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Introduction
Drug–Drug Interactions (DDIs) are pharmacological reactions occurring in human bod-
ies when two or more different drugs are taken together. These reactions may be ben-
eficial or harmful to patients. According to the report released by the US Centers for 
Disease Control and Prevention in 2010, about 10% of patients in American is under 
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taking five or more medications [1], nearly twice as many as in 2000. During the same 
period, the number of people taking at least two drugs increased from one quarter to 
one third of the population. Similar statistics are also reported throughout Europe [1]. 
However, the fact that many DDIs cannot be identified during clinical trial phases, 
increases the risk of adverse drug reactions (ADRs). A report from the American Acad-
emy of Medicine states shows that about 44,000 to 98,000 people died each year due to 
medication errors. Among the death cases, about 7000 deaths are caused by ADRs [2], 
which have become the fourth leading cause of death in the US behind heart disease, 
cancer and strokes [3]. Therefore, it is extremely important to predict unknown DDIs 
before medications are approved or administered. However, it is a high cost to detect 
DDIs by biological or pharmacological assays. DDIs prediction by computational meth-
ods can assist in identifying potential DDIs during clinical trials [4].

In terms of the pharmacological need, DDIs prediction can be divided into single-type 
prediction and multi-type prediction. The former task can be seen as a binary classifi-
cation, which predicts whether an interaction between two drugs or not. So far, many 
DDIs prediction methods focus on this type of task [5–8]. The task of multi-type DDIs 
prediction can be seen as a multi-class classification, which not only predicts whether 
an interaction between two drugs exists or not, but also outputs its specific type. For 
this task, several methods, especially deep learning-based methods, have been exhibit 
their potentials. Ryu et  al. [9] and Ma et  al. [10] use deep neural networks and graph 
autoencoder models to perform the multi-type DDIs prediction respectively. Zitnik et al. 
[11] construct a heterogeneous network integrating DDIs and Drug–Protein Interac-
tions (DPIs), then use graph convolutional neural networks to learn the embedding rep-
resentation of drugs to predict interaction types. Lin et al. [12] propose a MDF-SA-DDI 
model, which is based on the multi-source drug fusion, multi-source feature fusion and 
transformer self-attention mechanism to predict the potential multi-type DDIs.

The above-mentioned methods only pay attention to the scenario that requires to infer 
new interactions between drugs having approved interactions. Since DDIs are usually 
organized into a network [13], the scenario can be regarded as the ordinary link pre-
diction in network science. Thus, drugs can be represented as vectors by embedding 
the DDI network and closed drugs in the embedded space are considered as interac-
tion pairs. However, these methods cannot handle the cold start scenario that requires 
to predict interactions for new drugs not in the DDI network. Cold-start DDI prediction 
falls into two categories: S1 and S2. [14, 15]. S1 predicts interactions between new drugs 
and the drugs in the network while S2 predicts interactions between new drugs. A toy 
example is shown in Fig. 1.

The main obstacles of cold start DDI prediction are generating the embeddings of new 
drugs. Compared with the ordinary DDI prediction, the cold-start DDI prediction faces 
the difficulty that new drugs have no connections with the existing drugs in the DDI net-
work. Therefore, we cannot utilize the network topology to generate embedding repre-
sentations for new drugs. Some researchers are currently attempt to address this issue by 
bridging drug chemical or pharmacological properties to drug embeddings. For exam-
ple, Shi et al. [14] use SVD method to get the embedding representation of drugs, then 
conduct the single-type DDI predictions in the cold start conditions S1 and S2 . Celebi 
et  al. [15] evaluate the performance of several knowledge graph embedding methods, 
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including TransE, for single-type DDIs prediction in S1 and S2 . Yu et al. [16] use a non-
negative matrix factorization method to predicate the single-type DDIs in S1.

In this paper, we propose a computing model for single-type and multi-type DDI pre-
dictions in cold start scenario, named as CSMDDI. In this model, we use RESCAL-based 
method to get the embedding representations of drugs and DDI types and then learning 
a mapping function to bridge the drugs attributes to their embeddings to predict DDIs. 
The main contribution of CSMDDI contains the development of a generalized frame-
work to predict the single-type and multi-type of DDIs in the cold start scenario, as well 
as the implementations of several embedding models for both single-type and multi-
type of DDIs.

The rest of paper is organized as follows. Section 2 introduces the data selection and 
statistics. Section  3 presents the overall procedure of CSMDDI, including embedding 
representation learning, mapping function learning and predictors. Section 4 validates 
the performance of CSMDDI. Section 5 concludes our findings.

Data
The data used in this paper is extracted from DrugBank database (Version 5.1). 
DrugBank states DDI entries by sentences. For example, the interaction between 
Bivalirudin (DrugBank ID, DB00006) and Aceclofenac (DrugBank ID, DB06736) is 
given by “Aceclofenac may increase the anticoagulant activities of Bivalirudin”. We 
can manually identify a tuple (Aceclofenac, Bivalirudin, the anticoagulant activi-
ties, increase) in form of (drug1, drug2, mechanism, action). The “mechanism” and 
“action” are combined as a reaction type, for example “the anticoagulant activities 
increase” is the type of DDI between the drug pair (Aceclofenac, Bivalirudin). In 
order to extract all the reaction types from these sentences in DrugBank, we use 
StanfordNLP tool [17] to do this extraction. Detailed extraction procedures can be 
found in reference [18]. After extraction, we remove the drugs that react with less 
than 20 drugs to relieve the impact of too many reaction types on model predic-
tions. And the final frequency distribution of all types is shown in Fig. 2 (all types 
are sorted by quantity). It can be seen that in Fig.  2, the imbalance of all types is 
clearly significant and the first five types account for large proportions in the whole 

Fig. 1  DDIs prediction in cold start S1 and S2. Blue nodes represent the existing drugs, and the lines between 
drugs represent their interactions, in which different colors represent different link types. The drugs above (in 
blue) are existing drugs in the DDIs network, and the one below (in yellow) are the new drugs. The cold start 
problem S1 refers to the prediction of interactions between the new drugs and the existed drugs, while S2 
refers to the prediction of the interaction between two new drugs
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space. In addition, we collected a set of binding proteins of each drug, including car-
riers, transporters, enzymes and targets (shorted as CTET) [19, 20]. After removing 
some proteins who have no interactions with the all drugs, there are total 1493 kinds 
of CTET proteins remaindering. We use the 1493 CTET proteins to code each drug 
into a fixed-length binary feature vector. Namely if drug di binds protein pj in CTET, 
then the j-th element in di ’s feature vector is 1, otherwise is 0. The vector example of 
drug’s binding with CTET protein is shown in Table 1.

Finally, the summary of the collected data is as follows: the DDI network contains 
1317 drugs, which are represented as 1493-dimensional binary indicating vectors of 
binding CTET proteins, and 198,697 DDIs, which are grouped into 86 pharmaco-
logical types (Additional file 1).

Method
The computing framework of CSMDDI model contains three steps which are 
detailed in Fig. 3. The first step is to learn the embedding representations of drugs 
(existing drugs) in the DDI network. Several state-of-the-art embedding methods 
are accommodated, including SVD [14], GAE [21], TransE [22] and RESCAL [23]. In 
this step, each drug in the DDIs network is embedded as a vector. The second step is 
to learn a mapping function, which bridges drugs’ attributes to their embedding rep-
resentations and is generated from existing drugs. Sequentially, we apply the map-
ping function on the attributes of new drugs, which are not in the network, to obtain 
their embedding representations. This step is the core to handle the cold start sce-
nario. The third step is to predict single-type and multi-type interactions between 
new drugs and existing drugs. Taking the embedding vectors of an existing drug and 
a new drug as the input, the prediction score is output by the predictor, a higher 
score indicates a higher probability of the interaction occurrence in this drug pair.
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Fig. 2  Frequency distribution of DDI types

Table 1  Drug attribute feature: CTET

Polypeptides

P1 P2 P3 … P1492 P1493

Universal Protein 
Resource identifier

P02768 O15540 P02753 … Q8NEC5 P00480

Drugi 1 0 1 … 1 0
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Problem formulation

Here we briefly explain the notation to be used in the following sections and give the goal 
of DDI predication. Giving an undirected DDI network, in which nodes represent drugs 
and edges represent interactions. Suppose there are n drugs, represented as D = {d1, d2, 
…, dn}. The adjacency matrix of the DDI network is represented by A = aij ∈ Rn×n , where 
aij = 1 if there is an interaction between drug di and drug dj, otherwise aij = 0.

Drug attributes used in this paper are the drug binding proteins. Each drug can be rep-
resented as a CTET binary vector Fi = {fi1, fi2, …, fip} and all the drugs in the network are 
characterized as a matrix F ∈ Rn×p . Let the embedding vector of drug di be Ei = {ei1, ei2, 
…, eid}, where d is the dimension of learned embedding vectors, and the matrix E∈Rn×d 
be the embedding matrix of the all drugs. The representation of new drugs is same as the 
existing drugs, excluding their subscript is x or y (see Fig. 1).

The goal of CSMDDI model is to determine the DDI occurrence and their interaction 
types between existing drug di and new drug dx or between two new drugs dx and dy.

Embedding learning

The result of DDI predictions depends highly on the representations learned by the 
embedding learning part (the first part of Fig. 3). Therefore, it is important to select a 

Fig. 3  Computing framework of CSMDDI model. Embedding learning will learn the embeddings of the 
all existing drugs and DDI types. Mapping function learning will learn a mapping function between DDI 
network topology and drug’s attribute. Prediction will use the learned embedding vectors of a drug pair 
(one is existing drug and another is new drug, or two of them are new drugs) as the input, and then choose 
a predictor to output their prediction score. A higher score indicates a higher probability of this interaction 
occurrence
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good network embedding method. In order to get the embedding of drugs and interac-
tion types simultaneously, we choose RESCAL model as the baseline embedding method 
to learn their representation. RESCAL [23] is a bilinear semantic matching model in rela-
tional learning. Suppose there are n nodes and m relationships in a relational network, 
adjacency matrix A(k) ∈ Rn×n, k = {1, 2, …, m} represents k-th relationship in the network. 
If node i and node j have a connection in the k-th relationship, then its element a(k)ij = 1 , 
otherwise a(k)ij = 0 . All adjacency matrices of these m relationships can be stacked up to 
the third dimension to form a three-dimensional adjacency tensor, as shown in Fig. 4. 
From the perspective of decomposition, the three-dimensional adjacency tensor can be 
approximately decomposed into an embedding representation E of nodes and the rela-
tion M(k) in the k-th relationship. The decomposition formula is

According to Eq. (1), for single-type DDI prediction, we can only learn one embedding 
matric M which models the DDI between two drugs. As for multi-type DDI prediction, 
we model each DDI type as one embedding matric M(k) . The training loss of RESCAL is 
defined as

Mapping function learning

The above embedding learning part can produce the embedding representations of the 
existing drugs in the DDI network. But embeddings of new drugs cannot be directly 
acquired, because they are not in the DDI network. Here, we provide a straightforward 
approach is to learn a mapping function which can bridge drug’s attributes to its topol-
ogy embedding. Due to we have get the existing drugs topology embedding and also 
known the attributes of these drugs, here, in order to reduce the complexity, we choose 
a linear function to learn their mapping. The linear mapping is used in this work and 
defined as

(1)Â(k) = EM(k)ET
.

(2)l =
∑

k
�A(k) − EM(k)ET�

2

2

Fig. 4  Factorization of adjacency matrices in RESCAL
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where B is the mapping coefficient, F is the attribute matrix of drugs, and E is their 
embedding representations. Considering that the attributes of drugs are possibly colin-
ear, we utilize partial least squares regression to learn the mapping function.

To obtain the mapping coefficient B, we need to map F and E to their respective poten-
tial spaces [24]:

where T = FX is the projection of F in the X direction, U = EY is the projection of E in 
the Y direction, P and Q are the loading matrices of F and E respectively. Finally, the 
mapping coefficient B = XYT.

Predictor

After getting the embedding representations of new drugs and existing drugs, we can 
predict their potential interactions. In the embedding learning part, we have selected 
RESCAL as the baseline embedding method. Therefore, we define the predictor as a 
score function between drug di and drug dj in the k-th type of DDIs as

where Ei and Ej is the embedding representation of drug di and dj respectively.
However, have mentioned above, in the CSMDDI model, the embedding learning 

method can be replaced by other embedding approaches, such as SVD, GAE and TransE 
etc., the corresponding predictor should also be changed to fit the prediction. For exam-
ple, if we select SVD and GAE as the embedding method, their score function can be 
defined as

where < , > is the inner product of Ei and Ej, i ≠ j.
If we select TransE as an embedding model, we can train a random forest classifier [19] 

as the predictor and the final DDIs prediction score of the two drugs is the output of the 
random forest classifier.

Experiments
Experimental setting

In our experiments, we use tenfold cross-validation (CV) to evaluate the predictive 
performance in the case of single-type and multi-type DDI. In the 10-CV, all drugs are 
equally split into 10 groups, of which only one group is left as the set of new drugs for 
testing to ensure the predication is in a cold start scenario. The other 9 groups are as the 
existing drugs constructed the DDI network in training phase.

The evaluation metrics are AUC (area under the receiver operating characteris-
tic curve) AUPR (area under precision–recall curve) and F1-score. Particularly, the 

(3)FB = E,

(4)F = TPT + error1,

(5)E = UQT + error2,

(6)score = EiM
(k)ET

j .

(7)score =
〈
Ei,Ej

〉
= EiE

T
j .
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values of AUC and AUPR in the case of multi-type DDI prediction are averaged by all 
the DDI types because they are originally designed for binary classification. Addition-
ally, F1-micro metrics is selected in the multi-type DDI prediction due to it is suitable 
for evaluating multi-classification. Moreover, when tuning model parameters, we set 
the dimension of drug embedding vector to 200 for all the models and determine other 
parameters (e.g., optimal learning rate, penalty term coefficients) by Grid Search. Spe-
cific scopes in grid search are as follows: both learning rate and penalty term coefficient 
are in {0.001, 0.01, 0.1}. We set the maximum iteration number as 1000 and stop the 
iterations early when there occur 3 loss values greater than the optimal loss value.

The evaluation metrics are both AUC (area under the receiver operating characteristic 
curve) and AUPR (area under precision–recall curve). Particularly, the values of AUC 
and AUPR in the case of multi-type DDI prediction are averaged by all the DDI types 
because they are originally designed for binary classification. AUPR is more appropriate 
than AUC in the case of imbalance classes. Moreover, when tuning model parameters, 
we set the dimension of drug embedding vector to 200 for all the models and determine 
other parameters (e.g., optimal learning rate, penalty term coefficients) by Grid Search. 
Specific scopes in grid search are as follows: both learning rate and penalty term coef-
ficient are in {0.001, 0.01, 0.1}. We set the maximum iteration number as 1000 and stop 
the iterations early when there occur 3 loss values greater than the optimal loss value.

Baselines

In CSMDDI model, we use RESCAL method as the baseline embedding to learn the rep-
resentation of drugs. It can be altered by relative embedding method such as SVD [14], 
GAE [21], TransE [22] and so on. We compared the embedding method in the frame-
work of CSMDDI in single-type prediction of DDIs in the cold start scenarios S1 and 
S2. We also use the state-of-the-art DDI prediction method DeepDDI [9] and DDIMDL 
(Deng et al., 2020) as the baseline to verify the performance of CSMDDI. The compari-
son baselines descript as follows.

•	 SVD Singular value decomposition (SVD) [14] is a commonly used method of matrix 
factorization. It can be applied to reduce the dimensions of samples or calculate 
embedding representation. Its predictor score function of prediction is Eq. (7).

•	 GAE Graph AutoEncoder (GAE) [21] is a graph neural network model which 
includes an encoder and a decoder. The encoder is a multilayer graph convolutional 
network (GCN) [25] and the predictor score function also is Eq. (7).

•	 TransE TransE [22] is a typical representative distance-based model in knowledge 
graph embedding. It represents entities and relationships in the knowledge graph 
as vectors in the same space. As for its predictor, we use a random forest classifier. 
TransE + RandomForest is used for comparison both in single-type and multi-type 
DDI prediction.

•	 DeepDDI [9] is one of the earliest multi-type DDI prediction model, which uses the 
chemical substructure similarity of the drugs as the input and predicts the interac-
tion type through a DNN. DeepDDI is used for comparison both in single-type and 
multi-type DDI prediction.
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•	 DDIMDL [18] constructs similarity matrices based on different drug features and 
adopts a DNN predictor to perform DDI prediction for each feature. DDIMDL is 
used for comparison both in single-type and multi-type DDI prediction.

Result

Prediction of single‑type DDIs

The comparison results of single-type DDIs prediction are shown in Table 2 and the suf-
fix of CSMDDI represents different embedding method applied in CSMDDI, highlighted 
in bold indicate the best perfomance. Here, since the training of TransE requires nega-
tive sample sampling, we follow a popular negative sampling strategy [26], which gen-
erates negative samples by randomly replace the tail in the DDI triple according to a 
uniform distribution and keeps the number of negative samples equal to the number of 
positive samples. From Table 2, it can be found that CSMDDI-RESCAL achieves the best 
performance compared with CSMDDI-SVD, CSMDDI-GAE and TransE + RandomFor-
est in both S1 and S2.

It can also be seen that CSMDDI-RESCAL achieves the best performance compared 
with DeepDDI and DDIMDL. Additionally, the results indicate that the values of both 
AUC, AUPR and F1 score in the task of S2 are generally lower than those of S1 . The 
reason is as follows. Each testing drug pair in task S1 only contains one new drug, while 
each testing drug pair in task S2 contains two new drugs. Due to the new drugs embed-
ding come from the output of mapping function, it surely contains more errors in task 
S2 , leading to its performance is lower than task S1.

Prediction of multi‑type DDIs

Due to SVD and GAE are not fitted to be applied in multi-type DDIs prediction, we 
only compare CSMDDI with TransE + RandomForest, DeepDDI and DDIMDL. Table 3 
shows the results of the prediction, the best are highlighted in bold. In Table  3, both 
AUPR and F1 score of CSMDDI-RESCAL achieves excellent performance in S1 . For 
AUPR, it improves more than 12% compared with others, and more than 8% in F1-micro 
metrics. However, AUC of CSMDDI-RESCAL is lower than DeepDDI and DDIMDL, 

Table 2  The prediction results of single-type DDIs

(S) denotes that the inputs of the prediction method are chemical substructures

(P) denotes that the inputs of the prediction method are drug-associated proteins

Methods Single-type DDIs

S1 S2

AUC​ AUPR F1 AUC​ AUPR F1

CSMDDI-SVD 0.8137 0.6121 0.3735 0.7266 0.4783 0.3698

CSMDDI-GAE 0.7223 0.4435 0.3735 0.6387 0.3390 0.3726

CSMDDI-RESCAL 0.8861 0.7270 0.4065 0.7709 0.5270 0.3751
TransE + RandomForest 0.6451 0.4371 0.3730 0.4391 0.1116 0.3679

DeepDDI(S) 0.7267 0.5087 0.3725 0.7254 0.4804 0.3745

DDIMDL(SP) 0.7556 0.5592 0.3732 0.7215 0.4729 0.3718
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the reason is that DeepDDI and DDIMDL correctly predict more negative samples while 
CSMDDI-RESCAL correctly predict more positive example, leading to AUPR and F1 
score of CSMDDI-RESCAL in S1 is superior to others but AUC is lower.

Generally, in multi-class prediction, AUPR is more appropriate than AUC in the case 
of imbalance classes. From Table 3, we can also see that the AUC, AUPR and F1 score of 
CSMDDI-RESCAL in S2 is slightly lower than that of DeepDDI and DDIMDL. The rea-
son is that the prediction result of CSMDDI-RESCAL relies heavily on the DDI network 
topology. If the prediction is between two new drugs, their embeddings from mapping 
function will include more errors, leading to the prediction result lower. In addition, 
note that the all the prediction results of task S2 is particularly lower than that of task S1 . 
The main causes are that there are fewer new drugs and interactions in the test set, some 
DDI types even no interactions in scenario S2 , result in the performance of AUC, AUPR 
and F1 score are very poor.

Visualization of the performance of each DDI type

To further illustrate the effectiveness of CSMDDI, we also visualize the result of each 
type of DDIs in Fig. 5. There are 86 DDI types distributed around the circumference of 
the circle, and the serial numbers represent the different type of DDIs. It is ordered by 
its frequency occurred in the dataset, namely type 1 represents the highest frequency 

Table 3  The prediction result of multi-type DDIs

(S) denotes that the inputs of the prediction method are chemical substructures

(P) denotes that the inputs of the prediction method are drug-associated proteins

Method Multi-type

S1 S2

AUC​ AUPR F1-micro AUC​ AUPR F1-micro

TransE + RandomForest 0.8163 0.2853 0.5163 0.3843 0.0926 0.4040

DeepDDI(S) 0.8864 0.4638 0.6042 0.4500 0.1720 0.4825

DDIMDL(SP) 0.8832 0.4597 0.6292 0.4337 0.2062 0.5173
CSMDDI-RESCAL 0.8658 0.5865 0.7168 0.4313 0.2003 0.5103
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and type 86 represents the lowest frequency. From Fig. 5, we can find that in different 
models, the same DDI type prediction has slightly different, but the curve’s trends of dif-
ferent models are relatively consistent, especially in CSMDDI, DeepDDI and DMLDDI. 
CSMDDI also achieves a good performance in most types, especially in AUPR metric.

From Fig.  5, we can also find that some DDI type are not consistent in the results 
among the comparison methods. For example, DDI type 26, the AUPR of CSMDDI is 
very high, while that of DeepDDI is very low; DDI type 66, the AUPR of CSMDDI is very 
low, while that of DeepDDI is very high. In order to analyze the causes, we draw the sub-
graphs of DDI type 26 and 66, as shown in Fig. 6. After statistical analysis, DDI type 26 
has 94 drug nodes with an average degree of 16.7, while DDI type 66 has 32 drug nodes 
with an average degree of 1.9 and its topology is a star structure. Generally, a network 
with relatively dense edges is helpful to the training and easier to predict. This is because 
the embedding model can capture the network structure characteristics easily. While for 
a star structure network such as DDI type 66, it is not easy to learn and predict. The rea-
son is that the average degree in this network type is too small and leading to the embed-
ding learning is insufficient. It also is a puzzle hard to tackle in the research field of link 
prediction.

Conclusion
Drug safety is one of the hottest topics in daily medical practice, especially in approving 
new drugs or questioning the possibility of withdrawing drugs from the market. In order 
to predict DDIs effectively, we propose a CSMDDI model for single-type and multi-type 
DDI prediction in cold start scenarios. In CSMDDI, we use the RESCAL embedding 
method to obtain the embedding representations of the drugs and DDI types. And then 
learning a mapping function between network topology and drug’s attribute, which can 
bridge new drugs attribute to their embeddings. This step is the core to handle the cold 
start scenario. By comparing other embedding methods and DeepDDI and DDIMDL, 
CSMDDI achieve a good performance both in single-type and multi-type DDI 

DDI type 26 DDI type 66
Fig. 6  Subgraphs of DDI type 26 and type 66
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predictions in the cold start scenarios. In the future, more network embedding models 
will be tested in CSMDDI, the model with the best performance might be found under 
different conditions (data sets of different sizes, prediction tasks of different targets), to 
meet different needs in the real world. In addition, some nonlinear mapping methods 
can also be integrated in the second step of our framework.

Abbreviations
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