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Background
DNA sequence analysis based on alignments to unphased diploid or polyploid genome 
assemblies can result in errors and misleading results [1]. These errors will scale with the 
abundance of heterozygosity. Such reference genomes and accompanying gene anno-
tation typically consist of haploid sequences representing a ‘patchwork’ of haplotypes 
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(nucleotides that co-occur in a single chromosome), and thus, any given base may derive 
from either chromosome. Genome sequencing and alignment rarely distinguishes vari-
ants found together (cis) or on homologous chromosomes (trans), and therefore neglects 
to identify the allelic variation of genes, and instead describes only the sum of all vari-
ants in both homologous genes. In the most extreme case of two or three heterozygous 
positions co-localizing in a codon, nonsense or readthrough mutations may be unidenti-
fied or misidentified through lack of or inaccurate phasing information. For example, the 
codon WGW (where W = IUPAC for Weak bond = A or T) reflects either AGA (Arg) 
and TGT (Cys) or AGT (Ser) and TGA (Stop) in the standard genetic code.

Identifying haplotypes (nucleotides in phase) is central to determining genotype–phe-
notype associations from heterozygous alleles, identifying recombinant or hybrid iso-
lates in microbial populations, and determining parental ancestry. Haplotyping is also a 
precursor to a range of genetic attributes including effective population size, signatures 
of selection and evolution e.g. Integrated Haplotype Scores and Extended Haplotype 
Homozygosity tests [2]. Haplotyping can reveal candidate genes for mendelian disorders 
[3], given haplotype variation impacts gene expression [4], splice variants, folding and 
function [5]. For example, hundreds of ‘phase-sensitive’ human genes have been identi-
fied, including olfactory receptors and proteins related to the immune system such as 
the MHC (Class I and II) which contain two or more potentially functionally significant 
mutations that can reside in either cis or trans configurations. Thus, the phase of many 
mutations is likely to be of critical importance for protein function, phenotype and clini-
cal genome interpretation. Ongoing initiatives to understand the associations of haplo-
types with human disease include the HapMap Project [6] and the Genomics England’s 
100,000 Genomes Project [7]. Haplotyping in non-model organisms including diverse 
Emerging Fungal Pathogens remains largely unexplored [8].

Despite the importance of haplotyping, there remains a lack of research into the physi-
ological consequences of having variants co-reside on chromosomes, or distributed 
across two homologues chromosomes [9]. Research using haplotypes is limited for a 
variety of reasons including the computational complexity of haplotyping, lack of hap-
lotyping tools, lack of tools to perform analysis of those haplotypes, and increased com-
plexity of haplotype analysis given the extra step of phasing and its imperfect outputs. 
Current methods that have been developed to phase sequence data include experimental 
phasing methods, along with computational phasing with related individuals and com-
putational phasing with unrelated individuals [10]. Experimental phasing is achieved by 
direct sequencing encompassing two or more heterozygous genotypes of an individual, 
while the other methods rely on a priori knowledge of haplotypes, or modelling haplo-
types based on factors such as patterns of linkage disequilibrium [11]. Recombination 
maps are often not known or challenging to infer particularly in non-model organisms. 
Experimental phasing is limited by sequence read-length, and is not feasible on genomes 
lacking sufficiently heterozygous and proximal variants. However, the deep coverage of 
next-generation sequencing and paired-end information can cheaply and confidently 
yield haplotypes in a wide range of genomes.

Experimental phasing has been implemented by several tools, including some under 
active development. For example, experimental phasing is part of the GATK Haplotype-
Caller algorithm [12], which forms part of its genotyping algorithm. GATK stores the 
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physical phasing information in Pre-Implantation Genetic Testing (PGT) and Physi-
cal phasing ID information (PID) format fields of the VCF [13]. Other tools specifically 
designed to perform physical phasing for large and accurate haplotype construction 
include WhatsHap [14], HapCut2 [15], and SmartPhase [16]. The underlying algorithms 
of each method include weighted minimum error correction, maximum-likelihood, 
and read-based (either RNAseq or DNAseq) phasing respectively. HapCut2 works on 
a range of sequencing data including Hi-C and long read sequencing [15]. WhatsHap 
takes a dynamic programming approach that is both fast and more accurate than sta-
tistical phasers [14]. PoolhapX infers haplotypes across naturally pooled samples [17]. 
Accuracy for these tools has been determined by consensus to other methods or using 
simulated data. One potential drawback for each of these tools is that there are not eas-
ily (no options to) parallelize across multiple nodes on a computer cluster. Where such 
resources are available, this approach may decrease computational time.

Here, I present a toolset to phase diploid variant calls from whole genome sequencing 
data, validating phasing accuracy, phylogenetically placing haplotypes to other lineages 
or species, and identifying crossovers between pairs of phased VCFs. HaplotypeTools 
phasing performed better overall in terms of accuracy, at the cost of smaller haplotypes, 
in comparison to WhatsHap [14]. Both tools performed considerably better than GATK 
HaplotypeCaller physical phasing alone. HaplotypeTools was also used to identify the 
parental lineages and loci of crossovers for a hybrid fungal isolate belonging to the spe-
cies Batrachochytrium dendrobatidis.

Results
Benchmarking with simulated data

HaplotypeTools was benchmarked against WhatsHap using simulated reads from the 
genome of the fungal pathogen Batrachochytrium dendrobatidis (Bd) JEL423 (see meth-
ods), highlighting several differences between the tools. First, the accuracy of the variant 
caller Pilon [18] to call heterozygous positions from short (100nt) and long-read (10 kb) 
paired end alignments (20X depth) was assessed (Table 1) revealing high levels of sensi-
tivity (> 0.91), specificity (> 0.99) and overall accuracy (> 0.98), which is suitable for test-
ing downstream phasing.

Haplotypes defined by HaplotypeTools and WhatsHap were assessed for haplotype 
length, coverage, accuracy and computational time (Table  2). HaplotypeTools outper-
formed WhatsHap in terms of phasing accuracy, while it underperformed in terms of 
haplotype length, genome coverage of those haplotypes, sensitivity and QAN50 values 
(an assessment of haplotype length and quality in terms of Switch Errors). For exam-
ple, the longest haplotype block/pair from HaplotypeTools was ~ 11.7  kb, compared 
with ~ 874 kb for WhatsHap.

HaplotypeTools achieved higher accuracy overall than WhatsHap according to a range 
of metrics (Table 2). HaplotypeTools resulted in fewer (< 14%) Switch Errors (SE), and 
lower Switch Error Rate (SER) for every test, which had a value of between 0 and 0.0031 
compared with 0.007 and 0.016 for WhatsHap. Indeed, for two of the tests (100nt reads 
with 1/kb heterozygosity and 10 kb reads with 1/kb heterozygosity), HaplotypeTools did 
not produce a single switch error (SER = 0), demonstrating the high accuracy achieved 
by HaplotypeTools even using default settings.
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Lowering the minimum haplotype coverage parameter in HaplotypeTools achieved 
better SE and SER for one of the tests (10 kb reads for 100/kb heterozygosity). For the 
same test data, increasing the maximum phasing length resulted in longer haplotypes 
and reduced computational time, at the cost of a slightly decreased genome coverage 
(Table  2). Therefore, adjusting HaplotypeTools’ parameters may achieve better results 
than the default settings depending on the use case (e.g. read length and heterozygosity 
level) and desired outcome (sensitivity vs specificity).

While optional, HaplotypeTools was designed to run in parallel across a computer 
cluster – first splitting up the VCF and BAM files into windows that can be processed in 
parallel. HaplotypeTools was scatter gathered across ~ 100 low-spec nodes (8 Gb RAM, 
Intel Xeon CPU E5-2680 v2 @ 2.80  GHz), which took between 23m13s and 32m59s 
till completion (Table  2). WhatsHap is not designed to run in parallel (although such 
a process could be achieved with a custom pipeline if desired). Thus, WhatsHap was 
tested locally on a single high-spec laptop (32  Gb RAM, Intel Core i9-9980HK CPU 
@ 2.40 GHz). WhatsHap required some preprocessing to run (e.g. removing reference 
bases from VCFs). After pre-processing, WhatsHap was overall computationally faster: 
taking between 95m56s for 100 nt reads with 100/kb heterozygous positions, to as 
quickly as just 24 s on 10 kb reads with 1/kb heterozygous positions.

Table 1  Accuracy of heterozygous variant calling by Pilon was assessed

Paired reads (100nt or 10 kb) were simulated at 20X depth from reference Bd JEL423 genome that was duplicated to create 
an in silico diploid. In silico mutations were then randomly introduced throughout (1/kb, 10/kb or 100/kb). Reads were 
aligned to the original reference sequence (non-duplicated, non-mutated version), and diploid variants called by Pilon. 
Counts of variants are shown including single nucleotide polymorphisms (SNP), heterozygous positions (HET), insertions 
(INS), deletions (DEL) and ambiguous (AMB). Accuracy was assessed according to Comparison of FDR tool [28], that 
calculated TN = true negatives (correct reference bases), TP = true positives (correct HET), FN = false negatives (incorrect 
reference bases) and FP = false positives (incorrect HET). FP (other) is a count of all additional (non-heterozygous) incorrect 
bases including SNPs, INS, DEL and AMB. > 99% of FP (other) were SNPs. TP (%) and FN (%) are precents of Introduced HET, 
FN (%) is a percent of assembly length, and FP (%) is a percent of HETs called. Sensitivity = TP/(TP + FN), Specificity = TN/
(TN + FP + FP (other)), Accuracy = (TN + TP)/(TN + TP + FN + FP + FP (other))

Test 1 2 3 4 5 6

Introduced HET 23,13,700 23,13,700 2,31,370 2,31,370 23,137 23,137

Introduced HET (/kb) 100 100 10 10 1 1

Read Length (nt, paired) 100 10,000 100 10,000 100 10,000

SNP 86,808 1,89,498 7,752 16,583 1,075 1,633

HET 20,90,044 17,81,654 2,30,380 1,91,558 37,153 22,365

INS 43 66 0 0 0 0

DEL 48 69 2 1 2 1

AMB 2 92 2 59 2 67

TP 20,27,722 17,45,567 2,13,362 1,87,637 21,429 18,807

TN 2,08,11,068 1,97,41,846 2,28,43,007 2,19,30,208 2,30,49,406 2,20,49,041

FP 62,322 36,087 17,018 3,921 15,724 3,558

FN 98,679 1,65,971 9,073 16,227 904 1,572

FP other 86,901 1,89,725 7,756 16,643 1,079 1,701

TP (%) 87.64 75.44 92.22 81.10 92.62 81.29

TN (%) 89.94 85.32 98.73 94.78 99.62 95.29

FP (%) 2.98 2.03 7.39 2.05 42.32 15.91

FN (%) 4.26 7.17 3.92 7.01 3.91 6.79

Sensitivity 0.95 0.91 0.96 0.92 0.96 0.92

Specificity 0.99 0.99 1.00 1.00 1.00 1.00

Accuracy 0.99 0.98 1.00 1.00 1.00 1.00
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Results on real data

HaplotypeTools was used to phase real Illumina data (100nt paired reads, 43X depth) to 
determine the parental lineages of the hybrid Bd isolate SA-EC3 with several settings. 
GATK v4 HaplotypeCaller was used for variant calling, which includes its own physical 
phasing, and could therefore also be compared to the results from HaplotypeCaller and 
WhatsHap (Table 3).

The five isolates representing each of the lineages were assessed for ploidy and ane-
uploidy. Non-overlapping windows presenting normalized depth of coverage revealed 
evidence for aneuploidies in all isolates apart from BdCH ACON (Fig. 1). Supercontig 
(sc) 1 is the largest supercontig and therefore the best evidence for the baseline ploidy 
from genomic data alone. Therefore, based on this depth of coverage and allele frequen-
cies (percent of reads agreeing with the reference base), Asia1 KRBOOR323 is diploid 

Table 3  Details of haplotypes from phasing a single-isolate VCF from hybrid Bd isolate SA-EC3 using 
GATK v4 HaplotypeCaller, HaplotypeTools (default settings), and WhatsHap (default settings)

Rows include the number of haplotypes produced by each tool, the total number of nucleotides included in those 
haplotypes, the maximum haplotype length found (Haplotype Nmax), the Hap N50 and N90 (the shortest haplotype length 
that includes ≥ 50% and ≥ 90% of haplotype sequence, respectively.). The number of haplotypes (#haps) that overlap on 
the genome assembly with haplotypes produced by HaplotypeTools (HT), and the number of nucleotides (nt) in those 
haplotpes. Computational time is also given for HaplotypeTools and Whatshap, but omitted for GATK given its primary role 
was variant calling, which both HaplotypeTools and WhatsHap were also based on, and the time taken for phasing alone can 
neither be determined or distinguished from that process

HaplotypeCaller HaplotypeTools WhatsHap

Number of haplotypes 5545 7975 9982

Total phased nucleotides 1,35,334 6,74,408 50,02,469

Haplotype Nmax (nt) 230 1083 8485

Haplotype N50 (nt) 26 115 1107

Haplotype N90 (nt) 13 44 314

Overlap with HT (default) (#haps) 2027 N/A 7948

Overlap with HT (nt) 44,157 N/A 6,58,713

Computational time N/A 41m56s 5m54s

Asia1 KRBOOR323

0 6 12
Position in genome (Mb)

Asia2 CLFT065
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GPL JEL423
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Fig. 1  The five isolates representing each of the lineages were assessed for ploidy and aneuploidy (largest 
five supercontigs presented). A Non-overlapping 10 kb windows of the normalized depth of coverage 
(normalized by total sequencing depth across percentiles of GC content, and excluding ambiguous sites) 
shows evidence for aneuploidies (supercontig 2, 3 and 5) among each of the Bd isolates apart from BdCH 
ACON. B Allele frequencies (percent of reads agreeing with the reference base) are shown from 25% agree to 
75% disagree, with red-dotted lines indicating greatest support for bi-allelic/diploidy between 47 and 53% 
and greatest support for tri-allelic/triploidy between 30–36% and 63–69%
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with sc2 and sc3 trisomies, Asia2 CLFT065 and CAPE TF5a1 are triploid with a sc2 tet-
rasomy, CH ACON is triploid with no aneuploidies, GPL JEL423 is diploid with a sc3 
trisomy, and Hybrid SA-EC3 is diploid with possible sc2 and sc3 tetrasomy. WhatsHap 
and HaplotypeTools were therefore tested on polyploid and aneuploid genomes, which 
could impact the accuracy of phasing.

In accordance with the benchmarking using simulated reads, Haplotypes from Hap-
lotypeTools covered 5X more of the genome (674 kb; 2.9%) than GATK physical phas-
ing alone, while WhatsHap covered 7.4X more of the genome (5  Mb; 21.4%) than 
GATK alone (135  kb; 0.6%). Haplotypes were also longer with both HaplotypeTools 
(Nmax 1.1 kb, N50 115nt) and WhatsHap (Nmax 8.5 kb, N50 1.1 kb) compared with GATK 
alone (Nmax 230 nt, N50 26 nt). HaplotypeTools phased genomic regions overlapped 
with WhatsHap by 98%. Only 7% of HaplotypeTools phased genomic regions were also 
phased by GATK, primarily reflecting the fewer sites phased by GATK.

Phased SA-EC3 VCF’s from each tool were compared to consensus genomes for each 
lineage (generated by a HaplotypeTools utility script). First, pairs of haplotypes from sin-
gle locations were compared for length and sequence similarity (Fig.  2A) demonstrat-
ing that most of the haplotypes in all tools were short and as a proportion of their total 
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Fig. 2  Comparisons of haplotypes for the hybrid Bd isolate SA-EC3, generated by GATK v4 HaplotypeCaller 
physical phasing, HaplotypeTools and WhatsHap. A The length in nucleotides of haplotype pairs vs the 
difference between those haplotypes pairs (%). The red line indicates the minimum haplotype length 
used for all analysis, and the red arrow indicates the haplotype pairs illustrated in part B of this figure. B 
HaplotypeTools’ utility script HaplotypePlacer constructs haplotype trees with FastTree. Among the longest 
representative haplotype pairs (shown by the red arrow) are shown including supercontig 1.7 positions 
1,335,923–1,336,143 for HaplotypeCaller, supercontig 1.17 positions 206,141–207,223 for HaplotypeTools and 
supercontig 1.4 positions 319,655–328,139 for WhatsHap. In each of these examples, one haplotype is closest 
to BdCAPE. For HaplotypeTools and WhatsHap that have several advantages over HaplotypeCaller’s physical 
phasing presented, the second haplotype is closest to BdGPL
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length, contained a greater number of nucleotide differences between them. The long-
est and most divergent haplotypes are the most informative in terms of ancestry, and 
example haplotypes and their phylogenetic placement are shown for each tool for illus-
trative purposes only (Fig. 2B). One haplotype is phylogenetically closest to BdCAPE for 
all three haplotype-based trees chosen. For trees based on HaplotypeTools and Whats-
Hap haplotypes, the second haplotype is closest to BdGPL, while the second haplotype is 
BdCH for HaplotypeCaller physical phasing alone.

The HaplotypeTools utility script HaplotypePlacer iteratively constructs approxi-
mately-maximum-likelihood phylogenetic trees using FastTree for every haplotype 
(with a default 100 nt minimum haplotype length parameter) in order to identify over-
all trends in haplotype relatedness to other lineages or species. HaplotypePlacer also 
outputs a summary for the closest relative across all the haplotypes (Table 4) and gen-
erates non-overlapping window plots showing the genomic region for each haplotype 
pairs, which are colored according to their closest relative (Fig. 3). Using this iterative 
approach for every haplotype, the majority of haplotypes from hybrid Bd isolate SA-EC3 
were phylogenetically clustered with BdGPL for one of the haplotypes and BdCAPE for 
the other, confirmed by each of the three tools tested (65% for HaplotypeCaller, 80% for 
HaplotypeTools and 91% for WhatsHap). Therefore, the parental lineages of Bd SA-EC3 
are most likely BdGPL and BdCAPE.

To explore recombination in SA-EC3, phased regions between SA-EC3 and phased 
representatives for each of the lineages were compared using other HaplotypeTools 
utility scripts (Table 4). The parental lineages identified by HaplotypePlacer (BdGPL 
and BdCAPE) had the highest number of overlapping phase groups compared with 
other lineages (1018–1344 compared to 758–940) and highest number of overlap-
ping phased positions/nucleotides (OPP; 2487–3457 compared to 1661–2131), cor-
roborating those lineages as parental lineages, given a greater sequence divergence 

Table 4  HaplotypeTools’ utility script HaplotypePlacer constructs haplotype trees with FastTree and 
identifies the closest relative to each

Hybrid Bd isolate SA-EC3 haplotypes from GATK v4 HaplotypeCaller physical phasing, HaplotypeTools and WhatsHap 
were analysed using HaplotypePlacer, finding that the majority of haplotypes from each of the three tools are closest 
in those trees to BdGPL (38–46%) and BdCAPE (27–45%). A HaplotypeTools utility script was used to compare phasing 
between SA-EC3 and each of the lineages. For each comparison, the script identified overlapping phase groups, comprising 
overlapping phased positions (OPP), which were either in the same phase, or showed evidence of crossovers

Lineage BdAsia1 BdAsia2 BdCAPE BdCH BdGPL

HaplotypeCaller (nt) 2556 1637 5180 2418 7089

HaplotypeCaller (%) 14 9 27 13 38

HaplotypeTools (nt) 52,806 55,341 3,22,642 51,476 3,14,161

HaplotypeTools (%) 7 7 41 6 39

Whatshap (nt) 3,86,839 2,58,519 43,96,845 2,61,089 44,56,306

Whatshap (%) 4 3 45 3 46

Overlapping phase groups 889 940 1344 758 1018

Overlapping phased positions (OPP) 1941 2131 3457 1661 2487

OPP Same phase (nt) 1758 1922 3421 1486 2467

OPP Same phase (%) 91 90 99 89 99

OPP Cross-over (nt) 183 209 36 175 20

OPP Cross-over (%) 9 10 1 11 1
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result in fewer conserved heterozygous positions that can be phased. Only 20 
crossovers were detected between SA-EC3 and BdGPL (0.8% of all OPP), and only 
36 crossovers were detected between SA-EC3 and BdCAPE (1% of all OPP), com-
pared with 9.43–10.54% for the other lineages, which again supports those relation-
ships, given a greater divergence time may result in greater numbers of ancestral 
crossovers.

Crossovers between SA-EC3 and its parental lineages were distributed across the 
genome. For example, SA-EC3 and BdGPL JEL423 had five OPP’s in one overlap-
ping phase group between supercontig 15 positions 473,179–477,410. These phased 
positions included the following haplotype variant positions for SA-EC3: C-C-A-A-
A and T-A-G-G-C, and for BdGPL JEL423: C-C-G-A-A and T-A-A-G-C, indicating 
a crossover in the middle position (473,194), which is located in an intergenic region 
between hypothetical protein BDEG_28268 and hypothetical protein BDEG_28269 
with PFAM Cytochrome P450. The very low levels of crossovers identified between 
either parent indicate that the parental haplotypes have remained physically sepa-
rated, suggesting that SA-EC3 is a result of mitotic recombination/parasexuality i.e. 
genetic exchange without meiosis, and those few crossovers likely resulting from 
either (1) double mutations, and (2) mitotic gene conversion events.
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Discussion
Correctly identifying haplotypes is central to understanding diploid organisms, includ-
ing determining genotype–phenotype associations, identifying recombinant or hybrid 
isolates in microbial populations, determining parental ancestry, and a precursor to a 
range of population genetic tests. Here, I present a new toolset called HaplotypeTools 
that is able to accurately phase heterozygous positions from short or long whole genome 
sequencing data in a fungal genome, and perform a variety of processing steps to recover 
FASTA files of haplotypes, plot haplotype relatedness to other species across genomic 
windows, and identify loci of potential crossovers between isolates. HaplotypeTools 
achieved greater accuracy than two other tools tested (GATK v4 HaplotypeCaller physi-
cal phasing and WhatsHap [14]), while also highlighting room for further improvement 
including computational speed, haplotype length and benefiting from additional data-
types such as Hi-C. Currently, regions lacking alignment data or variant calls due to 
complex genomic regions (such as very repeat rich regions) are ignored by Haplotype-
Tools, and present a further challenge and opportunity for development.

HaplotypeTools was tested on the hybrid Bd isolate SA-EC3 from the Amahlathi Local 
Municipality of the Eastern Cape in South Africa [19]. Comparing the output of Haplo-
typeTools to GATK HaplotypeCaller physical phasing revealed that HaplotypeTools was 
able to recover ~ 5X the total phased nucleotides, and > 4X the haplotype length in terms 
of haplotype Nmax and N50. HaplotypeTools phased regions were almost entirely con-
tained within WhatsHap [14] phased regions, and based on simulation data, Haplotype-
Tools phased regions were likely to include a greater number of true positives and fewer 
false positive phased sites. Phylogenetic placement of those haplotypes by HaplotypeP-
lacer indicated that SA-EC3 is a recombinant of BdGPL and BdCAPE haplotypes, which 
was supported by all three tools tested. South Africa has endemic BdGPL and BdCAPE 
lineages present [20], thereby facilitating such an event. ~ 1% of overlapping phased posi-
tions indicated crossovers between SA-EC3 and either parental lineage, indicating that 
meiotic recombination has not occurred between the parental lineages, and the recom-
binant genotype is more likely to have arisen via mitotic recombination/parasexuality: a 
process characterised in disparate fungal relatives [21]. Bd recombining via parasexuality 
is parsimonious with polyploidy isolates commonly found [22], and has been hypoth-
esized previously [23]. These results highlight the threat of emerging novel genotypes of 
pathogens following anthropomorphic spread [19].

HaplotypeTools is designed for phasing bi-allelic data, with tri-alleles phasing a pos-
sible upgrade route in the future. However, as shown in the real data experiments, Hap-
lotypeTools works on polyploid genomes and over aneuploidies. HaplotypeTools also 
has no clear upper limit on genome size or depth of coverage. HaplotypeTools has been 
tested using variant calls from GATK v4 HaplotypeCaller [12] and Pilon [18], although 
additional variant callers such as FreeBayes [24] that output in standard VCF should also 
work, as should other alignment and sequencing strategies. Sequencing technologies 
Nanopore and PacBio have not been tested with HaplotypeTools, although simulated 
long reads have been, which showed a particular advantage in accuracy tests. Indeed, 
given the shorter haplotypes offered by HaplotypeTools, a particular strength may be 
high accuracy haplotypes stemming from such long-read data. Sequencing strategies 
that yield higher sequencing errors could be accommodated by adjusting the ‘cut-off 
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percent reads supporting phase group’ parameter. Lower sequencing depth could be 
accommodated by adjusting minimum read depth. Where the use case is very different 
from those presented here, the tools to perform accuracy checks have been included in 
the HaplotypeTools toolset, and ideally will be used to validate phasing accuracy and 
thereby optimized for individual use cases.

The interpretation and usefulness of HaplotypePlacer will rely on the lineages or spe-
cies that the phased isolate is compared to. For example, it is advisable that a compre-
hensive set of possible parental lineages are included in the analysis or HaplotypePlacer 
will be unlikely to yield a clear answer. The phylogenetic relationships from Haplotype-
Placer are not currently tested for significance, and therefore for more robust results, 
haplotype trees should be examined individually and further phylogenetic tests and tools 
applied to the multiple alignments output. Future areas of development may include 
updates to efficiency and computational speed, as well as exploring where haplotypes 
could be extended further without impacting accuracy, and expanding the toolset to 
include new tools for population genetic tests such as Four-gamete tests.

Conclusions
HaplotypeTools is powerful resource that is able to accurately phase and extract hap-
lotypes for population genetic tests and can determine parental ancestry for hybrid or 
recombinant diploid isolates or individuals. The toolset will be useful for benchmarking 
new tools or parameter space for phasing accuracy, and visualizing haplotype coverage 
across a genome and their phylogenetic placement. Therefore, HaplotypeTools should 
prove valuable for a range of research questions in model and non-model organism 
genomes.

Availability and requirements
Project name: HaplotypeTools.
Project home page: https://​github.​com/​rhysf/​Haplo​typeT​ools.
Operating systems: Linux, MacOS.
Programming language: Perl and Python.
Other requirements: Perl modules (Bioperl [25], BIO::DB::HTC, Hash::Merge) and Sam-
tools [26]. HaplotypePlacer and associated scripts currently require installations of R 
and several modules (plyr, RColorBrewer) and FastTree [27].
License: MIT License.
Any restrictions to use by non-academics: Not applicable.

Methods
HaplotypeTools algorithm

The algorithm for HaplotypeTools comprises on five steps. The first step splits the 
VCF into windows of a specified length (default 10  kb), and BAM files into win-
dows of the same length. Step 3 combines pairs of BAM and VCFs for each sample 
by assigning read information to intermediate VCF files (i.e. VCF-[contig]-[start 
window]-[stop window]-phased-[sample number]). Step 4 assigns phase groups based 
on 5 conditions, outputting intermediate tabulated files (i.e. VCF-[contig]-[start 
window]-[stop window]-phased-[sample number]-and-assigned.tab). Step 5 merges 

https://github.com/rhysf/HaplotypeTools
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all phased samples for a given window into VCFs (i.e. VCF-[contig]-[start window]-
[stop window]-phased), and then concatenates those into a final phased VCF. Split-
ting input data into windows allows steps 3 and 4 to be run in parallel on a cluster 
(Platform Load Sharing Facility (LSF), Sun GridEngine (SGE) or Univa GridEngine 
(UGE) currently supported). HaplotypeTools can also be run on an individual com-
puter in serial at the expense of slower computational time.

Step 3 of HaplotypeTools assigns Phase Positions (PP) for all reads that overlap ≥ 2 
heterozygous positions, which are separated by semicolons and stored in the ID col-
umn of the output. PPs consist of:

1.	 unique read count (RC) and
2.	 read genotype values (rGT) or read nucleotide values (rNT)

RCs serve as simple integer identifiers (0, 1, 2, n) for step 4 to identify reads that 
overlap multiple VCF positions, the value of which is incremented for each new read 
in the BAM. rGT are variant positions in sequence reads corresponding to a sequence 
match to the VCF REF column (0) or ALT column (1,2 etc.). rNT are used instead 
of rGT for variant positions in sequence reads that do not match a VCF REF or ALT 
base (based on the CIGAR flag), e.g. rNT = A or rNT = ATCC. For example, follow-
ing step 3, an ID column could be’0-PP-0;1-PP-0;2-PP-1;3-PP-1;4-NT-A’, indicating 5 
reads align over this VCF position in total, two of which have the REF allele, two that 
have the ALT allele, and one that has an adenosine, which is not described in the VCF 
REF or ALT column at that position.

Step 4 runs through pairs of consecutively found heterozygous positions named 
Previous Heterozygous Position (PHP) and Current Heterozygous Position (CHP), 
checking them for 5 conditions:

1.	 Check for ≥ 2 rGT’s in CHP.
2.	 Check the 2 CHP rGT’s with the highest depth > min. haplotype depth parameter.
3.	 Check the 2 CHP rGT combined depth (percent) > phase cutoff parameter.
4.	 Check PHP passed conditions 1–3.
5.	 Check for ≥ 2 haplotypes from PHP and CHP PPs.

If any of those 5 conditions are not fulfilled, the PHP ID column is replaced by a 
comment stating the sample number and the reason it was not phased. A Phase Block 
(PB) integer value (identifier for separate haplotypes) is also incremented. The fol-
lowing pair of PHP and CHP are then assessed. Providing all 5 conditions are met, 
the reads that match the two PHP rGT’s and the two CHP rGT’s are identified, and 
used to construct a new CHP phased genotype. In the case > 2 rGT’s are found, the 
two with the highest depth are selected. A phase group (PG) is assigned to PHP (if not 
already assigned) and CHP, which is appended to the SAMPLEINFO column. The PG 
consists of the contig, sample number, start window and PB separated by dashed (e.g. 
supercont1.1-0-350,000-1), ensuring every PG is unique e.g. the same phase block 
identifier in the same window (350,000–360,000) for a 2nd sample in a multi sample 
VCF will be supercont1.1-1-350,000-1. A summary file for each window is printed 
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including contig, position, ID and SAMPLEINFO, which is used to update the final 
phased VCF during concatenation in Step 5.

Benchmarking using simulated data

HaplotypeTools and WhatsHap (downloaded from https://​github.​com/​whats​hap on 1st 
March 2021) were benchmarked using simulated data from the Batrachochytrium den-
drobatidis (Bd) JEL423 genome. First, 40 contigs each of < 10 kb were removed from the 
reference sequence, ensuring we could simulate 10 kb reads across the genome (updated 
reference = 29 contigs, 23.44 Mb, N50 = 1.7 Mb). Next, the Biscap utility script “Intro-
duce Random Mutations (IRMS)” [28] was used with the heterozygous setting (HET), 
which duplicates every chromosome (homologous versions), followed by selecting ran-
dom nucleotides to ‘mutate’ into other random nucleotides across both chromosomes 
and homologous chromosomes. Three such modified reference genomes were gener-
ated including 1 SNP/Kb (23,137 total), 10 SNP/Kb (231,370 total) and 100 SNP/Kb 
(2,313,700 total). Next, sequence reads were simulated from this duplicated and modi-
fied reference sequence using WGSim (https://​github.​com/​lh3/​wgsim) to ~ 20X depth 
using either short (100 nt) paired reads (2,313,797 pairs) or long (10  kb) paired reads 
(23,138 pairs) with no introduced errors (-r 0). Aligning these reads back to the undupli-
cated and unmodified reference genome will then appear to contain heterozygous posi-
tions, for which each position changed is known (the truth set). Reads were aligned to 
the genome using BWA v0.7.4-r385 mem, and a clean BAM created using Samtools v1.8 
view -b -h -f 0 × 2. For WhatsHap compatibility, Picard AddOrReplaceReadGroups was 
applied to the clean BAM files.

Variants were called from the simulated data alignments using Pilon v1.9 with the dip-
loid flag [18]. For WhatsHap compatibility, reference bases were removed from the VCF. 
GATK v.4.1.2.0 [12] was not used for calling heterozygous positions from simulated 
data alignments owing to failing the StrandBiasBySample filter used by HaplotypeCaller. 
Accuracy of Pilon was assessed using Biscap utility script “Comparison of FDR (CFDR)” 
[28].

Phased VCF’s from both HaplotypeTools and WhatsHap were assessed for accuracy 
using HaplotypeTools utility scripts. Specifically, Phased in Any (PIA) regions were iden-
tified (VCF_phased_to_PIA.pl), with parameter -t PS for WhatsHap and -t PID (default) 
for HaplotypeTools. FASTA sequences of haplotypes blocks/pairs were extracted using 
VCF_phased_and_PIA_to_FASTA.pl. Accuracy was assessed using Haplotype_FASTA_
files_to_compare_to_IRMS_het_sites.pl, which calculates for every haplotype block/
pair the number of sites that are correctly phased, sites that are incorrectly phased (False 
Positive type 1) and sites that have been incorrectly variant called and also been phased 
(False Positive type 2), false negatives within haplotype blocks (not presented), and 
Switch Errors (incorrect crossovers between haplotypes). To calculate Switch Errors, 
false negatives were ignored, while False Positive type 2 were considered as a switch 
error. Additionally, the script produces two summary statistics including overall Switch 
Error Rate, where the switch error is divided by the number of opportunities for switch 
errors. Finally, the Quality adjusted N50 (QAN50) was calculated for each test, where 
each haplotype block/pair is divided into sub-blocks with no switch errors, which are 
multiplied to the proportion of phased alleles inside that block (called an adjusted span), 

https://github.com/whatshap
https://github.com/lh3/wgsim
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sorted from largest to smallest, and then the QAN50 is the size of the adjusted span that 
includes more than half of the total variants [29].

HaplotypeTools using real data

To test HaplotypeTools on real data, variant calling was first applied to a major fungal 
pathogen of amphibians, Batrachochytrium dendrobatidis, which has a 23  Mb diploid 
or triploid (with frequent aneuploid [22]) genome. Paired-end Illumina data from rep-
resentatives of all five known lineages (BdGPL JEL423, BdCAPE TF5a1, BdCH ACON, 
BdAsia-1 KRBOOR_323, BdAsia-2 CLFT065, and a hybrid of unknown parentage 
SA-EC3) were obtained from the NCBI Sequence Read Archive (SRA) [19, 22, 30]. The 
Genome Analysis Toolkit (GATK) v.4.1.2.0 [12] was used to call variants. Our Workflow 
Description Language (WDL) scripts were executed by Cromwell workflow execution 
engine v.48 [31]. Briefly, raw sequences were pre-processed by mapping reads to the ref-
erence genome Bd JEL423 using BWA-MEM v.0.7.17 [32]. Next, duplicates were marked, 
and the resulting file was sorted by coordinate order. Intervals were created using a cus-
tom bash script allowing parallel analysis of large batches of genomics data. Using the 
scatter–gather approach, HaplotypeCaller was executed in GVCF mode with the diploid 
ploidy flag. Variants were imported to GATK 4 GenomicsDB and hard filtered (QD < 2.0, 
FS > 60.0, MQ < 40.0, GQ ≥ 50, AD ≥ 0.8, DP ≥ 10). HaplotypeTools and WhatsHap were 
used individually to phase each VCF with default parameters, and HaplotypeTools utility 
scripts to phylogenetically place and visualise haplotype placement across the genome, 
as well as explore crossovers between pairs of phased VCFs.
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