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Background
Discovering a new drug is a high-risk, time-consuming, and expensive process [1], a 
process that typically takes more than 15 years, costs $2.6 billion and is limited by less 
than 10% success rates [2, 3]. Therefore, there is strong interest to develop new efficient 
methods able to discover previously unknown activities of existing drugs to uncover 
new medical purposes outside the original scope, a process known as drug reposition-
ing or repurposing [4]. Drug repurposing is a promising alternative to traditional drug 
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discovery approaches, offering a shorter route to clinical development, bypassing several 
stages of clinical development [5] which have already been completed for the original 
target and reducing major risks, expense and time by several years [6]. The first major 
step in repositioning a drug is identifying possible potential target proteins by predicting 
valid DTIs [7].

Due to expensive and time-consuming laboratory experiments, limited availability of 
physical resources, and the complexity of integrating chemical and genomic spaces, just 
a small number of DTIs are experimentally validated. Therefore, accurate prediction of 
DTIs at large scale remains a challenge [8]. Recently, computational prediction meth-
ods based on machine learning (ML) principles have received increasing attention [9] 
because of their ability to integrate different types of biological data and analyse large 
numbers of possible interactions efficiently, leading to faster and cheaper assessments 
[10]. There is an urgent need for sophisticated computational modelling approaches 
[11] to limit the number of potential interactions which can be reasonably verifiable by 
in vitro screening [12].

Traditional computational methods in DTI prediction are mainly categorised in two 
types of strategies: molecular docking simulations and ligand-based approaches [13]. 
However, the applicability of docking simulations is limited by the availability of 3D 
crystal structures of target proteins which is still unknown for the majority of membrane 
proteins especially G-protein-coupled receptors (GPCR) [6]. Ligand-based approaches 
also suffer from low prediction rates when the number of known binding ligands is small 
[14]. To avoid the limitations of traditional methods, several ML-based models have been 
developed which achieved considerable success by translating large scale chemogenom-
ics data to a set of features and extracting latent patterns in DTIs [15]. The most popu-
lar group of ML methods for DTI prediction is similarity methods which incorporate 
target-target and drug-drug similarity metrics. These rely on a key underlying assump-
tion that similar drugs may tend to target similar proteins and vice versa [6]. Similarity-
based approaches have several advantages which include the ability to connect chemical 
and genomic spaces and the availability of well-defined similarity measures between the 
chemical structure of drugs and genomic sequences [16]. By integrating multiple types 
of similarities into a heterogeneous network, determining new DTIs can be formulated 
as a link prediction problem in graph analysis [8].

Graph embedding algorithms are popular methods recently used in graph analytics to 
represent graph structural properties as a set of low dimensional vectors [17] which can 
be introduced into ML models as input features. The use of embedding methods to infer 
different biological interactions such as drug-drug [18], protein–protein [19], and drug-
target [10] outperforms current state-of-the-art methods [18]. The “2vec” (short for “to 
vector”) models like “graph2vec”, “node2vec”, etc. are an important category of embed-
ding algorithms inspired by the “word2vec model” [20] a popular word embedding algo-
rithm in natural language processing, which used neural networks to learn word vectors 
from sentences [20]. The benefits conferred by representing DTI as a vector stem from 
its capability to incorporate heterogeneous chemical and genomic data into a unified 
space, in addition to the fact that different ML algorithms can handle numerical input 
features well. Researchers in recent years have developed different embedding methods 
for predicting DTIs, such as TriModel [21], DTI-HeNE [9] and DTiGEMS+ [10] based 
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on drug chemical structure and protein sequence to build similarity networks (details 
in Additional file 1: Related work). Another embedding-based method for DTI predic-
tion has looked into integrating multi-molecular associations such as protein, drug, dis-
ease, lncRNA, and miRNA from multiple databases into a heterogeneous network [22]. 
Besides embedding methods, a wide variety of computational algorithms have been pro-
posed and summarized recently [6, 10, 23].

Although these models achieved promising performance, the lack of experimentally 
validated negative interactions is a common limitation of almost all supervised learn-
ing methods [8]. To this end, usually non-interacting drug-target pairs are assumed as 
negative samples. This affects the efficiency of developed models in real-life applications 
because it could include some positive interactions that have not been tested yet [21]. 
Moreover, as discussed previously, since the number of known DTIs is considerably 
smaller than unknown drug-target pairs (labelled as negative samples), it leads to imbal-
anced classification and skewed results. Therefore, selecting realistic negative inter-
actions was highlighted as one of the important tasks in future developments of DTI 
prediction [24].

We have previously reported mathematical optimization as means of predicting the 
affinity of DTI [25, 26]. In this paper, we developed a computational framework that 
employs data from multiple DTI sources and formulates the problem of deriving new 
DTIs as link prediction. We used two datasets separately to evaluate and extract novel 
DTIs; the Golden Standard and ChEMBL datasets. The link prediction methodology 
employs the following stages: (1) creation of a drug-drug similarity network (2) creation 
of a protein–protein similarity network, (3) feature extraction using graph embedding of 
networks in (1) and (2) via node2vec, and defining interactions by concatenating pairs of 
drug and target features, (4) a classification scheme that employs the embedding features 
and gradient boosted trees to predict new DTIs. Method performance is based on an 
external validation metric of the classification model, evaluation of prediction is assessed 
via molecular docking of drugs predicted to bind the protein target and different case 
studies of newly predicted DTIs are discussed.

Materials and methods
The overall computational framework is shown in Fig. 1 and includes data pre-process-
ing, implementation of the proposed methodology and evaluation. As described below, 
first the performance of our approach is compared to similar methods from the liter-
ature on a standard benchmark dataset, and then a dataset containing experimentally 
verified positive and negative interactions was collected to detect more realistic DTIs 
and drug repurposing.

Standard benchmark dataset

A “Golden-standard dataset” was introduced by Yamanishi et al. [27, 28] and has been 
used previously as a reference for predicting DTIs and comparing the performance of 
different models [1, 14, 21, 23, 29]. It consists of a binary drug-target edge-list MDTI 
(Fig. 1: a3) and two similarity matrices in chemical and genomic spaces MDDS (Fig. 1: a1) 
and MPPS (Fig. 1: a2) respectively. Since experimentally validated negative interactions 
are not available, interactions between all possible drug-target pairs where a known 
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interaction does not exist, were considered as the set of negative interactions in most 
studies [21, 27, 30]. Details of the “Golden-standard dataset” are given in Table 1a and 
Additional file 2.

Fig. 1  DT2Vec pipeline. a1, a2 Drug-drug (DDS) and protein–protein (PPS) similarity graphs based on 
similarity used as input of embedding method to generate vectors. a3 Graph of DTIs. b Graph-embedding 
developed by node2vec to map nodes (in DDS and PPS) to vectors (in this figure drugs and target mapped 
to 2D-vector, x and y). c Known DTIs (positive and negative) were divided into 10% independent dataset 
(external testset) and 90% internal test and train (tenfold cross-validation). d Drug and protein vectors 
were concatenated and labeled as positive (1) or negative (0) and an XGBoost model was trained on the 
cross-validation datasets. The best model over the tenfold cross-validation on the internal testset was 
selected and applied on the external testset. The XGBoost model in c, d was repeated 5 times and the 
average performance of internal and external testsets was reported

Table 1  Dataset details (a) Golden-standard dataset (b) ChEMBL-based dataset

* pChEMBL value ≥ 5.5, **pChEMBL value > 0, †Development-dataset, ‡Experimental-dataset

(a) Golden_standarad_dataset # Drug # Target # Negative/
unknown 
DTI

# Positive 
interaction

Class ratio

Enzyme (E) 445 664 292,554 2926 0.01

Ion channel (IC) 210 204 41,364 1476 0.04

G-protein-coupled receptors 
(GPCR)

223 95 20,550 635 0.03

Nuclear receptor (NR) 54 26 1314 90 0.07

Total 791 989 777,172 5127 0.01

(b) ChEMBL_dataset # Drug # Target # Real 
negative 
DTI†

# Positive 
interaction*, 

†

Class ratio

CheMBL 548 556 2057 1721 0.84

# Weak DTI** # Unknown DTI‡

532 300,378
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In order to obtain a balanced dataset of positive and negative interactions, in most 
studies unknown interactions were selected randomly and labelled negative [6, 10, 21]. 
However, this set of randomly selected cases may include some real positive interactions 
that are yet unknown, which may lead to artefacts in DTI prediction [1, 23]. Therefore, in 
this case, the Recall metric (i.e. true positives/(true positives + false negatives)) can bet-
ter reflect the performance of the models, as it is calculated on validated positive labels. 
In detecting new DTIs, false-positive predictions (i.e. negative interactions that were 
predicted to be positive) may be reported as newly discovered interactions [10, 14, 21, 
28], thereby creating problems in distinguishing between false-positives caused by model 
error and newly discovered interactions. Therefore, although the Golden-standard data-
set is convenient as a common benchmark dataset for comparing the performance of 
different developed models, its limitation is that it only contains experimentally vali-
dated positive interactions which are not suitable for training a realistic DTI prediction 
model [15]. Screening reliable true negative interactions was recently highlighted as one 
of the critical steps in improving the prediction accuracy of developed methods [24, 29] 
and this point is better addressed through the use of the dataset described below.

A realistic dataset for drug repurposing extracted from the ChEMBL database

To address these limitations, a DTI dataset was collected from the ChEMBL repository 
[31] that contains experimentally validated negative and positive interactions. In litera-
ture, an activity threshold of pChEMBL of 5.0 is typically used to label an interaction 
as active. In chemical assay experiments, the acceptable model results should be higher 
than 10 μM affinity (or pChEMBL = 5) [32]. To ensure that the positive interactions are 
strong and consequently offer more accurate prediction results, activity greater than 5.5 
was chosen [33]. Positive (pChEMBL ≥ 5.5) and negative (labelled as inactive interac-
tions in ChEMBL repository) interactions form a binary edge-list MDTI (Fig. 1: a3).

Drug similarity measures were calculated through MACCS [34] based on structural 
information which can codify 166 structural fingerprints in bit positions. Then, we 
measured the similarity between drug pairs using the Tanimoto coefficient in the range 
of 0 to 1 [35]. Open Babel [36] in Python 3.7.3 was used to generate the drug-drug 
similarity network MDDS (Fig. 1: a1) [37]. The protein similarity network, MPPS (Fig. 1: 
a2), was computed using sequence alignment [38], implemented through the parallel-
ised version of protein similarity calculation using the “protr” package in R 4.0.2 [39]. 
Additional file 3: Figure S1 and Additional file 2 describe steps performed to collect the 
ChEMBL-based dataset. Known positive and negative DTIs comprise the development-
dataset (Table 1), a set of interactions used to build the ML model. All possible drug-
target pairs with no known (active or inactive) interactions in ChEMBL (Table 1) were 
defined as the ‘experimental-dataset’ and were used for predicting interactions and per-
forming drug repurposing.

Development and evaluation of the DT2Vec model

We report DT2Vec, an ML method for drug-target interaction prediction, trained on 
features extracted using graph embeddings. DT2Vec was implemented and evaluated on 
the Golden-standard dataset as well as experimentally validated datasets extracted from 
ChEMBL. The first dataset was used as a benchmark to validate the performance of the 
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developed model through comparison with three state-of-the-art open-source chemog-
enomic algorithms that employed the Golden-standard database, namely DNILMF [40], 
DT-Hybrid [41], DDR [14]. These methods are based on graph similarity algorithms 
and are reported as top-performing methods in DTI prediction [1, 10]. Details of these 
methods are in Additional file 1: Related work. After benchmarking, the DT2Vec model 
was implemented on the ChEMBL based dataset which included first training the model 
on known positive and negative interactions and then applying the model on unknown 
DTIs to detect novel interactions.

Graph‑based feature generation using node2vec

The performance of ML algorithms is highly dependent on choosing a set of informative 
and discriminative features. Many ML methods benefit from semantically meaningful 
features, automatically extracted from highly structured objects like graphs which not 
only reduce the manual feature engineering effort but also enhance the predictive capa-
bility of the model. As shown in Fig. 1b, in order to extract features, node2vec [42], a 
semi-supervised feature learning algorithm was applied to the weighted graph of drug-
drug and protein–protein similarities separately to embed drug and target nodes into 
a continuous vector space with n-dimensions (as an example, in Fig. 1b the embedded 
vectors, Vdrug and Vprotein are two-dimensional). Based on recent ML research, node-
2vec outperforms other existing state-of-the-art methods in node embedding [17, 42, 
43]. Recently, node2vec showed promising results on DTI prediction by mapping drug, 
protein, disease, lncRNA and miRNA association networks to vectors [44]. We used 
node2vec implemented in Python 2 using the source code available in GitHub [43]. DTIs 
were defined by concatenating the embeddings of the drug and protein similarity net-
works and then were used as input features for an ML classifier. The drug-drug and pro-
tein–protein similarity networks (Fig. 1a, b) were clustered using Louvain [45] to obtain 
a topological characterisation of the structure of the networks and networkX [46] was 
used to visualize the networks. Then the drug and target embedded vectors are visual-
ized based on two principal components using PCA [47] to illustrate how the embed-
ding vectors represent the communities in the networks.

Data‑partitioning and cross‑validation

There are several strategies that can be used in validating DTI prediction models [48]. 
Cross-validation (CV) schemes are a robust strategy to estimate how a model general-
izes, whereby data is split multiple times to increase the variation in the training and 
testing data. The developing processes employed internal and external testing whereby 
the drug-target edge lists, MDTI, were split into 90% internal training (80% train, 10% 
internal-test) and 10% external testset, repeated 5-times tenfold CV (Fig. 1c). The best 
model was selected based on the internal test set and assessed on the external testset 
which is blind to the process of developing the model, to obtain a more realistic rep-
resentation of generalised performance [49]. DT2Vec was trained and tested on the 
Golden-standard (positive and randomly selected unknown interactions) and ChEMBL 
(positive interactions with pChEMBL ≥ 5.5 and experimentally validated negative inter-
actions, named ‘development_dataset’) datasets. After validating the performance of the 
method using CV, the final model is built on the whole data. Then the final model on 
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the ChEMBL dataset was applied to the unknown ChEMBL interactions (named ‘experi-
mental-dataset’) to detect novel DTIs. Details are shown in Additional file 4: Fig. S2.

Machine learning‑based link classification

DTIs were represented as a 2n-dimension vector (n = 100, Fig.  1d shows n = 2 as an 
example) by concatenating the drug and target embedding features and labelled as 
“active” or “inactive” as described previously [17]. The DTI prediction problem was for-
mulated as a binary classification problem built on XGBoost [8] (Fig. 1d). XGBoost is a 
stochastic gradient boosting algorithm which combines weak ensemble decision trees 
and was selected due to its high speed, accuracy, and ability to handle imbalanced data-
sets [4]. Moreover, by taking advantage of XGBoost returning the prediction probability 
score, we were able to rank DTIs based on the confidence score that the model provides. 
Grid-search was performed on training set samples within each cross-validation fold to 
find the best set of hyperparameters. The model was implemented in Python 3.7.3, using 
XGBoost 0.90 with hyperparameters of maximum tree depth = 4, subsample ratio = 1, 
minimum child weight = 2, and learning-gamma rate = 0.8. To evaluate the performance 
of the model, the average Precision, Recall, and fβ-score across all cross-validation sets 
are calculated.

Extracting new DTIs

In order to demonstrate the use of the DT2Vec for drug repurposing, novel DTIs were 
predicted from a dataset of all drug-target pairs in ChEMBL where interaction is not 
known (experimental-dataset). After benchmarking the model through cross-validation, 
DT2Vec was built on known DTIs in the development-dataset, before being applied to 
the experimental-dataset. Selected newly predicted DTIs by our method were assessed 
by performing docking. First, predicted DTIs were selected by two criterial: (1) a proba-
bility score by XGBoost ≥ 0.99%, and (2) DTIs having drugs in phase-4 clinical trials. The 
amino-acid sequence of protein targets of interest was used to obtain PDB structures for 
docking (https://​www.​rcsb.​org/). Chains attributed to homo sapiens were used to cal-
culate the similarity score based on sequence alignment using protr [39] with default 
settings in R 4.0.5. SwissDock [50] was used with default parameters to perform drug-
protein docking.

Results
Implementation of DT2Vec model on the benchmark Golden standard dataset 

and comparison with other methods

We developed and evaluated our proposed embedding-based DTI model (DT2Vec) 
on the benchmark Golden-standard dataset (Table 1a) [27]. Node2vec was used on 
DDS and PPS to map them to 100-dimension vectors which reported as the best vec-
tor size for preserving network neighborhoods of nodes [10, 17, 42, 43]. To obtain 
a topological characterisation of the networks, the drug and protein similarity net-
works were clustered which consisted of 4 (with 360, 203,181, and 47 drug members) 
and 7 (with 484, 204, 120, 95, 42, 26, and 18 protein members) drug and protein 
communities respectively as shown Additional file  5: Fig. S3 a-1, a-3. Additional 
file 5: Figure S3 a-2, a-4 show PCA of drugs and targets based on embedded vectors 

https://www.rcsb.org/
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as features and colours indicating cluster membership in DDS and PPS networks. It 
was observed (Additional file 55: Fig. S3a) that the embedded vectors based on the 
Golden-standard dataset can represent the topological features of networks well. In 
Additional file 6: Fig. S4a, the PCA of embedded vectors in the protein target simi-
larity dataset is shown, coloured according to protein type (i.e. enzymes, GPC recep-
tors, nuclear receptors, and ion channels).

To create DTI labels in the Golden-standard dataset, as known negative samples 
are not available, unknown interactions were randomly selected to create negatively 
labelled samples. This assumption leads to unreliable false-positive predictions 
(and therefore Precision, i.e. true-positives/(true-positives + false-positives)), so the 
f2-score, which weighs Recall higher than Precision, was deemed suitable. However, 
since a trade-off between Precision and Recall exists, the goal of the model should 
be high Recall without sacrificing Precision. The performance was measured based 
on tenfold cross-validation which was repeated five times and compared with three 
methods DNILMF [40], DT-Hybrid [41], DDR [14]. The DT2Vec model achieved 
f2-score, Recall, Precision average of 91.69% (1.5), 92.63% (0.82), 88.13% (0.5) which 
was better than DNILMF with 87.92% (1.4), 87.84% (1.63), 88.27% (1.84), DT-Hybrid 
with 72.7% (1.2), 70.76% (1.55), 81.72% (0.95) and DDR with 89.87% (1.25), 89.83% 
(1.4), 90.08% (1.07) respectively.

Development of DT2Vec on ChEMBL interactions

A DTI dataset was collected from ChEMBL containing experimentally validated 
negative and positive interactions in order to offer a more realistic interaction set 
(Table 1b). ChEMBL DDS and PPS networks were clustered to 4 (with 193, 150, 105, 
and 100 drugs) and 5 (with 304, 153, 86, 8, and 5 proteins) communities respectively 
(Additional file 5: Fig. S3 b-1, b-3). Additional file 5: Figure S3 b-2, b-4 shows PCA 
of drugs and targets using the embedding vectors colored based on the cluster mem-
bership, showing that node2vec vectors can represent the topological properties of 
the original networks well. For reference, Additional file  6: Fig. S4b shows PCA of 
protein target embedding vectors colored according to protein type.

Interactions in the ChEMBL dataset were divided into (1) a development-dataset com-
prising 2057 negative and 1721 positive (pChEMBL value ≥ 5.5) interactions, and were 
used to train and test DT2Vec, (2) an experimental-dataset, comprising all unknown 
interactions (a total of 300,378), which were used to predict and extract novel interac-
tions and evaluate performance on independent datasets. In contrast to the benchmark 
Golden-standard dataset, in ChEMBL data the DT2Vec model was trained with experi-
mentally verified negative interactions, therefore false-positive predictions and the Pre-
cision metric are more realistic, and the f1-score (which weights Precision and Recall 
equally) was used. The average performance through 5 times tenfold CV on the external 
test sets was calculated and the model achieved high Precision of 92.79% (0.02) show-
ing low false-positive predictions and indicating that the model can accurately predict 
novel DTIs. The model also demonstrated promising results on Recall, f1-score, AUPR 
and AUC with 92.88% (0.02), 92.82% (0.01), 89.42% (0.02), and 94.09% (0.01) respectively 
(Additional file 7: Fig. S5 shows ROC plot across 5 runs).
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Extracting and evaluating DTIs

In order to demonstrate the use of the DT2Vec for drug repurposing, novel DTIs were 
predicted from a dataset of all drug-target pairs in ChEMBL where interaction is not 
known (experimental-dataset). Figure 2 shows DTIs as a heatmap where all known drug-
target interactions (dark blue for positive or red for negative) and predicted DTIs (light 
blue for positive or red for negative) are mapped, with proteins in columns coloured 
according to subgroup and drugs in rows coloured by chemical similarity. By comparing 
known and predicted DTIs in Fig. 2, we illustrate that prediction via DT2Vec can extend 
beyond the ‘similar drug for similar target’ principle, which has traditionally been the 
basis of various drug repurposing efforts.

To further illustrate the nature of predicted DTIs via DT2vec, the top novel positive 
interactions where a drug has been approved at phase-4 clinical trial are shown (Fig. 3a). 
In the development-dataset (known DTIs), 387 (out of 556) proteins have known posi-
tive interactions and only 162 can be associated with phase-4 drugs (394 without any 
approved drugs). Figure  3b shows the top predicted positive interactions for proteins 
without any phase-4 drugs in this dataset, which represent cases where repurposing may 
be highly promising.

Drug-target docking was used to investigate the validity of some newly predicted DTIs 
and shed light on the relevant molecular interaction. Figure 4 and Additional file 8: Fig. 

Fig. 2  Heatmap to show the mapping of known DTI interactions (dark blue, dark red) to predicted 
interactions (light blue, pink), labeled based on protein subgroups (columns) and drug network clusters 
(rows)
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S6 show docking results and visualised with UCSF Chimera for new predicted DTIs. 
The free energy of binding (deltaG) for the first 10 docking groups is shown in Addi-
tional file 8: Fig. S6a. In general, negative deltaG indicates favourable binding of drg to 
the respective protein. Among 556 target proteins in the ChEMBL dataset, 77 proteins 
cannot be associated to a known 3D structure, indicating challenging cases where ML-
based DTI prediction can be particularly advantageous for drug discovery. Additional 

Fig. 3  Illustration of key interactions between drugs (left) and protein targets (right). a Predicted 
highly-ranked positive interactions for phase-4 drugs with interactions colored based on protein type. b 
Phase-4 drugs repurposed for protein without any approved drugs based on the selected dataset. Colours 
show the type of protein target

Fig. 4  Drug-target docking by SwissDock for new DTIs, showing binding with the lowest deltaG
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file 10: Table S1 shows predicted phase-4 drugs (approved drugs) for the set of proteins 
with no known 3D structure. The next section discusses the evaluation of drug-target 
interactions in more detail.

Discussion
We report a novel methodology for drug repurposing based on graph embedding and 
below we evaluate our method by focusing on case studies of newly predicted DTIs that 
we identified. In this section, we provide extensive discussion of novel DTIs that are 
associated with approved drugs with multiple highly positive new interactions, cancer-
related targets [51], and proteins without 3D-structure data [6] where drug discovery is 
more challenging and therefore of particular interest.

As demonstrated in Fig.  3a, based on DT2Vec prediction, IBRUTINIB 
(CHEMBL1873475) targeted multiple proteins which are important in repurposing. 
IBRUTINIB is a known inhibitor of Bruton’s tyrosine kinase (BTK). By acting down-
stream of the B cell receptor (BCR), IBRUTINIB can block malignant B cell signalling 
and activation and lead to apoptosis [52, 53]. Based on the known interactions in devel-
opment-dataset, IBRUTINIB can bind to eleven proteins (BTK, BLK, PSCTK4, BMX, 
EGFR, ERBB2, ERBB4, PTK4, CDHF12, ITK, and ERG). In predictions obtained by 
our method, it is indicated that it targets eight proteins that have no approved drugs 
based on our dataset (Fig. 3b). Emerging evidence shows that some of these genes, such 
as CHEMBL4685 (IDO1) and CHEMBL3286 (PLAU), are linked to cancer develop-
ment. Specifically, IDO1, a metabolic enzyme involved in tryptophan metabolism and 
an interferon-induced checkpoint molecule associated with immune suppression, has 
been linked to many types of cancer, such as acute myeloid leukaemia, ovarian cancer 
or colorectal cancer. It is indicated that IDO1 is part of the malignant transformation 
process, helping malignant cells escape eradication by the immune system. Inhibiting 
IDO1 could increase the effect of chemotherapy as well as other immunotherapeutic 
protocols [54–57]. In the case of PLAU, elevated expression levels are found to be cor-
related with malignancy, it is more commonly associated with cancer progression than 
the tissue plasminogen activator (tPA) [58] and inhibitors to this target have been sought 
as anticancer agents. It is noted that clinical evaluation of these agents is hampered by 
incompatibilities between human and murine biology. Moreover, urokinase is used by 
normal cells for tissue remodelling and vessel growth, which necessitates distinguishing 
cancer-associated urokinase features for specific targeting [59, 60]. Molecular docking 
was used to validate the interactions between IBRUTINIB and these two protein targets, 
showing favourable interactions where IBRUTINIB can bind to one region in PLAU and 
three regions in IDO1 (Additional file 8: Fig. S6 ab,1-2).

In another example, among phase-4 clinical trial drugs in the development-dataset, 
SORAFENIB (CHEMBL1336) was linked to having one of the highest positive inter-
actions. SORAFENIB is a kinase inhibitor approved for treating patients with inoper-
able liver cancer [61] and metastatic renal cell carcinoma. DT2Vec predicted five new 
targets for this drug (probability score ≥ 0.99%): ERBB4 (CHEMBL3009), ADAM10 
(CHEMBL5028), PSMB5 (CHEMBL4662), PLA2G1B (CHEMBL4426) and PDE4C 
(CHEMBL291). Specifically, ERBB4 has been recently found to be expressed in several 
tumours and tumour cell lines and its inhibition can slow tumour growth [62]. ADAM10 
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is likely to be involved in breast cancer progression, especially in the basal subtype [63]. 
PSMB5 is associated with proliferation and drug resistance in triple-negative breast can-
cer [64]. Recent studies point to a relationship between PLA2G1B [65] and PDE4C [66] 
with cancer. The docking results validating the interactions are shown in Fig. 4 (details 
in Additional file 7: Fig. S5 a,b3-7). Therefore, there is considerable evidence to support 
repurposing SORAFENIB to these new targets.

Immune evasion in cancer is an unsolved problem affecting the efficacy of immuno-
therapies and decreasing patient survival [67]. We selected the cases of ADAM17 and 
MMP14 targets to illustrate the potential of our methodology, as they have been impli-
cated in tumour evasion through metalloproteinase function and catalysis of cleavage 
of endogenous MHC class I-related chain molecule (MIC) A and B [68]. NK cells rec-
ognise and become activated by interacting with MIC via the NKG2D receptor. The 
soluble form of MIC (sMIC) can also bind to NKG2D, which is internalised and subse-
quently reduces NK anti-tumoural functions [69, 70]. Two PDB entries with the same 
similarity score have been found for ADAM17 (2I47 and 3G42); 2I47 was selected due 
to better resolution and chain A was used for docking [71]. Three PDB entries were 
identified for MMP14 with the same similarity score (3C7X, 6CLZ, 6CM1) and 3C7X 
was selected [72]. There were 17 drugs predicted to interact with ADAM17 (Additional 
file 11: Table S2a) and 28 for MMP14 (Additional file 11: Table S2b). The DDS was used 
to assess the similarity between structures predicted to bind to each of the targets. This 
was in order to identify any bias towards a common core structure shared between 
drugs, which could indicate that drugs were identified only based on structural similar-
ity. We note that some drugs predicted by the method are structurally different accord-
ing to fingerprint similarity, which increases the number of potential therapeutic options 
(Additional file  9: Fig. S7). CHEMBL1289926, CHEMBL1873475, and CHEMBL18002 
were identified as having the highest probability of interaction with ADAM17. Similarly, 
CHEMBL1289926, CHEMBL1873475 and CHEMBL1789941 were predicted to have 
positive interaction with MMP14. The docking results of these new interactions were 
shown in Fig. 4 (details in Additional file 8: Fig. S6 a,b8-13). The deltaG for the first 10 
groups of molecules indicates favourable binding.

Other interesting examples are proteins without known 3D-structure for which drug 
repurposing can have a significant impact. For example, EPHA6 (CHEMBL4526), plays 
an important role in the formation of breast cancer and poses a new therapeutic tar-
get for patients with ER-negative and HER2 positive [73]. Based on DT2Vec prediction, 
four approved drugs AXITINIB (CHEMBL1289926), IBRUTINIB (CHEMBL1873475), 
DORZOLAMIDE (CHEMBL218490), AFATINIB (CHEMBL1173655), and DONE-
PEZIL (CHEMBL502) can bind to EPHA6 with the probability score ≥ 0.99%. AXITINIB 
has been shown to offer promising results on inhibiting the growth of breast cancer in 
animal models [74], renal cell carcinoma in clinical trials [75] and several other tumour 
types [76]. As mentioned before, IBRUTINIB is known as a cancer growth inhibitor and 
inducer of apoptosis [52, 53]. AFATINIB is also approved as a treatment for lung can-
cer [77], breast cancer and other cancer types [78]. Finally, DORZOLAMIDE has shown 
antitumor activity which affects TXNIP-dependent tumour suppression pathways 
and also causes downregulation in the level of bcl-2 in cancer cells. A previous study 
also provided evidence for synergistic antitumor activities of DORZOLAMIDE and 
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mitomycinC against Ehrlich ascites carcinoma tumour growth in  vivo, and this might 
offer a potential combination to evaluate in future clinical studies [79]. It shows that the 
method was able to suggest new tumour inhibitor drugs for a protein of unknown 3D 
structure with a crucial role in cancer [80].

Conclusion
In overview, drug repurposing is a promising avenue in drug discovery, supporting the 
discovery of new protein targets for an approved drug. The availability of large scale 
chemogenomic data, coupled with the efficiency of ML methodologies, can support 
drug discovery in a time-efficient and cost-effective manner. In this study, we present a 
machine learning pipeline that combines network embedding and gradient boosted tree 
classification, to cast a link prediction strategy for detecting new DTIs. The model was 
implemented and validated via mining two different drug-target datasets, and evalua-
tions of DTIs included molecular docking simulations and reviewing the literature. A 
key advantage of our method is that it does not require a priori 3D structure informa-
tion, and relies solely on drug chemical structures and protein sequences for propos-
ing promising repurposing cases. We note that predicting new and previously unknown 
DTIs is not only important for drug repositioning purposes, but can also improve our 
understanding of drug side effects which are usually caused by unexpected interactions 
of drugs with off-target proteins.
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