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Background
Large part of the genetic code may be functional [1]. Exploring comparative genetic vari-
ability across species can generate hypotheses about the functional diversification across 
taxa [2], while transcriptomic profiles may provide a high-level view of the down-stream 
outcome of this diversity [3]. Whole transcriptome analysis has been used to understand 
evolutionary relationships and conservation of gene networks [4], as well as for compari-
son of the modularity of gene interactions across species [5]. On the other hand, func-
tional cross-species comparisons can also be used to evaluate the predictive potential of 
pre-clinical species to model human molecular frameworks [6].

Comparisons of pre-clinical species as models of human functional genomics have 
been made, but rarely controlled on a large scale. A study by Lin et al. suggested that 
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within species, tissues appear to have a more similar transcriptomic profile, compared 
to the same tissue across species [7]. However, Sudman et  al. compared several other 
cross-tissue and cross-species datasets [3, 8], as well as a replicated sequencing from Lin 
et al., and suggested the opposite result [9]. The latter study, which features large-scale 
experiment batch control, reveals a potential for cross-species, cross-study comparabil-
ity of functional genomic datasets for profiling tissue specific, evolutionarily conserved 
expression patterns. Later studies have confirmed that tissue specific gene expression is 
much more explanatory of the variation in expression than species wide differences [10].

Due to the unique variation in functional sequencing data [11], as well as the many 
sources of variation in quantification output, multiple methods have been developed 
to normalize these data for cross sample and study [12, 13]. Some methods have been 
found unreliable across experimental setup and developing technology [14, 15], while a 
few, such as transcript per million (tpm) and trimmed mean of M values (TMM), have 
been shown as more consistent between samples and possibly batches [14, 15]. On the 
other hand, direct cross-species comparisons of expression levels are rare, and research-
ers advise alignment to an orthologous chimeric transcriptome [16–18].

Direct comparisons of RNA expression across species can aim to inform appropriate 
pre-clinical model selection and ascertain human relevance of pre-clinical efficacy and 
safety signals. While transcriptional profile comparisons may elucidate tissue similar-
ity in basal or active state, enabling direct comparison of RNA expression in an omic 
study may enable further resolution in identifying similarity in a specific set of poten-
tial targets. While creating a chimeric transcriptome may function sufficiently for pair-
wise comparisons [16, 17], it becomes computationally cumbersome and may reduce 
comparable gene sets substantially when more than two species are considered. For 
these reasons, we explored the possibility of mathematically normalizing, which may 
allow cross-species absolute RNA comparison of data derived from next-generation 
sequencing.

Cross-species comparison of RNA expression is complex due to a variety of confound-
ing factors. Recently Zhou et al. [19] proposed a statistical approach for cross-species 
comparison of RNAseq data, called scale based normalization (SCBN), which built on 
hypothesis testing based normalization (HTN) [20]. This method identifies issues like 
the differences in gene lengths for orthologous genes between species, the difference in 
number of genes being mapped in orthologous gene sets. There Zhou et al., use a small 
set of orthologous genes to identify differential expression between species. While this 
approach introduces a sound correction for some of the differences between mouse and 
human biology, it doesn’t focus on the much wider annotation gaps exist in other pre-
clinical species. Here we show that those annotation gaps, as expected, introduce a big-
ger set of biases in RNAseq comparisons.

In this study, we aim to evaluate current normalization techniques in providing robust 
comparisons of expression levels. We identify issues with tpm value comparison across 
species that appear to be related to annotation depth disparity and may stem from read 
mapping related to annotation differences. The disparity between human and pre-clin-
ical transcriptome annotation includes but is not limited to (1) higher number of total 
transcripts found in human compared to other species; (2) higher transcript per gene 
ratio for each gene in humans; (3) larger identified paralog set in humans. Here we 
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propose a simple workflow for normalization of tpm values that may enable direct abun-
dance comparisons among human and other pre-clinical species, as well as provide a 
framework to identify potential pitfalls in direct human to pre-clinical species functional 
genomic comparison.

Methods and results
We downloaded the latest annotations for human (Homo sapiens), cynomolgus monkey 
(Macaca fascicularis) (cyno), dog (Canis familiaris), rat (Rattus norvegicus), and mouse 
(Mus musculus) from Ensembl on May 9, 2019 (v.96). For each transcriptome, we com-
bined coding and non-coding transcripts. We define depth of annotation as the number 
of unique transcripts present in the final dataset for each species.

Overall depth of annotation evaluation

To test the effects of annotation depth disparity, we subdivided the human transcrip-
tome at random into variable sizes (from 1 to 99% of the original transcriptome size in 
1% increments). This approach allowed us to test, with high resolution, the effect for a 
variety of potential genome annotation depths and explore the magnitude and signifi-
cance of impact for the preclinical species of interest. Before subdivision, we removed 
a set of 154 transcripts (from 10 genes that have variable tpm magnitude, in a stratified 
random sampling of bins between log values of 0.5 and 4.5, in the full transcriptome in 
the sample we selected described below). For each transcriptome size, we created 100 
transcriptomes with random transcript composition. In each of the resulting 9,900 itera-
tions we re-inserted the control 154 selected transcripts. We indexed the resulting tran-
scriptomes using salmon quasi index with kmer size of 31 [21]. We selected a pancreatic 
sample (ERR315479) from the human protein atlas (HPA) [22] to align to all simulated 
genomes, and compared within and across tissue for depth and conforming transcrip-
tional profile through dimensionality reduction. We quantified expression of that sam-
ple in each transcriptome using salmon [21] with default paired-end parameters with 
validateMappings selected. Tpm values were calculated on a transcript level using the 
default salmon quant methodology and introns were not considered for mappings.

We imported transcript counts into R using tximport [23] package, summed the val-
ues to the gene level (using default tximport parameters) and plotted log differences 
between value in each sub-division and the full transcriptome in log10 of tpm values 
for each selected genes (Fig. 1A). When transcriptome sizes were subsampled, the tpm 
value of all test genes exceeded their calculated tpm value at the final transcriptome size 
(Fig. 1A). This relationship tended to be more pronounced when transcriptomes were 
less than 30% of original transcriptome size, and became less pronounced and became 
non-significant when transcriptomes were greater than 65% of original transcriptome 
size (Kruskal–Wallis test, Dunn’s post-hoc, Additional file 1: Fig. S1). The difference in 
tpm values can be explained by variable number of reads mapped for some of the tran-
scripts (Fig. 1B), while other transcripts had no difference in number of mapped reads, 
suggesting that the difference in their tpm values is primarily based on a difference in the 
size of the transcriptome, rather than the success of the mapping.



Page 4 of 15Oziolor et al. BMC Bioinformatics          (2021) 22:499 

Drivers of tpm inflation

We calculated summed transcript per million values (denominator in Eq.  1 below) 
across the transcriptome for each quantification and plotted transcript tpm in rela-
tion to that value to show the relationship in the following tpm equation derivation:

where xi is the raw reads mapped to each transcript, yi is the length of that transcript, 
and the denominator is the summation of that ratio across the all transcripts in the 
sample.

There is an inverse relationship between the size of the transcriptome and the calcu-
lated tpm value (Fig. 2), evident when the summed total per million values are plotted 
against the calculated tpm value for each of our test transcripts. The summed value 
represents the denominator of Eq.  1 and reveals a quantifiable and consistent rela-
tionship that is dependent on both the number of mapped reads, and may be related 
to the number of genes used in the summation, as a factor that affects the size of the 
denominator. These findings suggest that the inflation observed, and initially ascribed 
to variation in annotation depth, is simply a mathematical artifact of the total number 
of reads mapped in a sub-sampled genome.

Effects of paralogs on tpm calculations

The set of 10 genes we chose to estimate across genome sizes contain a total of 421 
paralogous transcripts in the human genome, defined by Ensembl. We removed those 
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Fig. 1  Transcripts per million (tpm) values for 10 sample genes appear inflated in sub-sampled 
transcriptomes, compared to their estimate in full length human transcriptome. A Gene level estimates of 
log10(tpm) difference for the 10 selected genes (individual lines and colors) from their estimate in the fully 
described human transcriptome. We selected genes through stratified random sampling from 10 bins of final 
abundance estimate across 9900 iterations of transcriptome with sizes from 1–99% (number of transcripts) 
of original transcriptome size. B Log10 difference in number of reads mapped to those genes in the same 
sampling scheme reveals that the large shifts in tpm estimates are driven by shifts in number of reads 
mapped. However, subtle and consistent shifts are independent of number of reads mapping to those genes
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transcripts from the transcript set and re-built the set of subsampled transcriptomes 
as above.

We compared the tpm values for our selected genes on a gene level and show that 
excluding paralogs has a small, but noticeable impact on reducing competition for tpm 
value estimated for a particular gene (Additional file 4: Fig. S4A) or reads mapped (Addi-
tional file 4: Fig. S4B), and while it aids in reducing the multi-modality of tpm estimates 
for a few of the genes examined (Fig. 2B; Additional file 5: Fig. S5), it does not elimi-
nate it. Overall, removing paralogs had little effect on the stratification of tpm values 
within similar size iterations. Thus, we suggest that the larger proportion of competition 
between read mappings occur on a transcript level, rather than gene level. This is con-
sistent with the evolutionary distance between paralogs introducing enough variation in 
sequence that multi-mapping is minimal. This lack of competition lessens the concern 
that the higher number of paralogs in the human genome may serve to affect abundance 
estimates due to read map competition.

Transcript to gene ratio influence

Using the pancreatic sample from HPA mentioned above, we established the distribu-
tion of transcripts per gene for human, cyno, dog, rat and mouse from the existing cod-
ing and non-coding RNA sequences in Ensembl v.96 (Fig. 3A). We restricted the regions 
we compared to only gene identified as one to one orthologs across all species in the 
Ensembl database. When examining orthologous genes, the disparity in depth of anno-
tation of transcripts is exacerbated (Fig. 3B).
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Fig. 2  Inflation of tpm estimate in sub-sampled transcriptomes is consistently driven by variance in total 
number of reads mapped. A Consistent relationship between tpm estimate and total number of normalized 
reads is consistent with denominator decrease in shown equation for sub-sampled transcriptomes. This 
suggests that sub-annotated transcriptomes may suffer from similar inflation if samples are not corrected for 
total number of reads mapped. B Right skew tpm estimates of all examined selected genes reveals consistent 
inflation of the subsampled transcriptomes. Multi-modality of tpm values may be arising from competition 
for reads from paralogous targets only present in certain permutations of the sub-sampled transcriptomes 
(genes with distributions in red)
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As pre-clinical species contain from 20 to 75% the number of transcripts per gene 
for each orthologous gene with human, we wanted to understand the influence of the 
differential transcript annotation on final transcript and gene level estimated reads 
mapped and abundance. We generated a human transcriptome with one-to-one gene 
orthologs for each pairwise comparison with cyno, dog, rat and mouse. Thus, for each 
pairwise comparison, the human transcriptomes represent the same number of genes, 
but different number of transcripts from what a pre-clinical species would contain. 
For each human gene, we additionally reduced the number of annotated transcripts 
in the human transcriptomes, to the level found in the pairwise pre-clinical species. 
We iterated which transcripts we included 100 times at random with replacement. 
The result was 4 human transcriptomes with pairwise orthologous genes represented 
to each pre-clinical species and full annotation depth for human transcripts. In addi-
tion, 400 transcriptomes in which the transcript annotation depth was reduced in 
human, to the match number of transcripts found in each pairwise pre-clinical spe-
cies (Fig. 3C), which we will refer to as pre-clinicalized human transcriptomes.

We explored the differences in gene-level estimates of raw mapped reads and abun-
dance between full representation transcriptomes versus reduced transcript anno-
tation representation and show reduction on final gene tpm values in most species 
(Additional file 11: Fig. S11A). This is paired with a clear reduction of total mapped 
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Fig. 3  Disparity in transcriptome annotation between human and pre-clinical species. A Average amount 
of transcripts per gene is much higher in human than other pre-clinical species. B Transcripts per gene 
are even fewer when focusing on the genes orthologous among all species. C Testing set up, in which the 
human transcriptome was pre-clinicalized by subsetting the human transcriptome to the same number of 
transcripts per gene as found pairwise in pre-clinical species, iterating this process 100 times for each species 
and mapping the same human sample to all transcriptomes
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reads per gene in pre-clinicalized transcriptomes (Additional file  11: Fig. S11B). 
The reduction of reads mapped tends to occur in genes, which have less transcript 
length represented in the pre-clinicalized transcriptomes (Fig.  4). Due to the con-
trol for reads mapped per unit length in the tpm calculation, the reduction in reads 
mapped in underrepresented genes does not lead to a systematic alteration in tpm 
estimates for those genes, while it does show increased variability in tpm values at 
lower lengths.

On the other hand, there is a clear over-estimation of tpm values for a specific set 
of genes in pre-clinicalized human transcriptomes (Fig. 5). A set of genes, well rep-
resented by transcript length, tend to have more reads mapped to them in pre-clin-
icalized transcriptomes compared to full size transcriptome. Those genes also tend 
to have an inflated tpm estimate, tending to correlate with reads mapped (Fig. 4). We 
explored the expression of those genes in the full transcriptome compared to 1000 
random samples of the same size and show that the genes that are over-represented 
in pre-clinicalized transcriptomes tend to be ones of lower expression (Additional 
file 12: Fig. S12A). Further, size of these over-represented genes, does not seem to be 
consistently lower or higher than a random sample among species (Additional file 12: 
Fig. S12B). These findings suggest that when transcriptomes are reduced to pre-
clinical species annotation sizes, a set of competitor transcripts are removed, allow-
ing for higher mapping of reads to low expression genes and leading to inflated tpm 
estimates.

Fig. 4  Pre-clinicalized transcriptomes reveal pattern of read mapping reduction and mean tpm stability. A 
tpm estimates remain stable for genes, even when small percentage of total transcript length is included in 
pre-clinicalized transcriptomes. B This is true even on the background of a reduced number of reads mapped 
genes with very little transcript length represented
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To further characterize the genes that tend to have over-estimated expression, we 
extracted those genes among species and plotted all their occurrences (Additional 
file 13: Fig. S13A). The instances, in which those genes become over-represented com-
pared to final sample are only when a large proportion of the gene’s length is represented 
(i.e. more of the longer transcripts). In such instances, more reads tend to map to these 
genes, compared to full human transcriptome, likely due to the lack of competition from 
transcripts of other similar genes (Additional file 13: Fig. S13A). This manifests as a pos-
itive relationship between difference in tpm value, due to higher read count for those 
genes. However, this relationship is not present in the other set of genes (Additional 
file 13: Fig. S13B), which do not tend to be over-estimated at higher gene representation. 
Those also tend to be genes with higher gene expression (Additional file 12: Fig. S12).

Ensembl historical annotation of human

To test if the pre-clinicalization of the human transcriptome is reflective of the histori-
cal progression of human transcript annotation, we downloaded historical annotation of 
the human transcriptome throughout versions 43 to 97 of Ensembl (July 8th, 2019). We 
mapped our human sample and examined the difference in tpm estimates to the genes 
in the first human transcriptome annotation throughout the progression of adding more 
transcripts in later versions of the transcriptome.

When examining genes conserved among all transcriptome annotations, we observed 
a trend of varying tpm estimates for a large set of genes that were annotated in the origi-
nal transcriptome (Fig. 6A). Estimates of tpm values in historic versions of the genomes 
were distributed around the mean estimates for the same genes in the current latest 
genome (v.97). However, mapped read counts were consistently lower in previous ver-
sions of the Ensembl human annotation, suggesting that the current assembly is better 
representative of the true genetic code in the expressed portion of the human genome.

Reduced tpm estimates likely stem from inflated gene length, which does not 
result in higher read content (Fig. 6B). We examined that in release 43 of the human 

Fig. 5  Estimates of tpm are relatively robust to reduction in reads mapped per gene, while read mapping 
increases lead to proportional tpm inflation. Few genes with high proportion of their length of transcripts 
represented present with higher reads mapped compared to full representation transcriptome. This could be 
due to lower competition for reads from similar transcripts in paralogous genes that are poorly annotated in 
pre-clinical species. This inflation of mapped reads leads to inflation of tpm estimates, suggesting a potential 
issue in direct abundance comparisons between species with vastly divergent genome annotations
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genome, while mapped reads for each gene tended to be lower, gene length var-
ied, with some genes having estimated lengths of twice or more of their size in the 
most current assembly (Fig.  6A). We quantified our sample as indicated in previ-
ous sections. We observe that tpm decreases in strong relationship with gene length 
(Fig. 6B), while it does not necessarily hold that relationship for genes with shorter 
than current length. We removed genes with higher gene length in earlier assem-
blies, we reconstitute the inflated tpm values that we observe in reduced size tran-
scriptome mapping (Additional file 14: Fig. S14A). This may be due to either lower 
number of reads mapped and reduced gene length. When observed over time, the 
genes with higher gene length in earlier assemblies vary strongly even until most 
recent transcriptomes (Additional file  14: Fig. S14B). One potential explanation 
could be that genes with longer length in older assemblies, have formerly received 
lower number of reads mapped in older annotations or assemblies (Fig.  6C). The 
wide variation in gene length across time assemblies and its profound impact in tpm 
values within the same reference genome raise a caution in the comparison of tpm 
estimates across species.
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Fig. 6  Historical variation in human transcriptome annotation leads to variable abundance estimates for 
the same genes in the same sample. A Abundance and gene length variation in human transcriptome 
annotation are accompanied with better read mapping over time, consistent with the improvement of 
the representation of the human transcriptome. B Higher gene length in earliest examined version (v43) is 
consistent with lower tpm estimates, while this relationship is less consistent for genes with shorter length. 
C This reduced tpm is driven by the lack of increase in reads mapping to longer versions of current genes, 
which suggests that those lengths were artificially adding improper sequence, which was not part of 
expressed portion of the gene
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Correction of tpm values with experimental data across species

To verify that tpm is inflated due to sequencing depth and not annotation differences, 
we downloaded publicly available datasets across species. Between tissue differences 
in transcriptomic profile are smaller than those between species [9, 10]. We used 
human transcriptomic data from GTEx (v7), human protein atlas (HPA) and data 
for four pre-clinical species (cynomolgus monkey, dog, mouse and rat) from Naqvi 
et  al. [10]. These data included 13 commonly sampled organs leveraging the range 
observed in Naqvi et al. [10] (lung, adrenal gland, brain, skin, liver, testis, colon, heart, 
pituitary gland, spleen, skeletal muscle, thyroid gland, adipose tissue). GTEx and pre-
clinical species data was taken as tpm values from publications, while HPA data was 
run through the salmon pipeline (as described above).

Given the known similarity of expression profiles within organs between species, 
we aimed to observe gene level tpm disparity between human and pre-clinical species 
on a per tissue level. We calculated median tpm value for a set of orthologous genes 
across all species (~ 13,000). We further subtracted log10(tpm) values for each sample 
of pre-clinical species from the median human values within organ and plotted the 
differences (Fig. 7).

The mean and median tpm values in pre-clinical species were consistently lower 
than human. This is contrary to the expectation for the direction of difference, driven 
by genome annotation depth (as examined in Fig. 1). However, this is clearly in line 
with a relationship between tpm values, driven by depth of sequencing (Additional 
file 2: Fig. S2). To remedy this technical disparity, driven by total number of mapped 
reads, we applied a TMM normalization, using the NOISeq package [24], on orthol-
ogous set of genes, with expression values above 1 tpm. This normalization shifts 
distributions of differences from human to approximately 0 and enables direct com-
parison of abundance values on the orthologous gene set. The code/package informa-
tion is available in Additional file 16.

Fig. 7  Trimmed Means of M values (TMM) correction of experimental data removes skew in pre-clinical 
species, stemming from variation in number of reads mapped. Within tissue comparisons of tpm values for 
13,000 orthologous genes to their median tissue value in human (GTEx and HPA) reveal a consistently lower 
average tpm in pre-clinical species. This is likely driven by higher depth of sequencing in pre-clinical datasets. 
TMM accounts and corrects for differences in sequencing depth
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We followed up these analyses with a targeted approach, using a previously proposed 
set of human housekeeping genes [25]. Of the 3804 proposed human housekeeping 
genes, 1904 had orthologs across all pre-clinical species. The TMM correction, while 
performed on all genes, successfully improved the comparability of absolute expression 
estimates of pre-clinical species to human as well (Additional file 6: Fig. S6). Exploring 
the variability in correction on an tissue level reveals that many organs receive minimal 
correction within a species, while others were barely corrected (Additional file 6–9: Figs. 
S6–9). The distributions of these housekeeping genes in most tissues look very similar 
to each other within the species, it is because of housekeeping genes expected to be 
expressed across all tissues to maintain basic cell functions. The distribution similari-
ties become more obvious “after” TMM correction across all tissues/pre-clinical species, 
supporting the argument that TMM correction is needed for direct comparison between 
different species.

Discussion
Analysis of transcriptional variation is crucial in understanding the molecular machin-
ery of organisms [10]. Drawing inferences about functional contrasts between species is 
in the heart of understanding evolutionary processes, but also more applied tasks, like 
drug safety species selection and understanding human relevance of target-driven effi-
cacy and safety signals. In this manuscript we identify potential issues with direct com-
parison of transcriptomic data across species with wide annotation gaps. We focus on 
the differences between four commonly used pre-clinical species and how those differ-
ences impact the tpm values, commonly used for direct expression comparison. Here 
we suggest a straightforward workflow of tpm estimation followed by TMM normali-
zation to enable direct abundance comparisons among species. In addition, we iterate 
the magnitude of existing issues in paralogous transcript read map competition, anno-
tation depth and gene length variation across species, which still remain issues in ena-
bling direct comparisons. Here we focus on salmon as our mapping algorithm, and while 
some of these results may vary across others available in the space, the salmon is among 
the most preferred algorithms and it performs similarly to other popular mapping tools 
[26].

Regulatory bodies aim to evaluate the predictivity and fit of a pre-clinical species used 
for pharmaceutical safety or efficacy evaluation. The justification of species selection 
must be based on functional concordance with human molecular responsiveness. Often 
a one to one comparison is attempted in basic functional end-points, such as whole 
transcriptome sequencing derived gene expression. However, as we see in this study, 
abundance estimates on a per gene level may vary between experiments or species. We 
present two large potential issues for one to one functional comparisons of transcrip-
tomic data between humans and pre-clinical species: (1) depth of genome annotation; 
(2) competition for read mapping in low expression and poorly annotated gene families. 
A large majority of the first issue appears to be resolved by correction for the total reads 
mapped per sample (TMM normalization of tpm values). We suggest that such work-
flow may bring abundance estimates to more comparable levels, by correcting for the 
variation in tpm due to variation in total reads mapped.
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The effort for more directly comparable gene expression values between species 
must revolve around equalizing conditions in the computational process. As an exam-
ple, our simulations suggest that focusing on a set of genes homologous across all spe-
cies (Fig. 4–7), may yield rather robust tpm estimates, with a few exceptions. The use of 
TMM correction on tpm values [27], assumes that majority of genes are not differentially 
expressed, which is consistent with the idea that tissue specific expression is more simi-
lar between species than between tissues [9, 10]. While differential expression between 
species has been shown to be of lower magnitude than between tissues [10], evolution-
ary divergence still is identifiable through level of difference in expression across fur-
ther evolutionarily distant species. We also see that even within the same families, there 
can be huge variation in genome sizes, which could further contribute to a variation in 
genome differentiation [28]. Evolutionary pressures have also imposed selective forces 
on expression pathways across mammals, which can be considered in direct compari-
sons [27]. Thus, the usage of TMM values should be used with caution in species with 
long evolutionary separation. Others use PCA value normalization [10], which also 
may allow for a level of comparability, in which there is control for transcriptome size, 
mapped reads and other factors which may skew expression in pre-clinical species com-
pared to human. Some have proposed a normalization based on gene length corrected 
trimmed mean of M-values (GeTMM) for inter-sample and intrasample comparisons, 
that is also based on tpm and TMM [29]. GeTMM was shown to work better in human 
cancer samples over other normalization techniques, yet it has not been tested its capa-
bility for intraspecies comparisons. Thus, we recommend such attempts to normalize 
datasets with caution and robust documentation of the normalization and comparison 
processes.

The second issue remains: there are still a set of genes, which have normally low 
expression in full human transcriptome, but when reduced to their diversity in pre-clin-
ical species, exhibit an artificially inflated abundance estimate. We suggest that this dis-
parity is due to a removal of set of genes, annotated in human, but not yet discovered in 
pre-clinical species. This removal reduces the competition for read mapping in poorly 
annotated gene families in pre-clinical species and artificially inflates the abundance 
estimates for otherwise low expression genes. Using an orthologous subset genome is 
likely not the preferrable option biologically. Given that only ~ 13,000 genes have proper 
orthologs when evolutionarily distant species are considered (dog, rodents), this heavily 
limits the biological interpretation of results of differential expression with a ortholo-
gous genome used for quantitation. We argue that using such a work-around is not fix-
ing the problem, but rather avoiding it.

Paired with the problem of ortholog abundance is the divergence of gene length among 
orthologous genes between species (Additional file 12: Fig. S12). Even within the human 
genome, lengths of genes vary widely among releases (Additional file 13: Fig. S13B). The 
human gene lengths varied more in the earlier versions as annotations were improving 
drastically (Additional file 14: Fig. S14B). While they still vary between current versions, 
that absolute variability is lower. A trend alike early human annotations can be seen in 
some preclinical species. An example of that is the doubling of transcripts available for 
the dog transcriptome between Ensembl versions 102 and 104. Additionally, efforts like 
the Earth BioGenome [30] project and the Vertebrate Genome Project [31] are making 
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incredible strides in resolving issues around reference genome annotation and assembly. 
The tpm correction factors in gene length, which makes expression values among genes 
comparable, but if the annotation of the matching ortholog between species has diver-
gent gene lengths due to technical and not biological reasons, this will pose a confound-
ing factor for direct abundance comparisons.

Conclusions
There are many issues, both biological and technical, in the direct comparison of whole 
transcriptome RNA sequencing data directly between species. With this manuscript we 
hope to introduce some of the questions we have found to influence this comparison and 
offer some corrective measures. Despite that, functional comparison with pre-clinical 
species is still an essential metric for species selection and translation, which necessi-
tates a body of work that would permit better confidence for regulatory and scientific 
purposes. Our main suggestion is a heightened attention to fully annotating pre-clinical 
species. Such an effort would allow us to understand both evolutionary and technical 
constraints to direct transcriptomic comparisons, as well as aid in better safety assess-
ment by using the most relevant species for each evaluated target.
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Additional file 1: Figure S1 Inflation of tpm values for genes is significant up to 65% of original genome size. A 
Kruskal-Wallis test with Dunn’s post-hoc shows that p-values adjusted for multiple testing (Benjamini-Hochberg) are 
below 0.05 in genomes that are less than 65% of original genome size.

Additional file 2: Figure S2 Increases in relative normalized read counts per sample are consistent with reduction 
of tpm value across all examined orthologous genes. We examined all samples from Naqvi et al. [10], the GTEx and 
HPA datasets and focused on orthologous genes. We calculated the sum of gene length normalized raw reads per 
sample and related them to the most highly sequenced sample. We show a negative relationship (linear model) 
between log10(tpm) per gene values and total reads mapped across the entire orthologous transcriptome.

Additional file 3: Figure S3 Transcript competition for reads presents as multi-modality in tpm estimation across 
sub-sampled transcriptomes. A) Many of the examined test transcripts present with a stratification in their abun-
dance estimate, even at the same total read count per sample. B) Some of this multi-modality is rescued when tpm 
are summed to the gene level. This suggests that the stratification is present due to a competitor transcript of the 
same gene acquiring reads in some cases and not in others. This leads to lower tpm estimate of test transcript when 
competitor is present, but no difference when transcripts are summed to gene level.

Additional file 4: Figure S4 Removal of paralogous transcripts does not lead to an appreciable inflation in tpm in 
the same setup. Repetition of setup from Fig1 with the paralogous transcripts removed reveals the same relationship 
between gene-wise A) tpm levels and B) read counts across test transcripts in sub-sampled transcriptomes.

Additional file 5: Figure S5 Multi-modality of gene-level estimates of tpm is lower, but still present when paralo-
gous transcripts are removed.

Additional file 6: Figure S6 Distribution of 1,904 housekeeping and orthologous genes’ expression log difference 
before Trimmed Means of M values (TMM) correction and after TMM correction in pre-clinical species relative to 
human. The labeled values are the median of the distributions before and after TMM correction. The median of TMM 
corrected distribution is closer to 0, meaning that TMM correction makes the pre-clinical species distributions more 
comparable to human.

Additional file 7: Figure S7 Distribution of 1,904 housekeeping and orthologous genes’ expression log difference 
before Trimmed Means of M values (TMM) correction and after TMM correction across 13 tissues in cyno relative to 
human. The labeled values are the median of the distributions before and after TMM correction. The median of TMM 
corrected distribution is closer to 0, meaning that TMM correction makes the pre-clinical species distributions more 
comparable to human.
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Additional file 8: Figure S8 Distribution of 1,904 housekeeping and orthologous genes’ expression log difference 
before Trimmed Means of M values (TMM) correction and after TMM correction across 13 tissues in dog relative to 
human. The labeled values are the median of the distributions before and after TMM correction. The median of TMM 
corrected distribution is closer to 0, meaning that TMM correction makes the pre-clinical species distributions more 
comparable to human.

Additional file 9: Figure S9 Distribution of 1,904 housekeeping and orthologous genes’ expression log difference 
before Trimmed Means of M values (TMM) correction and after TMM correction across 13 tissues in mouse relative to 
human. The labeled values are the median of the distributions before and after TMM correction. The median of TMM 
corrected distribution is closer to 0, meaning that TMM correction makes the pre-clinical species distributions more 
comparable to human.

Additional file 10: Figure S10 Distribution of 1,904 housekeeping and orthologous genes’ expression log difference 
before Trimmed Means of M values (TMM) correction and after TMM correction across 13 tissues in rat relative to 
human. The labeled values are the median of the distributions before and after TMM correction. The median of TMM 
corrected distribution is closer to 0, meaning that TMM correction makes the pre-clinical species distributions more 
comparable to human.

Additional file 11: Figure S11 Both abundance and read mapping are reduced in pre-clinicalized human transcrip-
tomes. A) tpm estimates are on average lower in pre-clinicalized transcriptomes for species, other than cyno. B) This 
is congruent with left skew in read counts compared to fully represented human transcriptome.

Additional file 12: Figure S12 Inflation of tpm values in pre-clinicalized transcriptomes happens in genes with 
lower than average expression, while it is not related to gene length. A) Random subsampling of gene expression 
values (1000 permutations) of the same size as number of genes as ones found to have inflated tpm values in pre-
clinicalized transcriptomes. The average expression in sampled genes is markedly higher for all species, compared 
to the average expression in the genes found to have inflated tpm in pre-clinicalized transcriptomes (black vertical 
bars). B) Same sampling did not yield a consistent difference between gene length of inflated tpm genes and the 
rest of the transcriptome.

Additional file 13: Figure S13 Genes with inflated tpm values in pre-clinicalized transcriptome only experience 
such inflation, when large proportion of the total transcript length is present. A) Reveals genes that were shown to 
experience inflation in tpm when examined in a pre-clinicalized transcriptome. B) Same relationship for all other 
genes shows that inflation does not occur even when at high proportions of transcript length present.

Additional file 14: Figure S14 Historical variation in gene length plays a role in tpm estimates. A) In historical 
ensemble human transcriptome releases, genes that did not have inflated gene lengths have tpm estimates more 
consistent with ones from current day human transcriptome. B) Gene length variation in genes with historically 
inflated length estimates is highly variable even until very recent releases.

Additional file 15 HPA pancreas quantitation.

Additional file 16 Collated code.
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