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Background
Drug resistance and off-target toxicity are two major obstacles for precision cancer 
treatment. Experimental approaches to understand these areas of research  depend on 
the use of genetic screens or drug perturbation experiments paired with -omics pro-
filing. However, such experiments require large commitments of resources including 
cell culture, genetic screening constructs, sequencing costs, and personnel. Analysis of 
publicly available pharmacogenomic datasets is a vastly less expensive option to under-
stand the biology of cancer drugs. The difficulty with using in silico approaches is that 
meaningful signals may be weak and not easily detectable. Considering this challenge, 
Machine learning (ML) algorithms has become an increasingly popular strategy to build 
predictive models that utilize molecular patients of tumor or cancer cells to predict and 
understand patients’ or cell lines’ response to drugs [1–11].
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Existing strategies for building drug response classifiers are incredibly diverse, uti-
lizing various combinations of inputs, feature selection approaches, and algorithms. 
Here, we built a machine learning algorithm focused on informing the biological pro-
cesses that drive cancer drug response. We do so by integrating prior knowledge of 
biological pathways and protein–protein interaction data. We tested our approach 
on two compounds: ML210, a selective covalent inhibitor of glutathione peroxidase 
4 (GPX4) and the selective BRAFV600 inhibitors vemurafenib (VEM) and dabrafenib. 
We also used our approach to identify pathways that inform response to anti-tubulin 
drugs.

Methods
All analysis was performed in R using custom scripts. First, consider KEGG pathways 
belonging to Metabolism, Genetic Information Processing, Environmental Informa-
tion Processing, and Cellular Processes. This list contains ~ 150 pathways. For each 
pathway, compute the pathway activity scores. The pathway activity score is defined 
as the t-score of the pathway activities across drug-sensitive and drug-resistant cell 
lines. Specifically, the pathway activity for pathway p, sample j, and gene i, is given by,

where z is the normalized gene expression. The number of genes to use for each pathway, 
or k, is determined using a greedy search strategy. That is, compute the t-score for each 
gene for a given pathway. Rank genes in increasing order if average t-scores are less than 
zero or in decreasing order, otherwise. Iterate over i until the maximum ap is found. In 
other words, k is the smallest number that maximizes the t-score for ap . See [12] for 
complete details on computing the pathway activity score.

For the BRAFi analysis, pathways are determined to be significant using a null dis-
tribution generated by permuting the cell line labels. For the ML210 and Paclitaxel 
analysis, pathways with pathway activity scores within the bottom or top 10th or 
20th percentiles, respectively, were retained for further analysis. Significance thresh-
olds were designed to return ~ 20% of the initial number of input KEGG pathways.

Next, take all genes from the pathways deemed significant. Bin these genes into 
mutually exclusive network modules. Genes are grouped together into mutu-
ally exclusive network modules through hierarchical clustering of the dissimilarity 
between genes. Dissimilarity is computed as 1 minus the standard topological over-
lap measure described in [13]. The adjacency matrix used to compute the topologi-
cal overlap was derived using STRING protein–protein interactions [14]. Namely, we 
considered an edge to exist between two genes if they had a STRING combined score 
of ≥ 0.4.

Then, determine the most informative genes in each module, separately, using 
Boruta, a random-forest-based feature selection algorithm, with default parame-
ters [15]. Genes with a finalDecision of “Confirmed” was retained for further analysis. 

apj =

k∑

i=1

zij
√
k
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Boruta determines variable importance by comparing the performance of an attribute 
releative to permutated versions of it within random forest classification.

Finally, take all the informative genes from the previous step and build a classifier using 
the support vector machine learning algorithm with recursive feature elimination (RFE). 
We used the implementation provided at https://​github.​com/​johnc​olby/​SVM-​RFE. RFE 
involves running the SVM iteratively while removing the least informative feature at 
each iteration. The rank of the feature is inversely related to the iteration it was removed 
by the SVM algorithm. For our analysis, the rank for a feature is given as an average 
of a feature’s rank across ten-fold cross validation for the ML210 and Paclitaxel analy-
sis or leave-one-out-cross validation for the BRAFi analysis. The ranking of each feature 
determines the importance of the  module it belongs to. The biological representation 
of each module was  determined using   Gene Ontology pathways enrichment analysis 
implemented by the limma R package [16].

To perform our machine learning analysis, we used RMA-normalized microarray gene 
expression from Genomics of Drug Sensitivity in Cancer (GDSC). We used ML210 and 
PTX drug response data from the Cancer Therapeutics Response Portal V2 (CTRP v2). 
We used VEM and Dabrafenib response data from GDSC. We used area under the curve 
(AUC) as the metric for drug response. The cutoff for ML210 resistance was set at an 
AUC of 9, which qualitatively separated two modes of the AUC distribution (Additional 
file 1: Figure S1). The cutoff for PTX resistance was set at 5 to distinguish the most sensi-
tive cancers. The cutoff for drug response for BRAF inhibition was set at the 5th percen-
tile of the AUC for VEM or Dabrafenib in the GDSC. Two BRAF inhibitors were used to 
compensate for missing data.

The singscore [17] R-package was used to compute the pathway enrichment scores for 
the 4-gene NOTCH3/PAX8 across ovarian cancer cell lines. The biomaRt R-package was 
used for data wrangling [18]. The ggplot2 R-package was used for visualization [19].

For the t-test analysis, genes that had a Holm-Bonferroni corrected p-value of < 0.1 
were deemed as significant. Cell lines were labeled as sensitive or resistant to a drug of 
interest as described for each case study. Elastic net regression was performed using 
glmnet and caret R packages [20, 21]. AUCs for the respective drugs were regressed on 
the gene expression of the top 5000 most variably expressed genes. The optimal lambda 
was selected using ten-fold cross validation on models using different parameters deter-
mined by tuneLength = 20. Genes with non-zero coefficients were used for enrichment 
analysis.

Results
Design and conceptualization

We constructed a supervised learning algorithm to nominate biological processes that 
underlie cancer drug response. Our approach emphasizes prioritization of biologically 
meaningful  features used for classification rather than predictive performance (Fig. 1). 
We trained our algorithm using only gene expression and drug sensitivity data. We 
opted to only used gene expression as this data type consistently performed the best as 
a standalone dataset in a metanalysis of the 44 machine learning algorithms submitted 
to the NCI-DREAM drug sensitivity prediction challenge [22]. We also favored gene 

https://github.com/johncolby/SVM-RFE
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expression as it is known that transcriptomic diversity better explains phenotypic het-
erogeneity in some cancers, such as cutaneous melanoma [23].

Conceptually, our approach is based on the support vector machine learning algorithm 
combined with multiple layers of feature selection. Additionally, we use protein–protein 
interaction data to annotate important features with pathway-level information. Ulti-
mately, our approach returns a ranked list of features, i.e. genes, that are grouped into 
mutually exclusive modules containing closely interacting genes. This  strategy  enables 
ranking of known biological processes like pathway enrichment analysis but requires 
much fewer informative, or differentially expressed, genes.

Case Study 1: Pathways that inform GPX4i sensitivity

ML210 was initially discovered in a high-throughput screening effort as an agent that 
was selective against HRAS-driven oncogenesis in fibroblasts [24]. However, ML210’s 
mechanism of action was unknown at the time of its discovery. Later, it was found that 
ML210 kills cells via induction of ferroptosis through inhibition of GPX4 [25, 26]. We 
applied our approach on all cancer cell lines with gene expression and drug response 
data to ML210. Pathway activity feature selection returned pathways listed in Additional 
file 3: Table S1. This selection step retained 2439 genes. Boruta feature selection returned 
genes that enriched for GO Biological processes in Additional file 4: Table S2. This selec-
tion step retained 395 genes across 39 modules. Our method ranked lipid metabolism 
as the top pathway that determines sensitivity to ML210 (Fig. 2). This result is consist-
ent with the knowledge that the balance of monounsaturated fatty acids (MUFAs) and 
polyunsaturated fatty acids (PUFAs) determines susceptibility to ferroptosis [27, 28]. As 
a negative control for the utility of our method, we performed enrichment analysis using 
genes determined to be significant using t-test or those retained by elastic net (Addi-
tional file 5: Table S3, Additional file 6: Table S4). The top results from our approach did 
not overlap with that of the standard analysis we tried.

The first step of the proposed approach is to input a set of KEGG pathways. As 
described in the methods, we performed this analysis using KEGG pathways belonging 
to Metabolism, Genetic Information Processing, Environmental Information Processing, 
and Cellular Processes. To test what would happen if all pathways were included, we 

Fig. 1  Workflow of machine learning analysis. A Schematic that emphasizes the goal of our analysis 
compared to that of typical workflows. B Schematic of our mechanism-driven machine learning approach



Page 5 of 13Zhu and Dupuy ﻿BMC Bioinformatics          (2022) 23:184 	

repeated the analysis for ML210 using all human KEGG pathways (Additional file 2: Fig-
ure S2). Lipid metabolism and actin cytoskeleton pathways remained top candidates, but 
the other two top pathways changed.

Case Study 2: Pathways that inform BRAFi sensitivity

Next, we tested our approach on selective inhibitors of BRAFV600E. We analyzed only 
cutaneous melanoma cell lines with the BRAFV600E mutation, which is present in ~ 50% 
of this type of cancer. Even when this mutation is present, drug response to BRAF inhib-
itors is heterogenous with some melanomas more resistant to BRAF inhibition (BRAFi) 
than others. Pathway activity feature selection returned pathways listed in Addi-
tional file 7: Table S5. This selection step retained 3223 genes. Boruta feature selection 
returned genes that enriched for GO Biological processes in Additional file 8: Table S6. 
This selection step retained 169 genes across 36 modules. For the BRAF inhibitors, our 
method identified Rac1/cytoskeletal signaling as the most salient driver of drug resist-
ance (Fig. 3). As a negative control for the utility of our method, we performed enrich-
ment analysis using genes determined to be significant using t-test or those retained by 
elastic net (Additional file 9: Table S7, Additional file 10: Table S8). We found that Actin/
cytoskeleton processes  were highly ranked by our approach  but  not by  the t-test nor 
elastic net. However, both our approach and the p-value strategy prioritized the “trans-
membrane receptor protein tyrosine kinase signaling pathway.” This finding is consistent 

Fig. 2  Pathways that inform ML210 response. A Visualization of gene distribution within modules. Relevant 
genes are those that passed the Boruta filtering step. X-axis denote total number genes per module, y-axis 
denotes number of relevant genes, and the shading indicates total number of modules. B Ten-fold  cross 
validation error as a function of number of features used in the SVM model. Dashed line indicates no 
information rate, i.e. the error made if the class with the greatest frequency was selected. C Minimum feature 
ranking for each module. D GO Biological Processes pathway enrichment of genes contained within modules 
presented in C). P-values shown are corrected for multiple hypothesis testing using the Holm-Bonferroni 
method
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with other studies that report certain RTKs such as PDGFRB and CSF1R drive intrinsic 
drug resistance to BRAFi in BRAFV600 cutaneous melanoma [29, 30].

Case Study 3: Pathways that inform sensitivity to anti‑tubulin drugs

For our last case study, we wondered if our approach could identify new insights for 
drugs where the mechanisms of response are less understood. We took an -omics 
approach and looked for drugs with heterogeneous response. To this end, we ranked 
drugs in CTRPv2 with respect to the mean absolute deviation of the AUC. In addition 
to ML210 discussed previously, three anti-tubulin drugs (paclitaxel (PTX), docetaxel, 
vincristine) were among those with the most variable response (Fig. 4A). Sensitivity to 
anti-tubulin drugs were highly correlated (Pearson correlation of 0.83 for paclitaxel and 
vincristine, 0.92 for paclitaxel and docetaxel, and 0.83 for vincristine and docetaxel), 
suggesting similar mechanisms of action. Pan-cancer analysis of response to paclitaxel 
shows that hematopoietic cancers are generally more sensitive to microtubule disrup-
tion. However, response within cancers of other sites, e.g. lung, ovary, was also heteroge-
neous (Fig. 4B).

In the era of precision oncology, anti-tubulin drugs are considered “non-targeted”, but 
unexpectedly we observed that the response to anti-tubulin drugs was highly disparate 
across different cancer cell lines. This suggests that there may be cancer cell intrinsic 
features that dictate sensitivity to these drugs. To explain this variation, we applied 
our analysis approach on PTX. Pathway activity feature selection retained 3232 genes. 
Boruta feature selection retained 822 genes across 49 modules. Pan-cancer analysis 

Fig. 3  Pathways that inform BRAFi response. A Visualization of gene distribution within modules. Relevant 
genes are those that passed the Boruta filtering step. X-axis denote total number genes per module, y-axis 
denotes number of relevant genes, and the shading indicates total number of modules. B Leave-one-out 
cross validation error as a function of number of features used in the SVM model. Dashed line indicates no 
information rate, i.e. the error made if the class with the greatest frequency was selected. C Minimum feature 
ranking for each module. D GO Biological Processes pathway enrichment of genes contained within modules 
presented in C). P-values shown are corrected for multiple hypothesis testing using the Holm-Bonferroni 
method
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suggested that Notch, Akt, and adhesion signaling may be involved in PTX-response 
(Fig. 5A). Notch signaling likely was used as a predictor because Notch is a critical driver 
of hematopoietic cancers, which happen to be generally sensitive to PTX-inhibition. As 
a negative control for the utility of our method, we performed enrichment analysis using 
genes determined to be significant using t-test or those retained by elastic net (Addi-
tional file 11: Table S9, Additional file 12: Table S10).

To confirm the relevancy of cell adhesion and Akt signaling, we computed previously 
published gene signatures for these pathways and tested whether the response to PTX 
was different between cell lines with high/low cell adhesion or Akt signaling signatures 
[31, 32]. Cell adhesion signaling is known to be regulated by Yap/TEADs, and in general, 

Fig. 4  Paclitaxel exploratory analysis. A Variability of response to drugs in the CTRPv2 database. B Response 
to PTX across cell lines of different cancer types contained in CCLE. Higher AUC means more resistant to drug

Fig. 5  Pan-cancer analysis of pathways that inform paclitaxel response. A GO Biological Processes pathway 
enrichment of genes contained within the top predictive modules. B PTX response in cancer cell lines 
separated by Yap/Adhesion gene signature (left) or PI3K/Akt gene signature (right). Higher AUC means more 
resistant to drug. C Correlation of microtubule inhibitors with Akt inhibitors



Page 8 of 13Zhu and Dupuy ﻿BMC Bioinformatics          (2022) 23:184 

cancer cells can be classified into Yapon or Yapoff cancers [33]. Using a gene signature 
based on genes elevated in Yapon cancers, we found that cancers with low Yap signa-
ture was more sensitive to PTX inhibition. Conversely, we found that cancer cell lines 
that had a high PI3K/AKT signature tended to more sensitive to PTX (Fig. 5B). As there 
are several targeted inhibitors of Akt, we further investigated the connection between 
PTX sensitivity and PI3K/AKT signaling by computing the correlation between PTX 
and Vincristine response with two different pan-Akt inhibitors (AT7867, MK2206). We 
observed statistically significant correlations between the response to microtubule and 
Akt inhibitors (Fig. 5C).

Since haemopoietic cancers have unique signaling features, i.e. Yapoff and Notchhi, 
and contribute to a large percentage of PTX-sensitive samples, we performed the same 
analysis wherein we only used solid tumor cell lines. Pathway activity feature selection 
retained 2667 genes. Boruta feature selection retained 223 genes across 43 modules. Sur-
prisingly, even when we excluded blood cancers, Notch signaling remained a predictor 
of response to PTX, along with Akt signaling (Fig. 6A). As a negative control for the util-
ity of method we performed enrichment analysis using genes determined to be signifi-
cant using t-test or those retained by elastic net (Additional file 13: Table S11, Additional 
file 14: S12). To confirm the connection between Notch and PTX response, we narrowed 
our focus on ovarian cancer, where PTX remains a standard of care. To get a general 
view of pathways associated with PTX-resistance, we identified genes expressed in ovar-
ian cancer cell lines that were highly correlated with PTX response (Fig. 6B). Of note, 
one of these genes was MECOM. The locus at chromosome 3q21 contains MECOM 
and encodes the MDS1 and EVI1 proteins, under the control of two separate promoters. 
These proteins have been implicated in leukemia development [34–36].

Recently, it was shown that MECOM interacts with PAX8, a transcription factor that 
is an oncogene for ovarian and kidney cancers and can serve as an indicator of PAX8 
transcriptional activity [37]. To determine the relationship with Notch signaling, we 

Fig. 6  Solid-cancer analysis of pathways that inform paclitaxel response. A GO Biological Processes pathway 
enrichment of genes contained within the top predictive modules. B Correlation of PTX response with 
expression of genes in ovarian cancer cell lines. C Max–min normalized gene expression of NOTCH3/
PAX8 genes in ovarian cancer cell lines (left). Response to PTX in ovarian cancer cell lines separated by the 
expression of four genes shown in the heatmap on the left (right). Higher AUC means more resistant to drug
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analyzed a published dataset where NOTCH3 was overexpressed in a murine ovarian 
surface epithelial cell line [38]. Interestingly, in this model, overexpression of NOTCH3 
resulted in a four-fold increase in MECOM. In support of the connection between Notch 
and PAX8 signaling, we found that other genes positively regulated by NOTCH3 (> four-
fold increase upon NOTCH3 overexpression), including NGLDC, SNTB1, and ITGB3, 
belonged to a the 29-gene PAX8 signature that was reduced upon PAX8 knockdown in 
multiple human ovarian cancer cell lines [37]. Profiling PTX response using a four-gene 
signature derived only from the NOTCH3 and PAX8 regulated genes, we observe that 
ovarian cell lines from CCLE with high NOTCH3/PAX8 transcriptional signature were 
more resistant to PTX (Fig. 6C). This observation suggests a previously unreported con-
nection between drug resistance to PTX and NOTCH3/PAX8 signaling.

Discussion
Machine learning approaches for modeling cancer drug response have shown prom-
ise in predicting cancer drug sensitivity but may not inform biological processes that 
underlie response. Existing strategies used to reveal this information include pathway 
enrichment on highly weighted genes prior to the first hidden layer in a deep neural 
network, that obtained from models such as decision trees, or those with high Shapley 
values of deep neural networks [9, 39–41]. In this study, we extract biological meaning 
from a machine learning model by combining multiple layers of feature selection with a 
ranking process performed through the support vector machine. Furthermore, instead 
of using all available genes, we only utilize genes that fall within curated pathways and 
group such genes within interacting modules—sacrificing performance for interpret-
ability. We demonstrate the utility of our approach with three test-cases. For each case, 
we also confirmed that standard analyses did not prioritize the same pathways that our 
approach did. Namely, we computed enriched pathways in genes that were differentially 
expressed between sensitive and drug resistant cell lines using the t-test. We also com-
puted enriched pathways in genes, selected by elastic net, that could best model drug 
response.

Our knowledge-guided machine learning analysis nominated lipid metabolism as an 
important biological process that drove sensitivity to ML210. ML210 kills cancer via 
induction of ferroptosis through covalent interactions with its target, GPX4. Inhibition of 
GPX4 results in uncontrolled PUFA oxidation leading to ferroptosis [27]. However, there 
are clear biological determinants of ML210 sensitivity as some cancer cells are exquisitely 
sensitive while others are ambivalent towards it. Our approach correctly prioritized lipid 
metabolism as an important determinant of response to GPX4 inhibition. In general, cells 
with high PUFAs relative to MUFAs are more susceptible to GPX4 inhibition [27, 28]. 
This trend was also found in the Cancer Cell Line Encyclopedia metabolomics analy-
sis, which demonstrated that the abundance of PUFAs was the most correlated with the 
genetic dependency on GPX4 [42]. Finally, it  is known that some cell lines can protect 
themselves from lipid ROS by upregulating the lipid saturation pathway [43].

In the context of BRAF inhibition, our approach identified Rac1/cytoskeletal signal-
ing as an important biological process underlying intrinsic drug resistance in cutaneous 
melanoma with oncogenic BRAF. Rac1 is a Rho family GTPase with diverse signaling 
properties including cytoskeletal regulation [44]. A mutated version of Rac1, RAC1P29S, 
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is a well-described driver of MAPK inhibitor resistance and metastasis in cutaneous 
melanoma [45–48]. Nevertheless, the Rac1 signaling axis can also drive resistance to 
MAPK inhibition [49, 50].

Our analysis of PTX-response suggests that inhibiting Akt-signaling may act syner-
gistically with anti-tubulin drugs–additional analysis confirmed significant correlation 
between two anti-tubulin drugs and two selective Akt inhibitors. Co-targeting Akt and 
microtubules has been previously proposed [51–53]. Elevation of Akt signaling has also 
been shown to be positively correlated with PTX response  in patients [54]. Here we 
provide -omics scale evidence that support this therapeutic strategy and the use of Akt 
pathway activation as a biomarker for PTX response. Our analysis also led us to a previ-
ously unreported connection between NOTCH3/PAX8 signaling and drug resistance to 
PTX.

Consistent with the finding that PAX8 is associated with PTX-resistance, patients with 
high PAX8 signature had worse overall survival [37]. Previous studies on PTX-resistance 
in ovarian cancer has implicated a critical role of cell adhesion in driving drug resistance 
and cell adhesion [55–57]. High expression of cell adhesion related genes was also iden-
tified using machine learning approaches to non-responders in patients. Consistent with 
these findings, both PAX8/MECOM and Notch regulated genes in ovarian epithelial 
cells enrich for cell-adhesion related pathways [37, 38]. Lastly, a deep learning algorithm 
developed by another research group also observed Notch signaling as an important 
predictor of PTX-response [39].

In summary, we developed a machine-learning approach to mine publicly available 
cancer pharmaco genomics data to generate hypothesis on biological pathways that 
underlie drug sensitivity. We tested our approach on inhibitors of GPX4, BRAF, and 
microtubules. Our approach revealed pathways that are consistent with existing knowl-
edge on drug resistance to GPX4 and BRAF inhibition, and which were not detected by 
standard analysis methods. Furthermore, our PTX analysis informs future studies aimed 
to enhance the efficacy of anti-tubulin drugs.

Conclusions
We have developed a machine learning approach to inform the biology underlying can-
cer drug response. Our approach identified already known biological pathways that con-
tribute to the drug response of ML210 and VEM/Dabrafenib. Our analysis also revealed 
a potentially novel connection between NOTCH3/PAX8 signaling and PTX drug 
resistance.
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uiowa.edu).
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