dimensional descriptor vector 
is provided for each sub-region that includes 

∑

dx,
∑

dy , 
∑

∣

∣dx
∣

∣, and dy , where dx 
and dy are Haar wavelet response in the horizontal and vertical directions, respectively. 
Hence, if there are N keypoints, we obtain an N × 64 feature descriptor. ORB is created 
from the Fast [32] (Features from Accelerated and Segments Test) keypoint detector and 
the BRIEF (Binary robust independent elementary feature) [33] descriptor. Keypoint "p" 
is found by comparing the brightness of that pixel to the 16 pixels surrounding it in a 
tiny circle. It is chosen as a keypoint if it is darker or brighter than p by more than eight 
pixels. ORB adds orientation assignment, such as left or right facing, using a multiscale 
image pyramid based on how intensity levels fluctuate around a keypoint as identified by 
an intensity centroid. BRIEF takes the keypoints and converts them into binary feature 
vectors (binary feature descriptors).

DeepLabv3+ architecture

Here, two DL models were developed for two-class and three-class segmentation. Dur-
ing the initial development stages of the CAD system, a two-class segmentation net-
work using DeepLabv3+ was used for the segmentation of lungs from the CT image 
because in the later stages of ML, features were extracted from the lung regions only. 
Once the patient CT scan image is diagnosed with COVID-19 in our CAD system, the 
corresponding CT image is passed into the three-class segmentation DL model. The 
model was developed using DeepLabv3+, with its weights initialized using pre-trained 
networks. In three-class segmentation, the three classes indicate background, lung field, 
and infected regions (GGO, CL, etc.).

Google developed DeepLabv3+ by introducing a simple but effective encoder-
decoder structure which is capable of performing much better semantic segmenta-
tion, especially along the object boundaries. This feature has led to its widespread use 
in medical image segmentation tasks using DL. The developers combined significant 
features from atrous spatial pyramid pooling (ASPP) and encoder-decoder structure. 
ASPP always promotes the encoding of multilevel contextual information, whereas an 
encoder-decoder structure captures the sharp object boundaries. The encoder sec-
tion consists of atrous separable convolution, combination of atrous depthwise and 
pointwise convolution. This feature helps to reduce computational complexity by 
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maintaining the same performance or even achieving a better performance. When 
atrous convolution is applied over an input feature map of “i” with convolutional filter 
“w” at atrous rate “r”, the output feature map “o” at each location “x” is given by Eq. 1.

To perform semantic segmentation, an output stride of 16 was chosen. By varying 
atrous convolution rates, the filter fields of view can be varied, and rich contextual 
information can be achieved. In the current study, the different atrous rates involved 
were 1, 6, 12, and 18. The decoder module is responsible for the detailed object 
boundary recovery. Bilinear upsampling of encoder features was performed by fac-
tor of four, and low-level features were concatenated. Then, 3 × 3 convolutions were 
applied followed by another simple bilinear upsampling by a factor of four. Low-level 
features typically have a greater number of channels. Hence, before concatenation a 
1 × 1 convolution was applied to them for the number of channels reduction. Since 
DeepLabv3+ applies atrous separable convolution to encoder and decoder module, 
the network performs faster and more efficiently in segmentation tasks than other 
deep neural networks. The architecture of DeepLabv3+ deep neural network used for 
automated lung segmentation is shown in Figs. 2 and 3.

ML classification

In order to obtain a finetuned model, we adopted hyperparameter tuning by grid 
search (GS) and cross-validation concepts. A GS is used to get model optimal hyper-
parameters by an exhaustive search through a manually selected subset of the hyper-
parameter space that results in the most accurate predictions. For each classifier, we 
set a specific range of values for hyperparameters and finetuned by GS method. Using 
K-fold cross-validation, the dataset is divided into k number of subsets (folds) then 
trained all the subsets apart from one (k − 1), which was used to test the model. This 
same process was repeated k times, with each iteration reserving a different subset for 
testing. In this way, the model obtained the correct patterns from the data. Here per-
formed five-fold cross-validation by shuffling the data each time.

(1)o[x] =
∑

k

i[x + r · k]w[k]

Fig. 2 Semantic segmentation using DeepLabv3+
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Infection region segmentation

COVID-19-infected regions were segmented through DL semantic segmentation 
using CT images and their corresponding ground truths, and infected regions were 
labelled. To obtain the best infection segmentation model, the network was finetuned 
by varying maximum number of epochs, minimum batch size, optimizer, etc. DL 
semantic segmentation model can be evaluated using measures like pixel accuracy, 
IoU, BF score etc. Pixel accuracy is the proportion of correctly identified pixels to the 
entire number of pixels independent of class (Eq. 2). IoU is the ratio of the number of 
correctly classified pixels over the number of ground truth pixels and the predicted 
pixels in that class (Eq. 3) and BF score indicates how closely each class’s predicted 
boundary aligns with its actual boundary (Eq. 4).

where TP—True Positive, TN—True Negative, FP—False Positive, and FN—False 
Negative.

Design and setting of the study

The proposed method used for the COVID-19 classification and infected region 
segmentation model is illustrated in Fig.  4. The system was built by extending the 

(2)PixelAccuracy =
TP + TN

TP + TN + FP + FN

(3)Score =
2× precision× recall

precision+ recall

(4)IoUscore =
TP

TP + FP + FN

Fig. 3 DeepLabv3+ architecture
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classification model with a semantic segmentation framework, using DL for COVID-
19-infected region extraction along with severity calculation and disease stage 
prediction.

The low resolution offered by X-rays causes difficulties in identifying GGOs, crazy-
paving patterns, and other COVID-19-pneumonia-specific indications that help 
to differentiate the condition from viral pneumonia. CT scan is more accurate for 
a COVID-19 diagnosis and it can identify the exact problem location more precisely. 
Hence, chose CT scan dataset for the proposed model development. To achieve gen-
eralization capability and to implement in high performance real-time CAD systems, 
selected the largest publicly available database that comes from different hospitals that 
are performed under different conditions and using different CT machines, which will 

Fig. 4 Proposed methodology
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have improved its diversity. Among the complete set of CT images mentioned in Table 1, 
finalized 6,000 CT images of chest CT scans, of which 3,000 belonged to COVID-19-af-
fected patients and 3,000 belonged to normal people. The selection was based on the 
metadata information provided along with the database. The database chosen for experi-
mentation is not biased, because it is constructed purely based on the ground truth, i.e., 
COVID-19 affected region containing CT slice information is already available in the 
ground truth file. And hence only those slices are selected without any repetition. Also, 
some patients had more than one scans under certain time gap. During this time, the 
patient chest CT scan may show huge variations with new COVID-19 infection patterns 
which is necessary for training the model. CT scan of each patient was available as CT 
slices within the scan folder which was already in 2D format. After analysing the slices, 
selected the slices which are effective to develop the model framework. For example, the 
initial, final CT slices will not include much information regarding the lung cross sec-
tions. Also, in between certain slices will be sharing the same information.

While validating the finalized set of CT images, noted that they varied in size from 
256 × 256 to 2592 × 2592. Hence, the complete finalized CT images were resized to 
256 × 256 with bilinear interpolation. As mentioned earlier, the diversity in databases 
can be a challenge in the lung segmentation stage. Conventional segmentation algo-
rithms face limitations such as difficulty in selecting the optimal threshold/hyperparam-
eters; assumptions and approximation in selecting the parameters; lack of intelligence 
in understanding the image descriptions; and the fact that segmentation is performed 
with selected number features. Hence, it is better to perform segmentation using CNNs 
as semantic or instance segmentation. However, we preferred semantic segmentation 
because multiple objects of the same class are treated as a single entity rather than con-
sidering them as distinct individual instances, as is the case in instance segmentation. 
2-class segmentation was used to segment the lung region from its background.

Among different semantic segmentation networks such as, SegNet, U-Net, Deep-
Labv3+ and FCN, DeepLabv3+ is one of the most recent fast and computationally effi-
cient semantic segmentation network. It is capable of performing much better semantic 
segmentation, especially along the object boundaries due to its effective encoder-
decoder structure. To use DeepLabV3+ network in a lung segmentation task, we 
tested it with five different pre-trained networks, namely ResNet with 18 and 50 layers, 
Inception-ResNet-v2with 164 layers, MobileNet-V2 with 53 layers, and Xception with 
71 layers. We finally chose ResNet-18 for two-class segmentation, based on the experi-
mentation explained in section five. Using the GS method, the optimal hyperparameters 
were selected based on the best performance for lung segmentation.

The segmented lung images from the DL model were taken, and SIFT, SURF, and 
ORB methods were preferred in the feature extraction stage to calculate the local fea-
tures from the lung region. It gives information regarding each keypoint in the CT image 
unlike the global features that describe images as a whole, including their contour, tex-
ture, HOG features, etc. Also, the other handcrafted features are not invariant with 
scale, space, distortions, artifacts etc. which makes the developed system unstable with 
real-time CAD applications. First, the keypoints were located from the segmented lung 
image, after which descriptors were created. Each keypoints from these methods are 
valuable to obtain the critical information regarding the CT image in taking COVID-19 
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diagnosis decisions. If there were “K” keypoints in one such image, SIFT provided a 
descriptor array of size K × 128, K × 64 from SURF and K × 32 from ORB. However, 
the number of keypoints in each image varied, based on the image details available in 
them. Each image was considered sequentially, and a new descriptor was appended to 
the descriptor of the previous image.

The appended descriptor array could not be fed directly into the classifier due to its 
high dimensionality. We needed to arrange the features and transform them into an 
appropriate format so as to reduce the dimensionality and make it computationally effi-
cient. This was done by using the bag of features (BOF) technique [34]. After extracting 
the descriptors using the SIFT, SURF, and ORB methods, we used clustering algorithms 
to cluster these feature vectors. The most commonly used clustering algorithm is 
k-means, which tries to cluster into k clusters, whereby points are part of the cluster 
corresponding to the closest cluster center. The clustering criteria consists of minimiz-
ing the sum of square distances between the cluster center and the points that belong to 
it. After the clustering was completed, we obtained a dictionary composed of k vectors, 
called visual words. We were able to find visual words from the dictionary that depicted 
each SIFT feature of the image. The result was the creation of a k-dimensional histo-
gram, which represented the SIFT feature of the image. The discrimination between 
COVID-19 and normal groups of CT features was evaluated with an analysis of variance 
(ANOVA), and a box plot analysis was used to analyze the characteristics of features 
used in ML classification. Box plots include the basic statistical features like minimum, 
maximum, standard deviation, 25% quartile, 50% quartile, and 75% quartile. Using the 
box plot, we can identify features that help distinguish diagnoses. Feature reduction 
methods were not implemented here since each keypoints are valuable in giving the 
CT image information. Feature reductions may affect these keypoints and sometimes 
we may miss the critical information in taking COVID-19 diagnosis decisions. But the 
above-mentioned methods were easy to implement and faster.

The classification phase was concerned with classifying the features obtained from the 
previous stages and detecting whether the segmented lung region was normal or abnor-
mal. To use in real-time CAD applications, the framework should be faster. Classical 
approaches aren’t so computationally expensive, one can also iterate faster and try out 
many different techniques in a shorter period of time. Due to the direct feature engi-
neering involved in classical ML, these algorithms are quite easy to interpret and under-
stand. In addition, tuning hyper-parameters and altering the model designs is more 
straightforward since we have a more thorough understanding of the data and underly-
ing algorithms. On the other hand, deep networks are very “black box” in that even now 
researchers do not fully understand the “inside” of deep networks. The classifiers applied 
in the present work are RF, K-nearest neighbors (KNN), eXtreme Gradient Boosting 
(XGBoost), decision tree (DT), and probabilistic neural network (PNN) etc. We pre-
ferred GS technique to fine tune the model since it is easy to implement and under-
stand and also to robust the prediction power. In this, we simply build a model for every 
combination of various hyperparameters and evaluate each model. For each parameter, 
possible set of values was available for all the classification algorithms we implemented. 
Here, ‘GridSearchCV’ from sklearn is employed to use the GS algorithm to detect the 
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optimal hyperparameters. The MATLAB software (version R2021a, MathWorks Inc) 
and Python 3.7 with Pycharm IDE were used to implement the ML process.

Deep learning model for infection region extraction

The workflow proposed in the development of the semantic segmentation network 
for infected region extraction using DL is shown in Fig. 5. As mentioned before, due 
to the diversity of database, we preferred semantic segmentation model using DL to 
get the infection region extraction model. Also, COVID-19 infected regions will be 
identified with the CT findings such as GGO, consolidations etc. which could be pre-
cisely extracted with accurate boundaries only by using DL semantic segmentation 
networks. In addition, we had 750 CT images of COVID-19 patients showing diverse 
infection patterns along with pixel labelled ground truths of infected regions which 
was sufficient to train the model. Among various networks we selected DeepLabv3+ 
due to its computational efficiency and speed. Also, it is capable of performing much 
better semantic segmentation, especially along the object boundaries due to its effec-
tive encoder-decoder structure. The three-class segmentation was used for infected 
region extraction from the CT images of COVID-19-diagnosed patients.

Infection region extraction helps to identify the severity of disease. The 750 CT images 
and their corresponding 750 pixel-labelled images annotated by radiologists used in 

Fig. 5 Workflow of infected region extraction using deep learning



Page 16 of 28Alshayeji et al. BMC Bioinformatics          (2022) 23:264 

the DL semantic segmentation had size of 512 × 512. All CT images were resized to 
256 × 256 to enable a better performance with less training time. We divided the dataset 
and its corresponding pixel-labelled images in the ratio of 80% for training and 10% each 
for validation and testing. The model takes more computational power and time to run 
while using multi-fold cross-validation during segmentation model training task. More-
over, the training data covers most of the mild, moderate and severe infections possi-
bilities over the lungs from various patients and hence it could learn well from these 
training samples. Hence here we preferred data splitting instead of multi-fold cross-val-
idation. However, since we needed to focus on infected region segmentation, the pixel-
labelled images were annotated as two for COVID-19-infected regions (GGO, CL, etc.) 
in addition to background and lung fields.

We used the concept of transfer learning since it reduces training time drastically and 
also gives better models, even when small training sets are used. We experimented Dee-
pLabv3+ architecture, using different pre-trained networks, ResNet-18, ResNet-50, and 
MobileNet-V2 by shuffling the dataset each time. We also performed hyperparameter 
tuning over the network during the model training for the parameters, ‘max epochs’, 
‘initial learning rate’, ‘optimizers’, ‘min. batch size’ etc. to improve the model perfor-
mance. The maximum number of epoch values changed between 20, 50, and 100, the 
minimum batch size between 8, 16, and 32, and the initial learning rate between 0.001 
and 0.0001. We also changed optimizers, stochastic gradient descent with momentum 
(SGDM) and Adam. The network giving the best IoU values chosen as the best segmen-
tation model for COVID-19 infection region extraction. The proposed framework was 
implemented on a desktop computer with Intel i7, an 11th generation processor with a 
speed of 2.50 GHz of eight cores with 16 GB DDR4 RAM and Windows operating sys-
tem. The system was also equipped with single graphical processing units (GPUs) of the 
GTX 1660 SUPER 6 GB graphics card to accelerate the computation process.

Results
Here we present the experimental results of various stages of our proposed model. Input 
CT images of COVID-19 and normal cases as well as various image pre-processing 
results are illustrated in Table 2.

Lung segmentation was carried out using DL semantic segmentation. A two-class seg-
mentation model was developed for the segmentation of lungs from the background 
regions of CT images. ‘DeepLabv3+’ with weights initialized from different pre-trained 
networks were experimented. Table 3 shows class metrics of the experimentation tasks. 
After experimentation, DeepLabv3+ with ResNet-18 as a pre-trained network with 
maximum epochs of 100, minimum batch size 16, initial learning rate 0.001 and ‘adam’ 
optimizer was chosen as the best two-class semantic segmentation model since it pro-
vides the highest segmentation performance measures for the lung field class.

In the feature extraction stage, 6,000 segmented lung regions of both COVID-19 
and normal CT images were subjected to SIFT, SURF, and ORB methods, and the 
results were exported to Excel files. The feature sizes are shown in Table 4. The param-
eters used in SIFT, SURF, and ORB are described in Table 5. An ANOVA and a box-
plot were used as part of the statistical analysis of features. Table 6 shows the results 
of the ANOVA and the boxplot obtained is visualized in Fig. 6 for ORB features.
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Table 2 Pre-processing results of COVID-19 and normal CT images

COVID-19 Normal

Original CT image

Resized CT image

Lung segmentation out

Feature extraction 

visualization: SIFT

Feature extraction 

visualization: SURF

Feature extraction 

visualization: ORB
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Since the feature sizes varies, it cannot be directly fed into ML classifier for training 

Table 3 Class metrics of two-class semantic segmentation using DeepLabv3+ with weights 
initialized by different pre-trained networks

Bold usage is preferred to enhance the experimental result which provides the high performance

Pre-trained network Mini 
batch 
size

Accuracy IoU Mean BF score Accuracy IoU Mean BF score
(Background) (Lung field)

ResNet-18 8 0.9977 0.9966 0.9939 0.9921 0.9771 0.9828

ResNet-18 16 0.9977 0.9968 0.9947 0.9939 0.9784 0.9852
ResNet-18 32 0.9981 0.9952 0.9908 0.9804 0.9679 0.9738

ResNet-50 8 0.9978 0.9962 0.9924 0.9885 0.9722 0.9789

ResNet-50 16 0.9971 0.9946 0.9885 0.9818 0.9607 0.9656

MobileNet-v2 8 0.9973 0.9964 0.9949 0.9937 0.9744 0.9849

MobileNet-v2 16 0.9985 0.9960 0.9900 0.9818 0.9711 0.9712

MobileNet-v2 32 0.9983 0.9966 0.9925 0.9878 0.9757 0.9775

Table 4 SIFT, SURF, and ORB feature sizes for COVID-19 and normal CT images

Feature extraction technique COVID-19 feature size (3000 lung 
segmentation out)

Normal feature 
size (3000 lung 
segmentation out)

SIFT 448,368 × 128 205,670 × 128

SURF 266,775 × 64 137,820 × 64

ORB 1,048,576 × 32 1,048,576 × 32

Table 5 SIFT, SURF, and ORB parameters

SIFT SURF ORB

Parameter Value Parameter Value Parameter Value

nOctaveLayers 3 MetricThreshold 1000 scaleFactor 1.2f

contrastThreshold 0.04/0.03 NumOctaves 3 nlevels 8

edgeThreshold 10 NumScaleLevels 4 edgeThreshold 31

sigma 1.6 ROI [1 1 size(I,2) size(I,1)] firstLevel 0

WTA_K 2

scoreType HARRIS_SCORE

patchSize 31

fastThreshold 20

Table 6 ANOVA results for SIFT, SURF, and ORB features

Method Class name Minimum Mean Quartile-1 Median Quartile-3 Maximum IQR

ORB COVID-19 0 10.24 5 9 14 92 9

Normal 0 7.11 3 6 9 56 6

SIFT COVID-19 0 1.49 0 1 2 21 2

Normal 0 0.69 0 0 1 26 1

SURF COVID-19 0 0.89 0 0 1 29 1

Normal 0 0.46 0 0 1 23 1
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the model. Hence bag of features technique is applied to cluster these features. This 
helps to have same feature size from each category and also dimensionality reduction 
could be achieved which will reduce the processing time. Using BoF, each image is 
represented by a feature vector of size "k", so each image is represented by a fixed-size 
vector. Since each image had a different number of keypoints, after descriptors were 
obtained from each image, they were concatenated vertically. Thereafter, we clustered 
all descriptors into k clusters using k-means. Each k cluster was associated with a cen-
troid. These “k” centroids represented the main features of the whole training images 
and were called code words (visual words) which, together, made up the code book 
(visual vocabulary). In the next stage, descriptors were extracted using SIFT, SURF, or 
ORB methods from the test image and then converted into a feature vector of size “k”. 
First, a vector of “k” filled with zeros was created, where the ith element corresponds 
to the ith codeword (cluster). Similarly, for each descriptor the closest cluster was 
found. Finally, we created a vector that represented the frequency of codewords in the 
test image. This vector is known as the feature vector, and it can also be viewed as a 
histogram of features of the test image. A histogram of visual word occurrences for a 
sample set of 1500 images is illustrated in Fig. 7.

In the conventional ML classification stage, we performed five-fold cross-validation 
and hyperparameter tuning using the GS method. The hyperparameters used for each 
ML classifier are listed in Table 7.

The same classification was repeated using BoF from the SIFT, SURF, and ORB 
methods. The K value of K-means clustering also varied, with values of 50, 100, 
500, 1000, 1500, 2000, 2500, and 3000 found. First, the classification using ORB fea-
tures experimented with all these K values; for those which gave the best results, 
the remaining classification was carried out using SIFT and SURF features. The best 
results of ML classifiers using ORB, SIFT, and SURF features are given in Tables 8, 9 
and 10, respectively. We then chose the PNN classifier with ORB features as the best 

Fig. 6 Boxplot for ORB features from 6000 CT images
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Fig. 7 Histogram of visual word occurrences

Table 7 Classifiers and hyperparameters with value ranges

Classifier Hyperparameter Value range

Random Forest Classifier Number of trees (n_estimators) [1, 10, 50, 100]

criterion [‘gini’,’entropy’]

max_features [‘sqrt’,’log2’]

XGBoost n_estimators [100, 200, 300, 400, 500]

learning_rate [0.0001, 0.001, 0.01, 0.1]

KNN n_neighbors [3, 5, 11, 19]

weights [‘uniform’, ‘distance’]

metric [‘euclidean’,’manhattan’]

Decision Tree max_leaf_nodes list(range(2, 100))

min_samples_split [2, 3, 4]

max_depth np.arange(3, 10)

criterion [’gini’, ’entropy’]

PNN std (0, 10)

Table 8 Best classification performance measures for ORB features

Bold usage is preferred to enhance the experimental result which provides the high performance

Classifier K Class PPV NPV Sensitivity Specificity Accuracy MR*

XGBoost 2000 COVID 0.9930 0.9940 0.9940 0.9930 0.9935 0.0065

Normal 0.9940 0.9930 0.9930 0.9940 0.9935 0.0065

RF 1000 COVID 0.9883 0.9880 0.9880 0.9883 0.9882 0.0118

Normal 0.9880 0.9883 0.9883 0.9880 0.9882 0.0118

DT 50 COVID 0.9699 0.9684 0.9683 0.9700 0.9692 0.0308

Normal 0.9684 0.9699 0.9700 0.9683 0.9692 0.0308

KNN 100 COVID 0.9983 0.9953 0.9953 0.9983 0.9968 0.0032

Normal 0.9953 0.9983 0.9983 0.9953 0.9968 0.0032

PNN 100 COVID 0.9987 0.9960 0.9960 0.9987 0.9973 0.0027
Normal 0.9960 0.9987 0.9987 0.9960 0.9973 0.0027
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Table 9 Best classifier results for SIFT features

Bold usage is preferred to enhance the experimental result which provides the high performance

Classifier K Class PPV NPV Sensitivity Specificity Accuracy MR*

XGBoost 2000 COVID 0.9946 0.9777 0.9773 0.9947 0.9860 0.0140

Normal 0.9777 0.9946 0.9947 0.9773 0.9860 0.0140

RF 1000 COVID 0.9939 0.9812 0.9810 0.9940 0.9875 0.0125
Normal 0.9812 0.9939 0.9940 0.9810 0.9875 0.0125

DT 50 COVID 0.9709 0.9570 0.9563 0.9713 0.9638 0.0362

Normal 0.9570 0.9709 0.9713 0.9563 0.9638 0.0362

KNN 100 COVID 0.9996 0.8881 0.8740 0.9997 0.9368 0.0632

Normal 0.8881 0.9996 0.9997 0.8740 0.9368 0.0632

PNN 100 COVID 0.9974 0.8958 0.8840 0.9977 0.9408 0.0592

Normal 0.8958 0.9974 0.9977 0.8840 0.9408 0.0592

Table 10 Best classifier results for SURF features

Bold usage is preferred to enhance the experimental result which provides the high performance

MR*: Miss classification Rate

Classifier K Class PPV NPV Sensitivity Specificity Accuracy MR*

XGBoost 2000 COVID 0.9856 0.9840 0.9840 0.9857 0.9848 0.0152

Normal 0.9840 0.9856 0.9857 0.9840 0.9848 0.0152

RF 1000 COVID 0.9889 0.9841 0.9840 0.9890 0.9865 0.0135
Normal 0.9841 0.9889 0.9890 0.9840 0.9865 0.0135

DT 50 COVID 0.9505 0.9535 0.9537 0.9503 0.9520 0.0480

Normal 0.9535 0.9505 0.9503 0.9537 0.9520 0.0480

KNN 100 COVID 0.9932 0.9324 0.9280 0.9937 0.9608 0.0392

Normal 0.9324 0.9932 0.9937 0.9280 0.9608 0.0392

PNN 100 COVID 0.9961 0.9341 0.9297 0.9963 0.9630 0.0370

Normal 0.9341 0.9961 0.9963 0.9297 0.9630 0.0370

Fig. 8 Confusion matrix of PNN classifier using ORB features
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classification model from its highest classification accuracy and least misclassification 
rate.

The confusion plot and ROC curve of the best classification model are shown in 
Figs. 8 and 9, respectively. We obtained an AUC value of 0.99888 from this.

If the input CT image was diagnosed with COVID-19, we then had to extract the 
infected region within the lungs. We employed semantic segmentation using DL to 
perform this task. The training was performed using 600 lung CT images and their 
corresponding pixel-labelled images with the help of DeepLabv3+ architecture. Simi-
larly, 75 images were chosen for validation and the remaining 75 to test the trained 
model. Pixels were labelled as zero for background, one for lung field, and two for 
COVID-19-infected regions. Pixel distribution details for training, validating, and 
testing the dataset are presented in Table 11.

The semantic segmentation network weights were initialized using pre-trained net-
works such as ResNet-18 having 18 layers, ResNet-50 with 50 layers, and MobileNet-
v2 with 53 layers. We used the concept of transfer learning to achieve better results 
with less training time. Using the GS method, the optimal hyperparameters were 
selected to obtain the model which performed best at infected region segmentation, 
as shown in Table  12. The best performance measures of each network model are 
specified in Tables 13 and 14. From these results, we selected DeepLabv3+ with its 

Fig. 9 ROC curve of PNN classifier using ORB features

Table 11 Pixel distribution details of three classes

Class name Training pixel counts Validation pixel counts Test pixel counts Total 
number of 
pixels (%)

Background 1.3718e+08 1.7246e+07 1.713e+07 87.258

Lung field 1.8306e+07 2.1934e+06 2.2644e+06 11.578

Infected regions 1.79973e+06 221,827 266,203 1.163
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Table 12 Optimal hyperparameters used for infection segmentation

Parameter Hyperparameters Optimal value

Maximum epochs 20, 50, 100 50

Batch size 8,16,32 8

Momentum factor 0.9 0.9

Learning rate 0.001, 0.0001 0.0001

L2 regularization 0.0001 0.0001

Optimizers ‘sgdm’, ‘adam’ adam

Table 13 Best dataset metrics from each network after grid search

Bold usage is preferred to enhance the experimental result which provides the high performance

Network 
name

MBS* ILR* Global 
accuracy

Mean 
accuracy

Mean IoU Weighted IoU Mean BF score

ResNet-18 32 0.001 0.9936 0.9190 0.8798 0.9878 0.9210

ResNet-50 8 0.0001 0.9947 0.9404 0.8968 0.9899 0.9453
MobileNet-v2 8 0.001 0.9925 0.9307 0.8787 0.9859 0.9170

Table 14 Best class metrics from each network after grid search

Bold usage is preferred to enhance the experimental result which provides the high performance

ILR*: Initial Learning Rate, MBS*: Minimum Batch Size

Network name MBS* ILR* Class name Accuracy IoU Mean BF score

ResNet-18 32 0.001 Background 0.9992 0.9966 0.9949

Lung field 0.9727 0.9522 0.9535

Infection 0.7851 0.6905 0.7454

ResNet-50 8 0.0001 Background 0.9989 0.9974 0.9951
Lung field 0.9780 0.9594 0.9605
Infection 0.8443 0.7338 0.7992

MobileNet-v2 8 0.001 Background 0.9981 0.9965 0.9932

Lung field 0.9699 0.9390 0.9455

Infection 0.8240 0.7007 0.7636

Fig. 10 Accuracy and loss versus iteration plots of final DL semantic segmentation network
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weights initialized using Resnet-50 since it provides the best segmentation measures 
for infection region class. Accuracy Vs iteration and loss Vs iteration visualizations 
for the fine-tuned, best CNN model are given in Fig. 10.

From the finalized model, we achieved a mean IoU value of 0.8968 and a weighted IoU 
value of 0.9899. Using the trained model, we extracted the infected regions from each 
COVID-19 CT image. Based on the infection within the lungs, the disease stages were 
classified as mild, moderate, or severe, with the severity score evaluated using Eq.  5. 
The disease stage was classified as mild if the score was below 0.25, moderate if it was 
between 0.25 and 0.5, and severe if it varied between 0.5 and 1. Table 15 illustrates exam-
ples of COVID-19 CT images at different stages, visualization of the infected region 
extractions obtained by our model, and the corresponding severity scores.

(5)Severity Score =
Total area of infected regions

Area of lung field

Table 15 Infected region extractions; severity score of different COVID-19 CT images

Infection region: blue

Mild

0.145652

Moderate

0.26223

Severe

0.8947

Input COVID-19 CT 

image

Actual labelled CT image

Background: black

Lung field: white

Predicted infected regions 

extracted

Severity 

score & 

disease stage
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Discussion
Using the proposed framework, we were able to automatically detect whether the input 
chest CT scan image belonged to a COVID-19 patient or a normal case precisely. The 
implementation of SIFT, SURF, ORB image descriptors along with bag of features tech-
niques helped to achieve the highest ML classification performances by its capability to 
differentiate chest CT regions with COVID-19 infections from normal CT accurately. If 
it was COVID-19, it could automatically extract the infected regions from the CT scan, 
calculate the severity score, and identify the disease stage as mild, moderate, or severe. 
Since all these tasks can be achieved by a computer, manual tasks can be eliminated 
and medical professionals can start treatment based on stage of disease without delay. 
Moreover, limited resources, such as the radiologists availability in some hospitals, can 
be effectively used. Table 16 shows a comparison of our proposed model for COVID-19 
detection from chest CT images with some recent COVID-19 diagnosis works which 
used the same database. As can be observed, our model has the highest classification 
accuracy as well as infection region segmentation performance.

The pixel-labelled datasets of COVID-19-infected regions CT images from different 
disease stages was imbalanced. Due to the pandemic, few radiologists were available to 
obtain ground truths of more data. Once this is achieved, research in the area of infec-
tion extraction can be developed by applying new techniques so that severity identifica-
tion issues faced by hospitals can be solved effectively. Future research should look at 
developing an efficient DL CNN which can perform classification along with more accu-
rate infection extraction. We could also consider the averaging of different DL models 
for this application.

Table 16 Performance comparison table

Ref Proposed method Result Limitation

[35] Classification: COVID-CT-Mask-
Net model, Segmentation: 
MaskR-CNN

Classification accuracy: 0.9166, 
sensitivity: 0.9080, specificity: 
0.9210, F1-score: 0.9150

Poor model generalization 
capability

[36] Classification using DL features 
from EfficientNet and clinical 
data

AUC = 0.8274 Not an automatic approach, 
collection of clinical data requires 
manual intervention

[37] Classification: COVIDNet-CT, 
heterogeneous composition of 
conventional spatial, pointwise, 
depthwise convolution layers

Classification accuracy: 0.973, 
specificity: 0.999, PPV:0.99, NPV: 
0.993

Architecture faces generalization 
issues, no infection extraction 
approach

[38] Classification: VGG16 deep 
neural network + ensemble 
learning

Classification accuracy: 0.9357, 
specificity: 0.9393, sensitivity: 
0.9421, precision: 0.894, and 
F1-score: 0.9174

Only experimented with VGG 
model, no infected lesion seg-
mentation

[39] Classification: 3D ResNet-18 Classification accuracy: 0.9924, 
recall: 0.9996, precision: 0.9935, 
F1-sorce: 0.9965

Model is still a black box

Proposed Classification: 
ORB + BOF + PNN, Infection 
extraction: Semantic segmenta-
tion using DeepLabv3+ with 
weights initialized by ResNet-50

Classification accuracy: 0.997, 
AUC: 0.9988, sensitivity:0.999, 
specificity: 0.996, PPV:0.996, 
NPV: 0.999. Infection extrac-
tion: global accuracy:0.9947, 
weighted IoU: 0.9899, mean BF 
score: 0.9453

Imbalanced dataset of different 
stages of COVID-19 for infection 
extraction model
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Conclusions
We have proposed a fully automatic CAD system which is able to perform COVID-19 
diagnosis from lung CT images, along with infected region extraction, severity score 
prediction and disease stage identification. The model was developed from a publicly 
available dataset which includes data from different cohorts; hence, it achieves diver-
sity, and our developed model is more accurate, applicable to real-time applications. 
Since the ML classifiers were trained using the feature from SIFT, SURF, and ORB, the 
model remains invariant to the scale, rotation, noises, etc. of dataset images. So far, this 
work is the first framework utilizing image descriptors and bag of features technique 
for COVID-19 diagnosis application. The model achieved a classification accuracy of 
99.7%, with a misclassification rate of 0.0027. Once the patient is diagnosed as positive, 
this model automatically extracts the COVID-19-infected region and identifies the dis-
ease stage as mild, moderate, or severe. Our infection extraction model achieved the 
following segmentation performance measures: a weighted IoU value of 0.9899 and a 
mean BF score of 0.9453. We combined conventional ML and DL in this study to obtain 
the best complete model. As a part of the CAD system development, also developed a 
DL semantic segmentation model which is able to perform automatic lung segmenta-
tion from a CT image. This model is applicable for all AI applications related to image 
pre-processing of lungs in the fields of biomedical image processing. This model could 
be employed in hospitals to automatically detect COVID-19 cases and identify the dis-
ease stage. Moreover, patients will be given appropriate treatment, based on the severity 
level, without any delay.
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