Zou et al. BMIC Bioinformatics
https://doi.org/10.1186/512859-022-04571-8

(2022) 23:51

BMC Bioinformatics

METHODOLOGY ARTICLE Open Access

®

Epigenetic landscape of drug responses o
revealed through large-scale ChIP-seq data

analyses

Zhaonan Zou'**®, Michio Iwata*®, Yoshihiro Yamanishi* ® and Shinya Oki'"

*Correspondence:
yamani@bio.kyutech.ac,jp;
oki.shinya.3w@kyoto-u.ac.jp

! Department of Drug
Discovery Medicine, Kyoto
University Graduate School
of Medicine, 53 Shogoin
Kawahara-cho, Sakyo-ku,
Kyoto 606-8507, Japan*
Department of Bioscience
and Bioinformatics,

Faculty of Computer

Science and Systems
Engineering, Kyushu Institute
of Technology, 680-4 Kawazu,
lizuka, Fukuoka 820-8502,
Japan

Full list of author information
is available at the end of the
article

B BMC

Abstract

Background: Elucidating the modes of action (MoAs) of drugs and drug candidate
compounds is critical for guiding translation from drug discovery to clinical application.
Despite the development of several data-driven approaches for predicting chemi-
cal-disease associations, the molecular cues that organize the epigenetic landscape of
drug responses remain poorly understood.

Results: With the use of a computational method, we attempted to elucidate the
epigenetic landscape of drug responses, in terms of transcription factors (TFs), through
large-scale ChIP-seq data analyses. In the algorithm, we systematically identified TFs
that regulate the expression of chemically induced genes by integrating transcriptome
data from chemical induction experiments and almost all publicly available ChIP-seq
data (consisting of 13,558 experiments). By relating the resultant chemical-TF associa-
tions to a repository of associated proteins for a wide range of diseases, we made a
comprehensive prediction of chemical-TF-disease associations, which could then be
used to account for drug MoAs. Using this approach, we predicted that: (1) cisplatin
promotes the anti-tumor activity of TP53 family members but suppresses the cancer-
inducing function of MYCs; (2) inhibition of RELA and E2F1 is pivotal for leflunomide to
exhibit antiproliferative activity; and (3) CHD8 mediates valproic acid-induced autism.

Conclusions: Our proposed approach has the potential to elucidate the MoAs for
both approved drugs and candidate compounds from an epigenetic perspective,
thereby revealing new therapeutic targets, and to guide the discovery of unexpected
therapeutic effects, side effects, and novel targets and actions.

Keywords: Drug modes of action, Transcriptome, ChIP-seq, Transcription factor,
Epigenetic landscape

Introduction

Elucidating the modes of action (MoAs) of drugs and candidate compounds is critical
for guiding translation from drug discovery to clinical application. Understanding the
complex responses of the human biological system to chemicals is of vital importance
in medical and pharmaceutical research. For many chemicals, including some approved
drugs, the MoAs remain elusive. The task of revealing MoAs can be moderately
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simplified to the identification of target proteins implicated in the pharmacological
effects of chemicals on disease. Phenotype-based high-throughput screening (PHTS) is
an efficient way to find candidate compounds with a desired phenotype [1-3]. Although
PHTS can rapidly screen thousands of chemicals, the underlying molecular mechanisms
of the hit compounds remain unknown. Identification of the target proteins associated
with a phenotype requires considerable effort, e.g., analysis of drug—protein interactions
using biochemical and chemoinformatic methods [4—11]. Recent developments in bio-
technology have contributed to the increase in the amounts of omics data for chemicals
and proteins in the genome, transcriptome, epigenome, and interactome, which can be
useful sources for inferring the MoAs of drugs.

Based on the concept that gene expression changes are pivotal for pharmacophysi-
ological effects, another major approach to drug discovery is transcriptome profiling
following administration of compounds. A popular transcriptome-guided drug reposi-
tioning approach for finding novel drugs is to search for compounds whose gene expres-
sion patterns are inversely correlated with those of a disease of interest [12—16]. These
methods involve genome-wide expression profiling of transcriptional responses to
compound treatment. In recent years, chemically induced gene expression data based
on large-scale transcriptome experiments have been made available from several pub-
lic databases. The Toxicogenomics Project-Genomics Assisted Toxicity Evaluation sys-
tem (TG-GATEs) hosts the results of a toxicogenomics project implemented in Japan,
in which 170 compounds were used to perturb cell homeostasis in vitro [17]. Subse-
quently, the Connectivity Map (CMap) database was constructed to provide the gene
expression profiles of five cancer cell lines perturbed by 1,309 compounds [18]. Many
more compounds have been examined by the National Institute of Health Library of
Integrated Network-Based Cellular Signatures (LINCS) consortium, which analyzed the
transcriptomic responses of 68 human cell lines to more than 20,000 compounds [19].
The LINCS consortium took advantage of a “reduced representation of the transcrip-
tome’, in which 978 landmark genes, termed L1000, are investigated as a representative
gene set for biological significance. The Comparative Toxicogenomics Database (CTD)
is another public resource that provides information about differentially expressed genes
(DEGs) following administration of chemicals and medical drugs [20]. The distinguish-
ing feature of CTD is that all records were generated by manual curation of more than
13,713 peer-reviewed publications, including expression changes of 23,081 genes upon
administration of 4,121 compounds to human cells. Thus, relative to the aforementioned
large-scale projects, CTD integrates a wider variety of genes in an unbiased manner.

Despite the construction of chemically induced gene expression signatures, the molec-
ular cues that mediate gene expression changes in response to chemical administration
remain to be clarified. One class of promising mediators are the transcription factors
(TFs) that act upstream of sets of chemically induced DEGs to control their expression.
TFs are master regulators that profoundly alter cell phenotype and behavior by modulat-
ing the epigenetic landscape, thereby organizing the expression of large sets of genes.
Although it is true that TFs are not often directly targeted by drugs, recent studies have
demonstrated the power of epigenetic drug discovery, e.g., by revealing the potential
utility of inhibitors of bromodomain proteins and histone deacetylases (HDACs) against
neoplasms [21-25]. These findings highlight the importance of modeling epigenetic



Zou et al. BMC Bioinformatics (2022) 23:51 Page 3 of 20

landscapes in the context of pharmacological strategies. Although specifically targeting
TF activity faces major hurdles, targeting effectors downstream of cell signaling (e.g.,
TFs) rather than upstream factors is likely to be a more specific approach [26]. In this
study, instead of predicting directly druggable targets, we developed a computational
method for identifying TFs pivotal to thousands of chemically induced DEGs, mak-
ing full use of large-scale TF binding profiles obtained from tens of thousands of actual
chromatin immunoprecipitation sequencing (ChIP-seq) datasets. The predicted chemi-
cal-TF associations provided clues about drug MoAs involved in drug efficacies and side
effects. Our approach outperformed methods that directly evaluated the similarity of
chemically induced and disease-specific DEGs without considering key TFs.

Results

Overview of TF-focused elucidation of drug MoAs

A considerable proportion of bioactive compounds and medical drugs exert their effects
by modifying disease-elicited gene expression. To further understand the MoAs of chem-
icals and, in turn, to define chemical-disease associations, it is of crucial importance
to focus on the master regulators that organize the expression of chemically perturbed
DEGs. In the proposed approach, shown in Fig. 1, we identified TFs that integratively
regulate chemically perturbed DEGs by analyzing large-scale comprehensive ChIP-seq
data obtained from ChIP-Atlas [27]. In addition, we evaluated the matches of predicted
target TFs with disease-associated proteins available from the DisGeNET database [28]
(details shown below). The predicted chemical-TF and chemical-disease associations
were validated with known chemical—protein associations from the Kyoto Encyclopedia
of Genes and Genomes DRUG database (KEGG DRUG) [29] and the chemical-disease

association dataset from CTD, respectively.

Evaluation of biological significance of genes and TFs in databases
To confirm the quality of chemically induced transcriptomes, we evaluated the biologi-

cal significance of annotated chemically perturbed genes by comparing the statistics
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Fig. 1 Overview of the proposed ChIPEA-based approach. To elucidate the epigenetic landscape of drug
responses, we identified the TFs enriched on chemically induced genes by analyzing large-scale ChIP-seq
data. Overlaps were evaluated between the transcription start site &= 5 kb regions of chemically induced
genes (green arrow) and peak-call data (black lines) of 13,558 TF-related experiments archived in ChiP-Atlas
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of gene expression profile data in CTD and L1000 in order to estimate their overlap.
Additional file 1: Figure Sla shows a Venn diagram of the genes that overlapped among
the comparisons. Almost all (99.3%) of the L1000 landmark genes are also included in
CTD. We sorted chemically induced genes in the order of the frequency with which they
appeared in CTD, and assessed their matches with L1000 landmark genes (Additional
file 1: Fig. S1b). The results confirmed that the representative L1000 genes were ranked
generally higher among the genes annotated in CTD (p=2.5 x 10~'7® by Wilcoxon rank-
sum test). In particular, 41 DEGs in the top 100 of CTD were designated as L1000 genes.
These data suggest that CTD includes a wide variety of biologically significant genes.

We then compared the annotated proteins in DisGeNET and ChIP-Atlas (Additional
file 1: Fig. S1c). Most of the TFs profiled by ChIP-seq experiments (67.9% of ChIP-Atlas
TFs) are also curated in DisGeNET. We sorted disease-associated proteins in the order
of the frequency with which they appeared in DisGeNET, and assessed the match with
TFs contained in ChIP-Atlas (Additional file 1: Fig. S1d). The results confirmed that
the TFs were ranked generally higher among the proteins annotated in DisGeNET
(p=3.2 x 10~* by Wilcoxon rank-sum test). These data suggest that the TFs analyzed by
ChIP-seq associate with diseases more strongly than other proteins within DisGeNET.
In summary, CTD, ChIP-Atlas, and DisGeNET include information about biologically
significant genes and proteins, and are therefore suitable for elucidating the MoAs of

chemicals and inferring chemical—disease associations.

Identification of master regulators that organize the expression of DEGs in response

to drug treatment

Chemical perturbation of gene expression is organized by a series of TFs in an integrated
manner. Therefore, identification of key TFs is critical for understanding drug MoAs. To
this end, we combined chemically induced DEGs from CTD (Additional file 2: Table S1)
and large-scale public ChIP-seq data (n=13,558) from ChIP-Atlas (Fig. 1, Additional
file 2: Table S2). We then performed ChIP-seq-based enrichment analysis (ChIPEA,
detailed in Methods) to identify TFs that exhibited enriched binding around up- or
down-regulated genes following drug administration (target range: transcription start
site £ 5 kb).

We then asked whether the TFs with higher enrichment scores were involved in the
MoAs of query compounds. As standard data, we used known chemical-protein inter-
actions data obtained from KEGG DRUG and applied the receiver operating character-
istic (ROC) curve, a plot of true-positive rates as a function of false-positive rates, as
well as the precision-recall (PR) curve, which is a plot of precision (positive predictive
value) as a function of recall (sensitivity). We then summarized the evaluation using the
area under the ROC curve (AUROC) score, where 1 is perfect classification and 0.5 is
random classification, and the area under the PR curve (AUPR) score, where 1 is perfect
inference and the ratio of positive examples in the standard data is random inference.

The distribution of AUROC and AUPR scores for each chemical (n=35) that directly
targets TFs was visualized with a violin plot (Fig. 2a). Mean AUROC and mean AUPR
across chemicals were 0.7063 and 0.4187, respectively. Given that the distribution pat-
tern of AUROC varied depending on the highest enrichment score of each chemical
(Additional file 1: Fig. S2), we were concerned that the item discrimination to distinguish
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Fig. 2 Identification of target TFs by ChIPEA. a Distribution of AUROC and AUPR scores for each chemical—-
TF association predicted using ChIPEA. Red and black horizontal lines inside the box represent mean and
median scores, respectively, and global scores are noted beside the violin plots. b Distribution of AUROC
scores by chemical class according to the first level of the Anatomical Therapeutic Chemical classification
system (ATC code). Chemicals are assigned the following ATC codes. A: alimentary tract and metabolism; B:
blood and blood-forming organs; C: cardiovascular system; D: dermatologicals; G: genitourinary system and
sex hormones; H: systemic hormonal preparations, excluding sex hormones and insulins; J: anti-infectives
for systemic use; L: antineoplastic and immunomodulating agents; M: musculoskeletal system; N: nervous
system; P: anti-parasitic products, insecticides and repellents; R: respiratory system; S: sensory organs; V:
various; NaN: not assigned. The numbers of chemicals assigned to each ATC code are noted above the
violin plots. Mean, median, and global AUROC scores are shown with red, black, and blue horizontal lines,
respectively. ¢ Predicted target TFs of five representative chemicals. Dots indicate individual TFs and are
colored orange if they matched chemical-target associations recorded in KEGG DRUG. AUROC scores
indicating the accuracy of the chemical-TF association inference are shown in parentheses following the
names of the chemicals. Enrichment scores (—log,,[p-valuel) were calculated using the two-tailed Fisher’s
exact test. The null hypothesis is that the intersection of the reference peaks for up-regulated genes occurs
in the same proportion as for those with down-regulated genes. Fold enrichment (detailed in Methods)
was calculated using the same ChlIP-seq data and the following equation: (overlaps/up-regulated genes)/

(overlaps/down-regulated genes)

associated and not associated TFs within individual chemicals was in some sense lim-
ited. Therefore, we calculated “global” statistics using an inter-chemical merged enrich-
ment score vector to emphasize the significance of the actual values of enrichment
scores (detailed in the Methods section). The global AUROC and global AUPR scores
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were 0.6642 and 0.0092, respectively. Figure 2b shows the distribution of AUROC scores
for a number of chemical classes on the basis of the first level of the WHO Anatomical
Therapeutic Chemical (ATC) Classification code; the detailed explanations on the ATC
codes are shown in the figure caption. These results revealed that ChIPEA can generally
predict chemical-TF associations with high efficiency, particularly for chemicals catego-
rized as ATC code A (alimentary tract and metabolism, e.g., diabetes treatments and
vitamins) and G (genitourinary system and sex hormones), which directly target nuclear
receptors.

Figure 2c illustrates representative predictions of chemical-TF associations (Addi-
tional file 2: Table S3). For example, androgen receptor (AR), estrogen receptor (ESR)
1/2, and retinoic acid receptor alpha (RARA) were shown to significantly bind to the up-
regulated genes induced by testosterone (primary male sex hormone), estradiol (major
female sex hormone), and tamibarotene (synthetic retinoid) treatment, respectively
[30-32]. Though they did not exhibit the highest enrichment, the binding of histone
deacetylases (HDACs) was clearly detected among the TFs that bound in a biased man-
ner to down-regulated genes after treatment with vorinostat, a pan-HDAC inhibitor. In
addition, bromodomain-containing proteins (BRDs), which are crucial factors involved
in the transcription elongation process, were enriched among the down-regulated genes
after treatment with (4)-JQ1 compound (JQ1), a bromodomain and extra-terminal
motif (BET) protein inhibitor and potential antineoplastic agent. These results suggest
that testosterone, estradiol, and tamibarotene promote, whereas vorinostat and JQ1 sup-
press, the activities of the corresponding receptors or factors in a manner consistent
with the evidence [30-34].

Highlighting MoAs along with presumed chemical-TF-disease associations of CTD
chemicals

To examine the MoAs more deeply, and in turn construct the chemical-TF-disease
associations, we linked the TFs enriched for chemically induced DEGs by ChIPEA with
protein—disease associations according to the DisGeNET database. In the proposed
method, the probabilities of chemical-TF-disease associations were simply represented
by the ChIPEA enrichment scores. For comparison, we also used a conventional DEG-
connected method for chemical-disease association analysis, which directly calculates
the positive or negative correlation between chemically induced DEGs from CTD and
disease-specific DEGs from Crowd Extracted Expression of Differential Signatures
(CREEDS) [35]. The sets of genes included in CTD and CREEDS modestly overlapped
with each other (69.3% and 81.1% of genes, respectively), and CREEDS was confirmed to
include an extensive range of biologically significant genes suitable for inferring chemi-
cal—disease associations (Additional file 1: Fig. S1a, b).

To compare the accuracies of predicted chemical-disease associations between the
proposed method and the DEG-connected method, we applied ROC and PR curves
using known chemical—-disease associations obtained from CTD as standard data. The
global AUROC and global AUPR of the proposed approach were 0.6839 and 0.0574,
respectively (mean AUROC=0.7026, mean AUPR=0.3504), higher than that of
approaches that only compared DEGs versus non-DEGs (global AUROC =0.6286, mean
AUROC=0.6133, global AUPR=0.0461, mean AUPR=0.2790; p=2.7x 10~ for
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AUROC, p=5.8 x 107° for AUPR by Wilcoxon rank-sum test) or up- versus down-reg-
ulated genes (global AUROC=0.6413, mean AUROC=0.5972, global AUPR=0.0505,
mean AUPR =0.2846; p=1.2 x 10~ '% for AUROC, p=6.1 x 10~° for AUPR by Wilcoxon
rank-sum test) (Fig. 3a). Figure 3b shows the distribution of AUROC scores of the pur-
posed method, stratified by ATC code. These results suggest that the identification of
target TFs using ChIPEA is a powerful approach that can be used to clarify pivotal fac-
tors for specific MoAs and is therefore useful for predicting the diseases associated with
treatments, particularly for chemicals categorized as ATC code G (genitourinary system
and sex hormones) or L (antineoplastic and immunomodulating agents). Use of this
approach can ultimately lead to increased predictive power relative to directly calculat-
ing the commonalities between chemically induced and disease-specific DEGs.

Biological interpretations of chemical-TF-disease associations to estimate the pivotal TFs
involved in efficacies and side effects of CTD chemicals

Figure 4 shows representative results of chemical-TF-disease associations constructed
using the proposed approach for cisplatin, leflunomide, and valproic acid.

Cisplatin is an antineoplastic chemotherapy agent that acts by crosslinking DNA,
resulting in DNA damage; in cancer cells, the drug activates ferroptosis and apoptosis
[36—39]. Among the predicted target TFs, tumor suppressors TP53 and TP63 showed
the most significant enrichment for genes up-regulated by cisplatin administration [40,
41]. By contrast, oncogenic factors MYC and MYCN were the most enriched TFs for
the down-regulated genes [42]. These four TFs were assigned to various types of cancers
in DisGeNET, leading to the prediction that cisplatin is associated with neoplasms; this
prediction is firmly consistent with the evidence [38, 39]. Although the primary MoA of
cisplatin is well known to involve crosslinking of genomic DNA, there is no evidence to
support a direct interaction between TP53 or MYCs and cisplatin. Therefore, it is likely
that cisplatin indirectly promotes the anti-tumor function of TP53 while suppressing the
cancer-inducing function of MYCs. This suggests that our approach is useful for discov-
ering indirect mediators in pharmacological processes that cannot be found by methods
based on molecular structures, such as docking simulation and structure-based machine
learning.

Leflunomide (LEF) is approved for treating adult rheumatoid arthritis. The drug acts
mainly through direct inhibition of dihydroorotate dehydrogenase (DHODH), which
is thought to impair proliferation of inflammatory T cells by blocking de novo pyrimi-
dine biosynthesis [43—-47]. Controversially, some reports have shown that impairment
of cell proliferation by LEF is not rescued by uridine supplementation, implying that the
drug also exerts DHODH-independent effects [48, 49]. Remarkably, our ChIPEA-based
approach revealed that the most enriched TF for the LEF-induced up-regulated genes
was TLE3, which suppresses cellular proliferation by inhibiting MAPK pathways [50,
51]. Another intriguing TF enriched for the up-regulated DEGs was AHR, an impor-
tant regulator of inflammation in the immune system. This is consistent with the fact
that LEF induces the AHR-ARNT interaction, thereby attenuating bone erosion in
rheumatoid arthritis [52]. In addition, LEF was also predicted to inactivate the NF-«kB
pathway component RELA and the key cell cycle promoter E2F1, both of which activate
cellular proliferation [53, 54]. These results suggest that LEF suppresses proliferation of
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scores by chemical class according to the first level of the Anatomical Therapeutic Chemical classification
system (ATC code). Chemicals are assigned the following ATC codes. A: alimentary tract and metabolism; B:
blood and blood-forming organs; C: cardiovascular system; D: dermatologicals; G: genitourinary system and
sex hormones; H: systemic hormonal preparations, excluding sex hormones and insulins; J: anti-infectives
for systemic use; L: antineoplastic and immunomodulating agents; M: musculoskeletal system; N: nervous
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V: various; NaN: not assigned. The numbers of chemicals assigned each ATC code are noted above the
violin plots. Mean, median, and global AUROC scores are shown with red, black, and blue horizontal lines,
respectively

inflammatory cells in rheumatoid arthritis patients by influencing those TFs in a manner
independent of DHODH. The top hit of RELA, along with the well-known interaction
of NF-kB with the immunoglobulin light-chain enhancer in B cells, is consistent with
previous findings that LEF prevents immunoglobulin production through inhibition of
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tyrosine kinase activity [55, 56]. Other than its antirheumatic effect, LEF has potential
anticancer activity [57-59]. Although the underlying mechanism is elusive, our ChIPEA
suggested that LEF suppresses tumor growth by activating TLE3 and inactivating RELA
and E2F1, possibly via the same mechanisms involved in rheumatoid arthritis treatment.
Thus, our proposed approach can be used to reveal MoAs that would not be expected
from consensus interpretations.

Valproic acid (VPA), a structurally simple fatty acid, has anticonvulsant properties and
has been widely applied in the treatment of epilepsy [60]. It is also a potent HDAC inhibi-
tor and is under investigation as a treatment for various cancers [61-64]. In this analysis,
several factors involved in chromatin remodeling, such as KDM1A, BRD2/4, and EP300,
were significantly enriched to the down-regulated genes in response to VPA adminis-
tration. Given that aberrant chromatin remodeling is a hallmark of oncogenesis [65],
it is reasonable to speculate that chromatin landscapes would be moderately regulated
by those factors, and that such effects could be responsible for the anticancer actions
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of VPA. Furthermore, we detected significant enrichment of the chromatin remodeler
CHDS, which genome-wide association studies have shown to be strongly associated
with the risk of autism spectrum disorder in humans and in mouse models [66—68]. A
well-known adverse effect of VPA is that exposure during pregnancy increases the risk
of autism in children [69], although the molecular mechanism underlying this process
remains poorly understood. Our results suggest that prenatal use of VPA affects the
activity of CHD8, thereby perturbing the target genes involved in neural development.
Interestingly, lower CHD8 binding enrichment was observed for the genes perturbed
after treatments with the HDAC inhibitor vorinostat (Fig. 2c). This suggests that the
potential key role of CHD8 in VPA-induced autism is HDAC-independent, an idea that
is also supported by the lack of evidence showing a relationship between maternal use of
vorinostat and neonatal autism. These findings demonstrate that our proposed approach
has the potential to elucidate the MoAs involved in adverse effects of chemicals, and

could therefore identify possible preventive strategies.

Discussion
In this paper, we present a novel computational approach for elucidating MoAs, focused
on pivotal TFs, using large-scale data sets of chemically induced DEGs. This method
enables estimation of the efficacies and side effects of given chemicals. In the proposed
approach, we identified the TFs that organize the expression of chemically induced
DEGs before addressing the associations with diseases based on gene/protein—disease
databases. We also tested a method that did not consider key TFs involved in MoAs; in
that approach, chemical-disease associations were defined based on the commonalities
of chemically induced and disease-specific DEGs. In terms of accuracy, the performance
of the proposed approach was superior. This is likely because gene expression changes
are the final outcome of complex pharmacophysiological cascades; consequently, direct
comparison of chemically induced DEGs with disease-specific DEGs will be influenced
by secondary effects and other unknown factors. By contrast, TFs that integrate chemi-
cally induced DEGs are likely to be the direct targets of the corresponding compounds,
or at least more proximal to them. Indeed, AR and ESR1 were identified as the targets of
the sex hormones testosterone and estradiol, respectively, whereas HDACs and BRDs
were suppressed upon treatment with the anti-tumor drugs vorinostat and JQ1. In addi-
tion, we found that TP53/TP63 and MYCs integratively organized the expression of the
up- and down-regulated genes that were responsive to cisplatin administration, respec-
tively, revealing these proteins as pivotal factors in the MoAs of cisplatin’s anti-tumor
activities. Thus, in the context of pharmaceutical research, it might be only part of a
complex system: ChIPEA is useful for elucidating MoAs from the epigenetic standpoint
by revealing pivotal factors within the black box between input (drug administration)
and output (gene expression changes). Our proposed method is easily performed using
the “Enrichment Analysis” tool from the ChIP-Atlas website (Additional file 1: Fig. S3),
where one can identify TFs simply by submitting a list of the DEGs that were identified
after drug administration.

Genome-wide identification of TF binding sites based on inference of binding motifs
is widely used to understand transcriptional regulation [70]. Previously, a method was
proposed to model gene regulatory relationships based on predicted TF binding motifs
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[71]. On the other hand, we utilized sets of target genes for each TF, which were con-
structed based on actual ChIP-seq experimental data in a motif-independent manner
[27]. Relative to motif-based methods, our approach, which is based on ChIP-seq data,
has the advantage of taking into consideration the actual TF binding sites within a spe-
cific cellular state. It is important to note that TFs do not always bind to specific binding
motifs, even those that are statistically well-defined. Similarly, it is not uncommon for
a TF to bind to sites that totally differ from its modeled motifs. This observation may
partially explain the undesirable results that are obtained when using a DNA sequence
motif-based method to estimate chemical-TF associations for chemically induced genes
(Additional file 1: Fig. S4) [72], though these motif-based methods are of value when
ChIP-seq data for specific TFs cannot be obtained from publicly available resources.

To predict chemical—-target interactions, chemogenomics methods have been devel-
oped based on the compound molecular structures and protein sequence motifs or
structural features [4—8]. When aiming to find proteins that directly interact with given
ligands, these methods are generally efficient, with high prediction accuracy as long as
the structures of the proteins and compounds have been well characterized. As a com-
plementary approach, our method is applicable to proteins and compounds with less
defined structures, as we do not focus primarily on direct drug—target interactions. Our
approach only requires transcriptome analysis data for given chemicals, and is therefore
capable of providing novel insights into chemical—protein associations fully based on
biological experiments and public ChIP-seq data. In recent years, supervised machine
learning algorithms have been used to predict drug targets and novel indications [9, 10].
Predictions made using this kind of approach can be very accurate if the system is pro-
vided with sufficient unbiased knowledge about specific drugs, proteins, and diseases.
Such machine learning approaches will become more powerful when combined with
TE-based knowledge obtained from our proposed method, which will allow gene-regu-
latory networks based on actual ChIP-seq experiments to contribute more accurate and
explainable predictions.

Although the ChIPEA procedure itself is not novel, we show in this paper that
the proposed ChIPEA-based approach is capable of identifying key regulators that
are the direct targets of, or are primarily involved in the MoAs of, given bioactive
compounds, implying that it could be used to make important contributions to
the pharmaceutical field. For instance, ChIPEA could be used to analyze data from
high-throughput expression screening of thousands of chemicals. The conventional
approaches for screening candidate compounds include Gene Ontology and path-
way enrichment analyses, which can be used to identify common features among
chemically induced genes. In addition, our proposed approach provides insight into
the regulatory mechanism acting upstream of these genes, allowing identification of
drug candidates targeting the desired TFs. Furthermore, our method could also be
applied to the transcriptome data of unapproved drugs, including compounds under
development and those that failed to be approved in clinical trials. Identification of
TFs primarily involved in MoAs, together with the factors associated with potential
side effects, could shed light on the potential utility of repositories of compounds
hoarded in pharmaceutical industries. In addition, our method could be used to ana-
lyze approved drugs, including those with more or less well-defined MoAs. Other



Zou et al. BMC Bioinformatics (2022) 23:51 Page 12 of 20

possible applications include drugs composed of unidentified ingredients, such as tra-
ditional herbal medicines. Potential therapeutic effects, side effects, and novel targets
and actions can be inferred by identifying TFs involved in unexpected physiological
pathways.

Finally, we wish to discuss the limitations and the extensibility of the proposed ChlI-
PEA-based method. In this study, we considered only TF binding sites adjacent to the
chemically induced genes (target range: transcription start site+5 kb). In general, genes
are regulated by a complex series of enhancers at a short or long distance, of which a fair
proportion are considered to fall outside the target range of ChIPEA. Thus, it would be
informative to use chromatin accessibility data (DNase-seq and ATAC-seq) to analyze
TF binding at longer ranges from chemically perturbed genes. Furthermore, genome-
wide chromatin conformation capture (Hi-C) data is most suited to identifying chemi-
cally perturbed genes and the long-range TF binding sites that are sometimes observed
for cis-regulatory elements. If ATAC-seq data are available for a broad coverage of
chemicals, a more direct type of input data for ChIPEA would be the open chromatin
regions, rather than the genes, rearranged by chemical administration. In our proposed
method, the gene—TF matrix needs to be binarily abstracted as “binding” or “non-bind-
ing”, which does not take into account the broad range of binding affinities observed.
Development of a weighted enrichment analysis method that includes an algorithm to
factor in the binding affinity between each TF and specific gene loci, such as the statis-
tical values obtained using the MACS2 peak calling procedure (g-values), and the dis-
tance between genes and TF binding sites [73] would address this issue. It should be kept
in mind that ChIPEA focuses on the “binding” patterns of TFs to chemically induced
genes; however, “binding” does not necessarily mean that there is a regulatory relation-
ship. It would also be best to experimentally validate the predicted results for pivotal TFs
in order to determine their relationships within regulatory networks. Finally, because we
are using experimental ChIP-seq data, TFs lacking public ChIP-seq data cannot be ana-
lyzed using ChIPEA. However, because the number of ChIP-seq experiments is steadily
increasing, the ChIPEA-based approach will become increasingly powerful in the future.

Conclusions

In this paper, we introduced a computational approach to elucidating the epigenetic
landscape of drug responses, in which large-scale public ChIP-seq experiment data were
analyzed to identify key TFs acting upstream of chemically induced genes. Chemical-TF
associations were predicted by ChIPEA of chemically induced expression profiles and
validated using a chemical—protein association database. Furthermore, chemical-TF-
disease associations were constructed by linking the TFs with known disease-associated
proteins. Together, our findings demonstrate that ChIPEA using public ChIP-seq data
is an efficient way to identify master regulators involved in MoAs from an epigenetic
perspective. Therefore, this approach is a powerful means of predicting chemical-TF
and chemical—-disease associations in a biologically interpretable manner, outperforming
methods that do not consider information about the TFs involved in MoAs. Our pro-
posed approach could be used to further understand the MoAs of candidate drugs, as
well as to discover unexpected therapeutic effects and side effects of approved drugs.
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Methods

Datasets

Chemically perturbed DEGs from CTD

Gene symbols of genes up- and down-regulated by environmental chemicals and medi-
cal drugs were obtained from CTD (chemical-gene interaction; download link, http://
ctdbase.org/reports/CTD_chem_gene_ixns.csv.gz; downloaded on May 15th, 2020).
CTD is a community-supported genomic resource that provides manually annotated
associations among chemicals, genes/proteins, and diseases [20]. In the chemical-gene
interaction database, each chemical—gene interaction is addressed in a declarative state-
ment and qualified by a degree: increases, decreases, affects, or does not affect. We used
only gene expression profiles of human cells in response to chemical administration with
the interaction type “C (analog) results in increased/decreased expression of G mRNA/
protein’, where C and G represent a chemical and a gene, respectively. The number of
DEGs in response to treatment with each chemical varied widely, from 1 to over 6,000.
We extracted expression profiles with more than ten each of up- and down-regulated
DEGs, yielding a total of 890 gene expression profiles related to 434 chemicals (Addi-
tional file 2: Table S1).

Genome-wide TF binding experimental data from ChIP-Atlas

We obtained information about genome-wide TF binding sites from ChIP-Atlas, an
integrative database that covers almost all public ChIP-seq data submitted to the NCBI
SRA [27]. The metadata of all experiments, such as names of antigens and cellular states,
are manually curated according to commonly or officially adopted nomenclature. The
sequence data are processed with a unified pipeline in which sequenced reads are aligned
to a reference genome with Bowtie2 and subjected to peak calling with MACS2. We
retrieved full sequencing data from 13,558 experiments (Additional file 2: Table S2) that
identified 170,067,307 binding sites (peaks were called with MACS2; g-value <1 x 10719
of 997 TFs in the human genome (download link, http://dbarchive.biosciencedbc.jp/
kyushu-u/hg19/allPeaks_light/allPeaks_light.hg19.05.bed.gz; genome version, hgl9;
downloaded on May 15th, 2020). It is worth noting that all of the binding data in ChIP-
Atlas were determined experimentally and therefore are not binding-motif dependent.

Gene/protein-disease association

Gene/protein—disease association data were acquired from DisGeNET (version, v7.0;
download link, https://www.disgenet.org/static/disgenet_ap1/files/downloads/curated_
gene_disease_associations.tsv.gz; downloaded on June 4th, 2020), a large collection of
genes and variants associated with human diseases [28]. DisGeNET integrates data from
expert-curated repositories and the scientific literature. We retrieved only manually
curated data labeled with referenced PubMed IDs, yielding 77,524 gene/protein—disease
associations involving 9,334 genes/proteins and 7,687 diseases.

Disease-specific DEGs from CREEDS

Disease-specific gene expression profiles were constructed based on gene expression
profiles in CREEDS (manual disease signatures v1.0; download link, http://amp.pharm.
mssm.edu/CREEDS/download/disease_signatures-v1.0.json; download on June 16th,
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2020), a crowdsourcing project aimed at annotating and reanalyzing a large number of
gene expression profiles from Gene Expression Omnibus [35]. The gene expression pro-
files were associated with scores calculated using the characteristic direction method, in
which gene expression levels in diseased tissues were compared with healthy controls.
Genes with positive or negative expression scores were considered to be up- or down-
regulated DEGs, respectively, yielding 554 gene expression profiles associated with 235
diseases.

Standard chemical-protein interactome

Compound-protein interaction data were acquired from KEGG DRUG (download link,
ftp://ftp.biosciencedbc.jp/archive/kegg-medicus/LATEST /kegg_medicus_drug.csv.
zip; downloaded on July 1st, 2019), a comprehensive collection of approved drugs and
their target information, including 11,550 chemical—protein interactions involving 1,458
chemicals and 768 proteins [29].

Standard chemical-disease associations

Chemical—disease association data were acquired from CTD (chemical—-disease interac-
tions; download link, http://ctdbase.org/reports/CTD_chemicals_diseases.tsv.gz; down-
loaded on June 15th, 2020). In total, we obtained 219,317 chemical—disease associations
involving 9,855 chemicals and 3,244 diseases, curated from 78,582 papers.

The proposed ChIPEA-based approach

Identification of key TFs that organize the expression of chemically induced genes using
ChIPEA

Taking full advantage of this enormous quantity of data, we performed enrichment anal-
ysis termed ChIPEA to profile TFs whose binding sites were enriched around chemi-
cally induced genes of interest. In particular, starting with the gene symbols of up- and
down-regulated genes induced by a query chemical, we counted the overlaps between
the transcription start site £ 5 kb regions of chemically induced DEGs and peak-call data
of all TF-related experiments archived in ChIP-Atlas, using the “intersect” command of
BEDTools2 (version, v2.23.0) [74]. Enrichment scores (—log,,[p-values]) were calculated
using the two-tailed Fisher’s exact probability test, with the null hypothesis that the two
data sets (up- and down-regulated genes) overlap with the ChIP-seq peak-call data in
the same proportion; fold enrichment values were returned at the same time. If a chemi-
cal-TF association was given by multiple ChIP-seq experiments, the highest enrichment
score was adopted. This ChIPEA procedure was proposed previously [27].

Relating the chemical-TF matrix identified using ChIPEA to TF-disease associations
Data for gene/protein—disease associations derived from DisGeNET (formula 1; where
P

chemical-TF associations determined using ChIPEA (formula 2; where Ci, Tj, and Ei/

. and D, represent a protein and a disease, respectively) were correlated with the
represent a chemical, a TF, and an enrichment score, respectively) when Tj was also
included in DisGeNET as P,, (formula 3). The enrichment scores calculated by ChIPEA
were also used to evaluate the probability of each chemical-disease prediction (formula
4).
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P,.—D, 1)
Ci—T;—E; )
T, =Py 3)
Ci—T;j—D,—E; (4)

If a chemical-disease pair was predicted via multiple TFs, the highest enrichment
score was adopted.

Calculation of global AUROC and AUPR

After evaluating their validity, all predicted chemical-TF or chemical-disease associa-
tions were arranged into a single m x n matrix consisting of enrichment scores with cor-
rectness information, where m was the total number of chemicals and # was the number
of TFs or diseases, respectively. We then stored the maximum value of enrichment
scores within each column (TF or disease) into a vector with # elements. We generated
ROC and PR curves and summarized the results into global AUROC and AUPR scores
as described in the Results section.

Baseline methods

Motif-based enrichment analysis using the regulatory genomics toolbox [72]

In the motif matching step, a set of TF motifs identified from several main reposito-
ries was compared to the genomic regions of chemically induced genes without taking
into account the DNase-seq signals. Subsequently, motif enrichment analysis was per-
formed for each chemical (download link, http://www.regulatory-genomics.org/wp-
content/uploads/2017/03/RGT_MotifAnalysis_FullSiteTest.tar.gz; downloaded on July
12th, 2021). In particular, Fisher’s exact test was used in order to determine whether
the chemically induced genes were enriched for particular TFs. Enrichment scores (—
log,,[p-values]) were calculated using the two-tailed Fisher’s exact probability test, with
the null hypothesis that the two data sets (up- and down-regulated genes) overlap with
the TF motif data in the same proportion; fold enrichment values were returned at the
same time. Testosterone-, vorinostat-, and JQ1-induced genes were obtained from CTD
database.

DEG-connected method for predicting chemical-disease associations

Chemically induced and disease-specific expression changes in 28,268 genes were clas-
sified as up-regulated, down-regulated, or non-DEG; RefSeq genes were obtained from
the UCSC genome annotation database of the human genome (download link, http://
hgdownload.soe.ucsc.edu/goldenPath/hgl9/database/refFlat.txt.gz;  genome, hgl9;
downloaded on July 7th, 2020). All chemical and disease profiles were further arranged
into two-by-two cross tabulations for each of the chemical-disease pairs in two ways
(“DEGs vs. non-DEGs” and “up- vs. down-regulated genes”), as illustrated in Table 1.
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Table 1 Cross tabulation showing the frequency distribution of chemically induced and disease-
specific genes, with C and D representing a chemical and a disease, respectively

Disease D Disease D
DEGs non-DEGs Up Down
Chemical C DEGs nl n2 Chemical C Up ni n2
non-DEGs n3 n4 Down n3 n4
“DEGs vs. non-DEGs” comparison “up- vs. down-regulated genes” com-
parison

The chemical-disease associations were evaluated based on p-values calculated
using the two-tailed Fisher’s exact probability test with the null hypothesis that the
comparative gene expression patterns in response to a given C (chemical) and D (dis-
ease) (nl, n2, n3, and n4) were uniformly distributed. Chemical-disease pairs with
smaller p-values were considered to be more firmly associated.
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Additional file 1: Fig. S1 Comparison of gene expression profiles and annotated proteins contained in dif-
ferent databases. a, ¢ Venn diagram showing genes shared between the chemical-gene (CTD and L1000) and
disease—gene (CREEDS) association databases (a), and proteins shared between the ChIP-seq experiment (ChIP-Atlas)
and gene/protein—disease association (DisGeNET) databases (c). b, d Bar charts showing the frequencies with which
the genes appeared in CTD and CREEDS, with L1000 genes colored in orange (CTD) and green (CREEDS) (b), and
the frequencies with which proteins were defined as disease-associated proteins in DisGeNET, with ChIP-Atlas TFs
colored in blue (d). Fig. S2 Factors potentially affecting the distribution of AUROC scores. AUROC scores, sorted
according to the highest enrichment score for each (a, ¢) chemical and (b, d) the number of DEGs that were used

to predict (a, b) chemical-TF and (¢, d) chemical-disease associations using the proposed ChIPEA-based approach.
Fig. S3 Visual manual for GUI-based ChIPEA. a. Submission form for ChIPEA on the website. GUI-based ChIPEA

is provided on the ChiP-Atlas website (termed “Enrichment Analysis”tool; https://chip-atlas.org/enrichment_analy
sis). When used to identify pivotal TFs involved in drug MoAs, genome assembly should be set as "hg19/hg38"(hg19
was used in this paper).“TFs and others”needs to be selected in panel“1. Antigen Class”.“2. Cell type Class"and “3.
Threshold for Significance” may be changed by the user according to demand. The “4. Enter dataset A" dialog box is
to be filled in with the list of up-regulated genes, and the box"5. Enter dataset B"is for down-regulated genes. After
specifying the “Distance range from TSS"in the “6. Analysis description” panel, the user can press the “Submit” button
to submit the parameters to the server, and ChIPEA will initialize immediately. b. Interpretation of the results. The
overlaps between the genomic loci (originating from panels 4 and 5 of the submission form) and reference peak call
data (specified on upper panels 1-3 of the submission form) are counted using the bedtools intersect command
(BedTools2; ver 2.23.0). The results are returned in html and tsv format. p-values are calculated using a two-tailed
Fisher's exact probability test. The null hypothesis is that the intersection between the reference peaks and the data
submitted in panel 4 occurs at the same proportion as for the data in panel 5 of the submission form. g-values are
calculated using the Benjamini & Hochberg method. Fold enrichment was calculated by dividing the result from
column 6 by the result from column 7 for a given row of data. If the ratio > 1, the rightmost column is “TRUE’, mean-
ing that the protein from column 3 is more likely to bind to the variable from panel 4 than to that from panel 5. Fig.
S4 Identification of target TFs using a motif analysis-based method. TF binding profiles of three chemicals
predicted by motif analysis using DEGs from CTD (testosterone, vorinostat, and JQ1). Dots indicate individual TFs and
are colored orange only if they match the chemical-target associations recorded in KEGG DRUG database. AUROC
scores are shown in the upper right corner of the volcano plot of each chemical.
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Additional file 2: Table S1. List of CTD chemicals. Column 1, CTD ID; column 2, chemical name. Table S2. List of
ChlIP-seq experiments. Column 1, Experiment ID; column 2, ChIP-seq antigen. Table S3. Predicted chemical-TF
associations using ChIPEA for Fig. 2c. a Testosterone; b Estradiol; ¢ Tamibarotene; d Vorinostat; e JQ1 compound.
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