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Background
In the practice of clinical treatment, a single drug often fails to achieve the desired effi-
cacy because the single drug in general aims at a single target of diseased cells and cannot 
remedy all aberrantly functioning pathways because of the robustness of organisms. The 
drug may also have poor safety profiles owing to various factors [1], including compen-
satory changes in cellular networks upon drug stimulation [2], redundancy [3], crosstalk 
[4], and off-target activities [5]. In contrast, drug mixtures are generally more effective 
than single effectors because multiple drugs simultaneously act on different pathways 
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and cell targets, potentially leading to higher efficacy and lower toxicity because of drug 
synergy [6]. Therefore, in the clinical treatment of complex diseases, such as parasitic 
nematode infections or herpes simplex virus (HSV), a variety of drugs have been used 
in combination for treatment improvement [7]. The infection of parasitic nematodes (or 
roundworms) poses a serious safety hazard to humans and livestock [8], and the anthel-
mintics (or antinematode drugs) are highly susceptible to drug resistance. It has been 
proved that a variety of combinations of multiple anthelmintic drugs, rather than a sin-
gle medicine, can enhance the deworming effect [9]. In the case of the eradication of 
wild-type Caenorhabditis elegans worms, it is more effective to use four combinatorial 
drugs (levamisole, pyrantel, tribendimidine, and methyridine) than single drugs [10]. 
Traditional treatments of HSV-I, one of the most common sexually transmitted infec-
tions, often include virus-specific drugs, which are effective at the beginning but exhibit 
limited long-term efficacy as drug-resistant strains develop. However, a combination of 
six drugs (IFN-α, acyclovir, IFN-γ, ribavirin, IFN-β and TNF-α) was demonstrated to be 
the most promising therapy for the reason that the drugs in the combinatorial treatment 
can act simultaneously on the multiple pathways and cellular protein complexes, and, 
therefore, regulate all relevant pathways, potentially blocking HSV-I replication [11]. 
Combined use of multiple drugs is also a common practice in the treatment of cancers 
to achieve higher efficacy and potency. For example, in the treatment of non-Hodgkin’s 
lymphoma, the drugs, pirarubicin, velet, cytarabine and prednisone, are usually used in 
combination, which the chemotherapy effect is remarkablely enhanced [12].

However, owing to the inherent complexity of biological systems and internal struc-
ture of cells and, particularly, to the huge searching space, it is extremely challenging to 
effectively and efficiently to determine the optimal drug mixture from all possible drug 
combinations through trial and error. For example, there are n drugs and each drug has 
m concentration candidates, it is necessary to find the optimal drug mixture in the space 
of mn combinations. Obviously, as the types of drug increase, the number of combina-
tions increases exponentially, and it is impossible to test all cases of drug combinations 
because it takes a considerable amount of time to perform the testing experiments. 
Therefore, it is important to explore how to reduce the number of experiments and pre-
dict the optimal combinatorial drug concentration accurately and quickly.

For these reasons, the optimization of drug combination has attracted considerable 
attention in recent years, and several methods for predicting the optimal combina-
torial drug concentrations have been proposed [13–20]. A feedback system control 
(FSC) method was developed to search for optimal synergistic combinatorial drugs 
for the treatment of diseases [16]. The FSC method starts with a set of initial con-
centrations of combinatorial drugs with defined drug doses, and the efficacies of the 
combinatorial drugs on the cells at the given concentrations are evaluated according 
to the phenotypic output response of the cells. Then, the next predictions of the con-
centrations of drug mixtures are conducted based on the previous drug testing results 
with a certain searching algorithm, such as the Gur game (GG) algorithm, modified 
Gur game (MGG) algorithm, differential evolution (DE) algorithm, streamlined-feed-
back system control (s-FSC) algorithm, continuous adaptive population reduction 
(CAPR) method, and the FSC method iteratively approaches a globally optimal com-
binatorial drug mixture [19]. However, in some cases, these algorithms may degrade 
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the overall performance of FSC owing to the inherent shortcomings of these algorith-
mic frameworks [17–20]. FSC with the GG and MGG algorithms often falls in oscil-
latory curves instead of giving a convergent output. It converges too early to a local 
extremum with the DE algorithm, thereby forming a premature convergence phenom-
enon, and it lacks a unified parameter controlling strategy with the CAPR algorithm 
to satisfy various applications. As the search process of s-FSC method is based on an 
‘iterative cycle’, searching for the optimal concentration requires more iterations. Fur-
thermore, the FSC iterates its searching process, in which the next iteration requires 
biological experiments with the predicted combinatorial drug doses for further evalu-
ation and prediction. Thus, the optimization of combinatorial drugs with FSC is quite 
inefficient because a significant amount of time is spent on the testing experiments.

Markov chain is one of the most important and fundamental algorithms in the field 
of machine learning, and is being used widely in the analysis of biological data and in 
bioinformatics area. It is novel to use the Markov chain method to model the com-
binational drug optimization and search for the optimal concentration combination. 
In this paper, an optimization method based on Markov chain models is proposed to 
search for optimal combinatorial drug concentrations with excellent performance. In 
this method, the searching process of the optimal drug concentration is converted 
into a Markov chain with N = mn state variables representing all possible drug com-
binations, where n refers to the number of drugs, and m is the number of discretized 
concentrations for each drug. This Markov chain can be depicted by a network of N 
nodes in the space of Rn , where the nodes refer to the state variables. Assuming that 
all the possible drug combinations have equal probability to be the optimal mixture 
without having prior knowledge about the efficacy of the drug mixtures, a matrix of 
transition probability can be initialized so that the stationary distribution vector of 
the Markov chain has an equal value of 1/N for all its states. Then the searching pro-
cess for the optimal combinatorial drug concentrations is equivalent to updating the 
transition probability matrix and seeking the the state with the maximum value in the 
stationary distribution vector.

The proposed method was validated by both simulation and biological experiments. 
In the simulation experiments, the proposed Markov chain-based method was com-
pared with the five benchmark algorithms (GG, MGG, DE, CAPR and s-FSC) in the FSC 
framework. In biological experiments, the survival rate of cells under two combinatorial 
drugs is regarded as the response function, and the Markov chain-based method was 
compared with GG and MGG in FSC. The results of the simulation and biological exper-
iments prove that the algorithm based on the Markov chain outperforms the selected 
benchmark algorithms in terms of accuracy and efficiency. In summary, this study pro-
vides a versatile, novel method for efficiently optimizing combinatorial drug concentra-
tions, and the work is of great significance for clinical drug combination therapy.

The remainder of this article is organized as follows. First, the preliminary theories 
of the Markov chain are discussed briefly, and the Markov chain-based method is pre-
sented. Then the simulation and biological experiments are described, and the experi-
mental results are discussed to compare the performance of the proposed Markov 
chain-based method with other benchmark algorithms. In the last, we conclude this 
article.
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Methods
In this section, first, some basic theories of the discrete-time Markov chain are briefly 
reviewed. The optimization problem of combinatorial drug therapy is formulated with 
assumptions, and the general idea of the Markov chain-based approach to the optimi-
zation of drug combinations are described. The detailed algorithms in the cases of one 
drug and two drugs are given in Additional file 2: Fig. S1, Additional file 3: Fig. S2, Addi-
tional file 4: Fig. S3, Additional file 5: Fig. S4, Additional file 6: Fig. S5, Additional file 7: 
Fig. S6.

Markov chain theory

A Markov chain is a special kind of Markov stochastic process with a set of discrete 
states. It starts in one of these states and moves successively from one state to another, 
satisfying the Markov property. Markov chains are a mathematical model to describe a 
process in which the next state of the system depends only on the present state, and not 
on the preceding states. In other words, the process loses its memory of the past over 
time.

Definition of a Markov chain: When {Xn, n ≥ 0} is a random sequence taking values 
in a finite or countable discrete set, where � = {1, 2, . . . ,N } or � = N  typically, the pro-
cess X(n) = Xn for n = 1, 2, . . . is a Markov chain if

where n ≥ 0 and sn+1, sn, sn−1, . . . , s0 ∈ � , and the values taken by the random vari-
ables Xn are called the states of the chain. Moreover, if the transition probability 
P(Xn+1 = sn+1|Xn = sn ) = pij for sn+1 = j and sn = i is independent of n , then P =

{

pij
}

 
is called the transition probability matrix.

Stationary distribution: For a Markov chain with the transition probability matrix 
P =

{

pij
}

 , a probability distribution vector π is called a “stationary distribution” if π has 
entries  

{

πj ≥ 0, j ∈ �
}

 such that the following conditions hold.

where π = πP is called the “balance equation.”

Assumptions

Before introducing the combinatorial drug optimization method based on the Markov 
chain, it is assumed that there are two assumptions:

•	 With the slow change in the concentration of the combination drugs, the effect of the 
drug on the experimental subject also changes smoothly.

•	 The number of drug combinations is limited.

The above two assumptions are reasonable for the optimization of combined drug 
concentrations. The organism does not change dramatically under smooth input from 

(1)P(Xn+1 = sn+1|Xn = sn,Xn−1 = sn−1, . . . ,X0 = s0 ) = P(Xn+1 = sn+1|Xn = sn )







π = πP
�

j∈�
πj = 1
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the outside world. In the experiment, the concentration of the drug combination is a few 
discrete points. Under the above two assumptions, the combinatorial drug optimization 
problem can be expressed using a finite-state Markov chain.

Method description

First, a general example is depicted to illustrate the main idea of the method. Suppose 
that there are n kinds of drugs and each drug has m possible concentrations, then the 
state space � = {1, 2, . . . ,mn} represents the set of mn combinatorial drug concen-
trations in an ascending order. Our goal is to find the optimal concentration from the 
state space. Here, the drug response function or death rate of cells can be represented 
by a normalized function f (x) ∈ [0, 1] for x ∈ � . The higher value of the f (x) , the bet-
ter effect of the drug combination at the corresponding concentration, leading to higher 
cell death rate. f (x) = 0 means that the drug combination at the concentration level x 
is completely ineffective while f (x) = 1 indicates that the drug combination achieves its 
best treatment efficacy. Our aim is to find the best concentration x∗ for drug combina-
tion with the maximum value of the objective function f (x) as follows:

As shown in Fig.  1, in the case of three drugs, it is necessary to construct a three-
dimensional network structure of Markov chain. Each drug has m concentra-
tion levels and a total of m3 concentration combinations constitutes the state space 
� =

{

1, 2, . . . ,m3
}

 . The states in � represent the drug combination of different concen-
trations. For any i, j ∈ � ; if f (i) >  f

(

j
)

, it is implied that the efficacy of the drug combina-
tion at the concentration level i greater than that at concentration level j . Likely, in the 
general case of n drugs, an n-dimensional network of Markov chain can be constructed, 
and the state space � consists of mn states if each drug has m concentration levels.

(3)x∗ = argmax f (x), x ∈ �

Fig. 1  State-transition diagram of a Markov chain with m3 states



Page 6 of 19Ma et al. BMC Bioinformatics          (2021) 22:451 

In order to search for the optimal drug combination, a key assumption with the 
Markov chain model is that, for any state x(t) , the state x(t + 1) at the next moment 
always comes from the current state x(t) , and the states have a larger probability 
shifting to the direction with a larger objective function. In other words, at the step 
t , if the objective function for the state x(t) is f (x(t)) , then the state x(t) can select to 
transfer to its adjacent states to obtain the next state by comparing its function value 
with those at the adjacent states and choosing the state with a relatively higher objec-
tive function value for the next step. The benefits of this approach are obvious. As t 
approaches infinity, the state transfers to the optimal state x*, which means that the 
probability at the global maximum of the objective function is the greatest.

Reconsidering the Markov chain model described above, from the state transition 
diagram shown in Fig. 1, it is obvious that it is a random walk with any two adjacent 
states. Searching for the optimal drug concentration is equivalent to seeking the state 
with the largest steady-state probability in the stationary distribution. Therefore, a 
transition probability matrix P of mn ×mn is initialized and then updated iteratively 
for searching for the optimal drug combination with the Markov chain model. Firstly, 
according to the initial state, the corresponding transition probability matrix P is con-
structed, and two suitable experimental points are selected from the state space. Sec-
ondly, the transition probability matrix is updated and then the balance equation is 
solved to achieve the stationary distribution. After multiple iterations, the algorithm 
converges with a predefined criteria, and the maximum value in its stationary distri-
bution is the corresponding optimal state sought, that is, the optimal combination of 
drug concentration levels.

It is noteworthy that the initialization of the transition probability matrix is not 
unique. Without having prior knowledge about the efficacy of the drug mixtures, it is 
reasonable to assume that all the possible drug combinations have equal probability 
to be the optimal mixture and a matrix of transition probability can be initialized so 
that the stationary distribution vector of the Markov chain has an equal value of 1/N  
for all its states. In this study, the transition matrix is initialized such that, on the net-
work, every pair of adjacent states has an equal transition probability to move back 
and forth between each other, and every state has the same transition probability to 
move to all its adjacent states. In particular, the state on the edge of the network has 
a certain probability to go back to itself. Then, the Markov chain-based approach to 
optimizing the combinatorial drugs turns into a process of repeatedly updating the 
transition matrix by comparing the efficacies of pairs of adjacent drug combinations 
and then computing the corresponding stationary distribution vector until a certain 
convergent criterion is satisfied. The steady state that has the maximal distribution 
probability is referred to as the optimal drug combination.

The general procedure of the optimization algorithm for combinatorial drugs based 
on the Markov chain model is described as follows:

Step 1: The Markov chain and the corresponding transition probability matrix are 
initialized according to the numbers of drugs and concentration levels.
Step 2: Suitable adjacent combinations of experimental points are selected.



Page 7 of 19Ma et al. BMC Bioinformatics          (2021) 22:451 	

Step 3: The transition probability matrix of the Markov chain is updated according to 
the difference in the drug response functions at the corresponding suitable experi-
mental points.
Step 4: The corresponding stationary distribution is solved according to the updated 
transition probability matrix using the balance equation.
Step 5: It is determined whether the stationary distribution converges. If it converges, 
the algorithm stops; otherwise, it returns to the second step, or, when the predeter-
mined number of iterations is reached, the algorithm stops.

A single drug and two kinds of drugs are taken as examples to introduce the searching 
algorithm we proposed in Additional file 2: Figs. S1–S6.

Simulation experiments and discussion
Simulation experiments were conducted to compare the performances of the Markov 
chain-based algorithm and five benchmark algorithms: GG algorithm, MGG algorithm, 
DE algorithm CAPR method and s-FSC method. The principle of these algorithms and 
the relevant control parameters selection for these algorithms are introduced briefly in 
Algorithm  1. The simulation experiments were implemented with the response func-
tions in the cases of single drug, two drugs and three drugs respectively.

Predicting the optimal concentration of single‑drug

Three drug response functions of single drug are used to compare the performances of 
the Markov chain-based algorithm and the benchmark algorithms, including GG algo-
rithm, MGG algorithm, DE algorithm, CAPR algorithm and s-FSC algorithm. And the 
three response functions of single drug, corresponding to the curves in Fig. 2a–c, are 
defined as below respectively:

In the simulations, it is expected to find the global maximum points for the drug func-
tions. As shown in Fig.  2, the GG and MGG algorithms can not successfully find the 
global optimum points for all three drug response functions, and sometimes oscillate 
around some states (Fig.  2d) or stays in a suboptimal states (Fig.  2e, f ). The DE algo-
rithm and the CAPR algorithm not only fail to find the global maximum for some func-
tions, but also take much more time to achieve the solutions (Fig.  2g–i). The s-FSC 
algorithm can find the optimal point but sometimes it need more steps (Fig.  2j–l). In 
the contrast, the proposed Markov chain-based approach always succeeds in obtaining 
the global optimal state with less iterations (Fig.  2m–o). A further comparison of the 
Markov chain-based algorithm and the five benchmark algorithms was made using the 
success rate and the number of iterations, as shown in Table 1, which demonstrate that 
the Markov chain-based algorithms is more reliable and efficient than the benchmark 
methods.

f1(x) = −0.000845x4 − 0.02028x3 + 0.1415x2 − 0.2374x + 0.6136, (1 ≤ x ≤ 11);

f2(x) = 0.000006498x4 + 0.0001245x3 − 0.004669x2 − 0.2374x + 1.0016, (1 ≤ x ≤ 20);

f3(x) = −0.000000006413x8 + 0.0000006606x7 − 0.00002695x6+

0.0005516x5 − 0.005942x4 + 0.0328x3 − 0.08933x2 + 0.1461x + 0.01262, (1 ≤ x ≤ 25);
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Fig. 2  Three drug response functions and numerical simulations using six different algorithms. a–c Drug 
response functions; d–f GG algorithm and MGG algorithm; g–i DE algorithm and CAPR algorithm; j–l s-FSC 
algorithm; m–o Markov-chain-based algorithm; p–r the stationary distributions
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In these simulations, the transition probability matrices of the Markov chain mod-
els were updated and the corresponding stationary distributions of the states change 
accordingly. As shown in Fig.  2p–r, the stationary distributions π = (π1,π2, . . . ,πN ) 
change gradually with the update of transition probability matrices and are finally con-
vergent. Finally, the shape of the stationary distribution resembles the shape of the drug 
response function, which explains why the algorithm we proposed is effective for search-
ing for the optimal combinatorial drugs.

Predicting the optimal combinatorial concentrations of multiple drugs

Simulation experiments were also conducted to validate the Markov chain-based algo-
rithm and to compare its performance with the benchmark algorithms in the case of 
two drugs and three drugs respectively. The two response functions of two drugs are 
a Rastrigin-based function and a De Jong-based function, which are defined as below 
respectively:

In order to implement the simulation with f4 and f5 , the entire range [0, 5] , for x and y 
were evenly discretized into 20 distinct values.

The response function of three drugs, a ternary function, is defined as below:

This function has multiple stagnation points and a single maximum point. The process 
to analytical obtain the extreme value and the maximum value points is placed in the 
additional file 1. 100 pairs of (x, y, z) including the extreme value and maximum points 
were randomly selected to represent different combinatorial drug concentrations and 
the drug response function values at these corresponding points were calculated. Then 
five searching algorithms are used to search for the maximum point.

The searching processes of the optimal drug concentrations in the case of multi-
ple drugs with the Markov chain-based algorithm and the five benchmark algorithms 
are displayed in Fig. 3. Figure 3A(a)–(f ) in the left column, Fig. 3B(a)–(f ) in the middle 
column, and Fig. 3C (a) ~ (f ) in the right column of Fig. 3 represent the search for the 
optimal solutions of the response functions f4 , f5 and f6 , respectively with the various 
algorithms, indicating the relationship between the number of iteration and the opti-
mal solutions at each iteration. Each row of Fig. 3 represent the search for the optimal 
solutions of the three response functions of multiple drugs with a certain algorithm, and 
from the top to the bottom are the original GG algorithm, the MGG algorithm, the DE 
algorithm, the CAPR algorithm, the s-FSC algorithm, and the Markov chain-based algo-
rithm respectively. From Fig. 3, the same conclusion can be drawn as the case of single 
drug that the five benchmark algorithms can easily fall into local optimal values or may 
take more iterations to find the optimal value, while the proposed Markov chain-based 
algorithm can find the global optimal value more reliably, but with less iterations.

As stated in the section of Method Description, the essence of the optimization 
process of the Markov chain-based approach is to update the matrix of transition 

f4(x, y) = 333(0.475− 0.005(x2 + y2 − 18 cos(2πx)− 10 cos(2πy))), where x, y ∈ [0, 5];

f5(x, y) = 506(−0.0029((x2 + y2 + 5 sin x2 + cos y)+ 0.015)+ 0.0005), where x, y ∈ [0, 5].

f6(x, y, z) = x2 + 2y2 − x2y2 − z(x2 + y2 − 4), (x ≥ 0, y ≥ 0, z ≥ 0).
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probability so that the corresponding stationary distribution of the states converges 
to a pattern, which has a similar shape to the drug responses. As shown in Fig. 4A(b)–
(f ) and B(b)–(f ), the patterns of stationary distribution of the Markov chain models 
for the response functions of two drugs are displayed at different iterations, and the 

Fig. 3  Numerical simulations of the response functions of multiple drugs using five different algorithms: A 
search process of the response function of two drug, f4 , using (a) GG algorithm; (b) MGG algorithm; (c) DE 
algorithm; (d) CAPR algorithm; (e) s-FSC algorithm; (f) Markov chain-based algorithm respectively; B search 
process of the response function of two drugs, f5 , using (a) GG algorithm; (b) MGG algorithm; (c) DE algorithm; 
(d) CAPR algorithm; (e) s−FSC algorithm; (f) Markov chain−based algorithm respectively; C search process of 
the response function, f6, using (a) GG algorithm; (b) MGG algorithm; (c) DE algorithm; (d) CAPR algorithm; (e) 
s−FSC algorithm; (f) Markov chain−based algorithm respectively
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number of interval iterations between each graph is 10 steps. Figure 4A(a) and B(a) 
are the patterns of the response functions, the Rastrigin-based function and the De 
Jong-based function,respectively As the number of iterations increases, the smooth 
surfaces of the stationary distributions gradually converge in shape to the patterns of 
the corresponding response functions of two drugs.

Fig. 4  Two response functions of two drugs and corresponding stationary distributions at different 
iterations based on the Markov chain-based approach: as the number of iteration steps increases, the steady 
distribution surface converges to a surface pattern similar to the drug response surface: A Rastrigin-based 
function and B De Jong-based function
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Based on the results of the simulation experiments, the performances of the Markov 
chain-based algorithm and the other five algorithms were evaluated and compared 
with the measurements of success rate and number of iteration. The success rate of a 
algorithm indicates the effectiveness and reliability of the algorithm to find the optimal 
solutions, and the number of iterations represents how fast and efficient the algorithm 
is. The same evaluation measurements have been used to compare algorithm perfor-
mance in literature [20], and they can effectively evaluate the reliability and efficiency 
of an algorithm.As shown in Table  1, the performance comparisons of the algorithms 
were made in the cases of the drug response functions of single drug ( f1, f2 f3 ), two 
drugs ( f4, f5 ), and three drugs ( f6 ), respectively. The table lists success rate and search-
ing iterations (# of iters) of each algorithm for every response function. For each func-
tion, 1000 simulation experiments were conducted. In each experiment, it is recorded 
as “success” if the maximum point was successfully found. The number of iterations at 
which the maximum point was found is defined as the iteration number of the experi-
ment. The total number of successes divided by 1000 is the success rate of the algorithm, 
and the average number of iterations to find the maximum point is the searching itera-
tions. The algorithm is regarded as effective if the optimized output is larger than the 
threshold ( � = 0.95 ) or the output we predicted is among the top P = 5% (even if the 
results we predicted is far from the real maximum value). From Table 1 we found that 
the success rate of the proposed Markov chain-based algorithm is much higher than the 
other benchmark algorithms, and the number of iterations is also less than the others. 
Furthermore, the success rate of the Markov chain-based algorithm is 1 in all cases of 
simulations, indicating that the Markov chain-based algorithm can always achieve the 
optimal solutions in the simulation experiments. Thus, it can be concluded that the reli-
ability and efficiency of the Markov chain-based algorithm we proposed are better than 
the five benchmark algorithms.

Unlike of the benchmark algorithms of GG, MGG, DE, CAPR and s-FSC depicted in 
Additional file 1, the Markov chain-based algorithm can surmount the deficiencies that 
the benchmark methods have, and can always successfully predict the optimal concen-
trations of combinatorial drugs with excellent performance in all simulation experiments 
(Figs. 2, 3 and Table 1). The the state space of Markov chain models are constructed by 
discetizing the drug concentrations evenly and the experimental points can be selected 
randomly. The state with the largest steady-state probability in the stationary distribu-
tion is the output of the Markov chain-based method and such output is usually unique. 
Moreover, in the simulations, with the benchmark algorithms of GG, MGG, DE CAPR, 
s-FSC in the FSC framework, the prediction of combinatorial drug concentrations at a 
certain iteration is conducted based on the drug response information at the previous 
iteration, and then the experiments with predicted drug concentrations are carried out 
for the next iteration of prediction. On the contrary, the Markov chain-based approach 
allows the experiments at the selected states or drug concentrations to be implemented 
simultaneously. This makes a significant difference for biologically optimizing the combi-
natorial drug concentrations since it usually takes a few hours or days to implement one 
iteration of biological experiments and the computational time is usually much less than 
the time spent in the biological experiments. Therefore, it make take more than a month 
to finish a concentration optimization of combinatorial drugs using the benchmark 
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algorithms in the FSC framework. However, the Markov chain-based approach with par-
allel experiments at the selected set of drug concentrations could save lots of time in 
the biological experiments. From this perspective, the Markov chain-based algorithm is 
much more efficient than the benchmark algorithms.

Biological experiments and discussion
Cell culture

The cell lines used in this study were obtained from the School of Medical Device, Shen-
yang Pharmaceutical University (Shenyang, China). MCF-7 cells (human breast cancer 
cell line) and BXPC-3 cells (human pancreatic cancer cell line) were cultured in RPMI-
1640 (Thermo Scientific HyClone, Logan, UT, USA) containing 10% fetal bovine serum 
and 1% penicillin–streptomycin solution at 37 °C (5% CO2).

Cell proliferation assay

Cells were plated onto 96-well plates (8 × 103 cells/well for MCF-7 and 8 × 103 cells/well 
for BXPC-3) and allowed to attach for 24 h. Cells were incubated with free drugs dis-
solved in an appropriate cell culture medium at serial concentrations for 72 h. For treat-
ments containing DOX and PTX, each contained nine concentrations ranging from 0 to 
5000 nM according to DOX-equivalent concentration with a total of 81 concentration 
combinations with six complex holes per concentration. Following incubation, 10 µL of 
cell counting kit-8 (CCK8) (Dojindo) was added to each well in the dark and incubated 
at 37 °C (5% CO2) for 2 h. After incubation, a microplate reader (Thermo, Multiskan FC) 
was used to measure the number of viable cells in each well of a 96-well plate at a wave-
length of 450 nm.

Performance comparison

The response functions of the cells, MCF-7 and BXPC-3, under the combinatorial action 
of two drugs, paclitaxel (PTX) and doxorubicin hydrochloride (DOX), were constructed 
based on the biological responses to compare the performance of the algorithm we 
proposed and the GG and MGG algorithms. Figure 5A-(a) and B-(a) are the two drug 
response functions. (The green circle drawn in the fig is the maximum point of the drug 
response function, the red square is the maximum point found using the GG algorithm, 
and the black square is the maximum point found using the MGG algorithm.) Fig. 5A-
(b) and B-(b) are the performance of the original GG algorithm, Fig. 5A-(c) and B-(c) are 
the performance of the MGG algorithm, and Fig. 5A-(d) and B-(d) are the performance 
of the Markov chain-based algorithm to find the optimal combination of PTX and DOX. 
Figure 5A(b)–(c) and B(b)–(c) show the nonrobustness of the GG and MGG algorithms. 
From Fig. 5, we can draw conclusions similar to those in the simulation. The original GG 
algorithm can easily lead to falling into the local optimal value (Fig. 5A(b) and B(b)). As 
shown in Fig. 5A(c) and B(c), the MGG algorithm may take many iterations if the start-
ing point and the optimal state are far away. It is obvious that the point found by MGG 
algorithm is the local optimal value as shown in the black square in Fig. 5A(a) and B(a).

In the Fig. 5A(d) and B(d), when the Markov chain-based algorithm is used, the global 
optimal combination can be found within only a few iterations. As the experiment and 
calculation are parallel, the proposed algorithm is much more efficient.
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Shown in Table 2 are performance comparisons of the two GG-based algorithms and 
the Markov chain-based algorithm. Similar to the results of simulation, the efficiency 
and accuracy of the Markov chain-based algorithm are much better than those of the 
GG and MGG stochastic algorithms.

As shown in Fig. 6, the stationary distribution of the states (the combinatorial drug 
concentrations) of the Markov chain model are convergent to the drug response func-
tions of the cells. Figure 6A(a) and B (a) are the two response functions of the cell lines, 
MCF-7 and BXPC-3, under the action of the combinatorial drugs respectively (the 
green circle is the maximum value of the drug response function). Figure 6A(b)–(f ) and 

Fig. 5  Two drug response functions and numerical simulations using three different algorithms: A drug 
response function of MCF-7 cells to PTX and DOX. (a) drug response function; (b) using GG algorithm; (c) 
using MGG algorithms; (d) using Markov chain-based algorithm; B drug response function of BXPC-3 cells to 
PTX and DOX: (a) drug response function; (b) using GG algorithm; (c) using MGG algorithms (d) using Markov 
chain-based algorithm
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B(b)–(f ) are the stationary distribution at the selected iterations. (The red circle is the 
maximum point found at the corresponding iteration.) The number of interval iterations 
between each graph is 10 steps. It can be concluded that the stationary distributions of 
the combinatorial drug concentrations varied as the transition probability matrices were 
updated. Finally, the pattern shapes of the stationary distribution is convergent and simi-
lar to the corresponding drug response functions. At approximately 20 iterations, the 
optimal drug concentrations can be found, which explains why the Markov chain-based 
algorithm performs very well for optimizing the combinatorial drug concentrations.

Conclusion
In this study, a novel Markov chain-based approach was proposed to solve the prob-
lem of the concentration optimization of combinatorial drugs. Its basic principle was 
introduced and the detailed algorithm was depicted in a general case. Both simulation 
and biological experiments were implemented to validate the proposed approach and 
to compare its performance with five benchmark algorithms, GG, MGG, DE, CAPR 
and s-FSC, in a FSC framework. The simulation experiments were conducted with the 
response functions of single drug, two drugs, and three drugs, and the biological exper-
iments were carried out in the case of two drugs with two types of cells, respectively 
The performances of the Markov chain-based approach and the benchmark algorithms 
were evaluated using two measurements, the success rate and the number of itera-
tion, indicating the reliability and efficiency of a algorithm to seek the global optimum. 
The experimental results and the comparisons between the proposed method and the 
benchmark algorithms demonstrate that the Markov chain-based approach is much 
more reliable and efficient than the selected benchmark algorithms in the FSC frame-
work. The Markov chain-based algorithms can always succeed in achieving the opti-
mal solutions with much less computational iterations. Moreover, considering that the 
time spent in the biological experiments is much more than the computational time, the 
Markov chain-based approach allows parallel experiments at the selected set of drug 
concentrations and could save lots of time in the biological experiments, and therefore 
the proposed method will be much more efficient than the benchmark algorithms in the 
practical application.

Table 2  Performance comparison of three algorithms in biological experiments

GG algorithm MGG algorithm Markov Chain algorithm

Success rate # of iters Success rate # of iters Success rate # of iters

MCF-7

 � = 0.7 0.20 10.8 0.39 5.4 1.00 19.0

 � = 0.8 0 NaN 0 NaN 1.00 19.0

 � = 0.9 0 NaN 0 NaN 1.00 19.2

 P = 5% 0 NaN 0 NaN 1.00 19.2

BXPC-3

 � = 0.7 0.48 11.0 0.20 1.0 1.00 7.0

 � = 0.8 0.05 8.2 0 NaN 1.00 7.0

 � = 0.9 0 NaN 0 NaN 1.00 19.0

 P = 5% 0 NaN 0 NaN 1.00 19.0
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Additional file 1. Theory of Markov chain-based method and other benchmark algorithms.

Additional file 2. Figure S1. State-transition diagram of an Markov chain.

Additional file 3. Figure S2. Drug response function between two adjacent concentrations.

Fig. 6  Stationary distributions of the states of the Markov chain models are convergent to the shapes 
similar to the drug response functions as the transition probability matrices are updated, and the optimal 
combinatorial drug concentrations correspond to the maximum points on the convergent pattern of the 
stationary distribution

https://doi.org/10.1186/s12859-021-04364-5


Page 18 of 19Ma et al. BMC Bioinformatics          (2021) 22:451 

Additional file 4. Figure S3. Initializing the Markov chain and updating the corresponding transition probability 
according to two adjacent experimental points.

Additional file 5. Figure S4. Two-drug case: a two-dimensional network structure with N2  states.

Additional file 6. Figure S5. Drug response function at concentration levels (x,y) and (x,y+1).

Additional file 7. Figure S6. Initializing the Markov chain and updating the corresponding Markov-chain-based 
transition probability based on the two neighboring states. 
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