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Abstract 

Background:  Essential proteins have great impacts on cell survival and development, 
and played important roles in disease analysis and new drug design. However, since it 
is inefficient and costly to identify essential proteins by using biological experiments, 
then there is an urgent need for automated and accurate detection methods. In recent 
years, the recognition of essential proteins in protein interaction networks (PPI) has 
become a research hotspot, and many computational models for predicting essential 
proteins have been proposed successively.

Results:  In order to achieve higher prediction performance, in this paper, a new 
prediction model called TGSO is proposed. In TGSO, a protein aggregation degree 
network is constructed first by adopting the node density measurement method for 
complex networks. And simultaneously, a protein co-expression interactive network is 
constructed by combining the gene expression information with the network con-
nectivity, and a protein co-localization interaction network is constructed based on the 
subcellular localization data. And then, through integrating these three kinds of newly 
constructed networks, a comprehensive protein–protein interaction network will be 
obtained. Finally, based on the homology information, scores can be calculated out 
iteratively for different proteins, which can be utilized to estimate the importance of 
proteins effectively. Moreover, in order to evaluate the identification performance of 
TGSO, we have compared TGSO with 13 different latest competitive methods based on 
three kinds of yeast databases. And experimental results show that TGSO can achieve 
identification accuracies of 94%, 82% and 72% out of the top 1%, 5% and 10% candi-
date proteins respectively, which are to some degree superior to these state-of-the-art 
competitive models.

Conclusions:  We constructed a comprehensive interactive network based on multi-
source data to reduce the noise and errors in the initial PPI, and combined with itera-
tive methods to improve the accuracy of necessary protein prediction, and means that 
TGSO may be conducive to the future development of essential protein recognition as 
well.
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Background
Numerous studies have shown that essential proteins play important roles in human 
biological processes. The lack of essential proteins will affect cell growth and develop-
ment seriously, and the functions of the protein complexes will be lost as well. Essential 
protein prediction is not only of great significance to the researches on life science, but 
also able to provide valuable information to the treatment of diseases and the design of 
new drugs [1–4]. Traditionally, essential proteins are identified by medical experiments, 
such as RNA interference (RNAi) [5, 6] and gene knockout [7]. Chen et  al. described 
a method for identifying essential genes of Streptococcus sanguis SK36 strain using 
whole-genome deletion mutations [8]. Ji et  al. used antisense technology to construct 
a controllable gene expression system, and conducted a comprehensive genome analy-
sis of Staphylococcus aureus, an important human pathogen [9]. In [10, 11], the neces-
sity of each gene in the genome is analyzed by the method of sequencing the targeted 
insertion site of the transposon. However, these biological experiments are not only 
time-consuming, but also costly and inefficient. Hence, automated and accurate detec-
tion methods become necessary. Up to now, many computational models for identifying 
essential proteins have been developed successively. For instance, Yu et al. found the cor-
relations between bottlenecks and essential proteins, where bottlenecks were defined as 
proteins with high degrees of centrality [12]. Based on the modular nature of a protein 
essentiality, Li Min et  al. proposed a calculation method to identify essential proteins 
based on local average connection [13],and they also proposed a new model by adopting 
a new protein network recognition method based on topological potential [14], the basic 
idea is to treat each protein in the network as a material particle, generate a potential 
field around it, and calculate the topological potential of each protein to determine the 
importance of the protein. Jeong et al. introduced the central lethal rule to estimate the 
connection between network topology and essential proteins [15]. From then on, based 
on the concept of centrality, a lot of different methods, including the Degree Centrality 
(DC) [16], Information Centrality (IC) [17], Eigenvector Centrality (EC) [18], Subgraph 
Centrality (SC) [19], Betweenness Centrality (BC) [20], Closeness Centrality (CC) [21] 
and Neighbor Centrality (NC) [22], have been designed successively. However, although 
these centrality-based methods can improve the efficiency of traditional biological 
experiments effectively, their recognition abilities are still not very satisfactory, since 
there are lots of noises such as the false negatives and the false positives existing in the 
PPI networks [23, 24]. Therefore, in order to further improve the performance of iden-
tification models, biological information data including GO (Gene Ontology) statement 
annotations, gene expression profiles, subcellular data and protein domain data have 
been integrated with the PPI networks to identify essential proteins. For example, by cal-
culate the co-expression and edge clustering coefficient between nodes, integrating PPI 
networks with gene expression data, Li et al. established a prediction method called Pec 
[25] to infer potential essential proteins. Zhang et al. proposed a computational model 
named CoEWC, integrates the clustering coefficient and gene co-expression properties 
of nodes, capture the common features of essential proteins in both date hubs and party 
hubs, and achieved good prediction performance [26]. Zhao et  al. designed a model 
called POEM to predict essential proteins, POEM combines network topology with gene 
expression profiles to reduce the negative impact of PPI noise. Unlike other methods, 
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POEM pays more attention to predicting the essential biological modules and uses cal-
culation methods to determine the date hubs and party hubs [27]. Zhao et al. proposed 
that only constructing a single network will easily ignore the differences in biological 
characteristics and functional relevance, and conceal the inherent properties of heter-
ogeneous data. Hence, Zhao et al. combined PPI with multiple biological data to con-
struct a heterogeneous network to predict essential proteins [28].

The GO database is the largest source of information about gene function in the world 
[29], which has often been adopted to mine functional similarities between proteins. For 
instance, Kim et al found that it can improve the prediction performance of models by 
adopting the informational GO terms to prune the PPI networks [30]. Zhang et al. com-
bined PPI with GO annotations and protein domain information to construct a three-
dimensional tensor, and infer essential proteins through an extended HITS model [31], 
and got better performance. The meta-heuristic algorithm has the characteristics of high 
robustness, low complexity, and good optimization. Inspired by this, Lei et al. applied 
the intelligent evolutionary optimization algorithm to design the model and proposed 
a new method for predicting essential proteins in PPI networks based on artificial fish 
swarm optimization [32]. Zhang et  al. defined a new measurement method for char-
acterizing subcellular location information, and based on data fusion, proposed a new 
predictive model TEGS [33, 34]. Lei et al. designed a model called RSG through com-
bining the RNA-seq data instead of the gene expression data with the GO annotation 
and subcellular localization to identify essential proteins [35], which is not only based on 
connectivity, but also considers co-expression level and functional similarity to measure 
protein importance.

Machine learning has also been applied in the field of essential protein identification. 
By using features from DNA and protein sequence data, Zhang et al. proposed a deep 
learning-based network embedding method to automatically learn features and use the 
features to train deep neural networks to predict human essential genes [36]. Zeng et al. 
proposed the Ess-NEXG model, which used RNA-seq, subcellular localization, orthol-
ogy and other information to construct a reliable weighting network, and captured topo-
logical features through node2vec, and finally used a classifier to make predictions [37].

Considering that essential protein is more conservative than non-essential proteins 
in evolution, Peng et al. proposed an iterative method named ION to predict essen-
tial proteins by integrating orthology with PPI network [38]. Zhang et al. introduced 
a prediction method called OGN, in addition to the common topological attrib-
utes and co-expression probability of protein nodes in the date hubs and the party 
hubs, OGN adds orthologous scores to integrate the calculation of protein impor-
tance scores [39]. Lei et  al. designed a method called PCSD for identifying essen-
tial proteins based on the degree of protein participation in protein complexes and 
the density of sub graphs [40]. Li et al. developed a prediction model called NCCO 
to identify potential essential proteins by extending the Pareto optimal consensus 
model (EPOC) [41]. Zhang et al. designed a dynamic PPI network (FDP). First, based 
on each time point, construct a series of active PPI networks, and then merge them 
one by one according to the similarity between the networks. Finally assign rank-
ing scores to protein in consideration of homology and topological properties [42]. 
In our previous work, an iterative method called CVIM was proposed, which first 
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integrates the topological characteristics of the PPI network based on the entropy 
weight method, and finally uses an iterative model to calculate and predict essential 
proteins based on orthologous information [43].

In this paper, different from above models, a novel centrality-based method called 
TGSO is proposed by combining biological essence data including the gene expres-
sion data, the orthologous information and the subcellular localization data with 
the topological information in a newly constructed comprehensive PPI network. 
In TGSO, a new centrality-based method named DBN (Density between nodes) is 
designed first to calculate the node density in complex networks, which can charac-
terize the physical structure association between nodes in a complex network, and 
then, based on DBN, a protein aggregation degree interaction network (ADN) can 
be constructed. Next, by adopting the Pearson correlation coefficient to measure 
protein co-expressions based on the gene expression data, a protein co-expression 
interaction network (CEN) can be constructed. Moreover, based on the subcel-
lular localization data, a protein co-localization interaction network (CLN) can be 
obtained as well. Hence, through integrating these three kinds of interaction net-
works, a comprehensive PPI network (PCIN) can be constructed. Finally, based on 
the newly obtained comprehensive PPI network, an iterative method called TGSO is 
designed to predict potential essential proteins by using the orthology information 
as the initial scores of proteins. In order to estimate the identification performance 
of TGSO, intensive experiments have been implemented, and experimental results 
show that TGSO can achieve more satisfactory prediction performance than state-
of-the-art competitive prediction models such as DC [16], IC [17], EC [18], SC [19], 
BC [20], CC [21], NC [22], PEC [25], CoEWC [26], POEM [27], ION [38], TEGS [34] 
and CVIM [43] based on two kinds of different databases separately.

Method
As illustrated in Fig. 1, the procedure of TGSO mainly includes the following five steps: 

Step 1:	� Construction of the ADN (the protein Aggregation Degree interaction 
Network).

Step 2:	� Construction of the CEN (the protein Co-Expression interaction Network).
Step 3:	� Construction of the CLN (the protein Co-Location interaction Network).
Step  4:	� Construction of the PCIN (the Protein Comprehensive Interaction Network).
Step  5:	� Construction of the TGSO.

The G = (V ,E) represents the PPI network downloaded from database D. Where 
V = {p1, p2, ..., pN } is the set of protein nodes, and E is the set of edges in the net-
work. As shown in Fig. 1, matrix A = (aij)N∗N  represents the adjacency matrix of the 
protein, where there is aij = 1 , if and only if there exists an edge e(pi, pj) between pi 
and pj in E, otherwise there is aij = 0 , the N represents the total protein amount.
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Construction of the ADN

Recent researches show that the degrees of connections between essential proteins are 
often higher than that between non-essential proteins [44], and essential proteins can 
form tightly connected molecular modules [33]. Hence, based on the modular nature 
of key proteins, for each edge e(u, v), we can design a local metric called DBN (Density 
between nodes) to measure the interaction between them in the original PPI network G 
as follows:

Here, NG(u) = {v|∃e(u, v) ∈ E, v ∈ V } , represents the set of neighboring nodes of the 
protein node u in G, and |NG(u)| is the total number of neighboring nodes of the pro-
tein node u in G. According to above formula (1),we can obtain a new matrix DBN, on 
this basis can construct a new weighted PPI network, which is define as protein Aggre-
gation Degree interactive Network (ADN).

Construction of the CEN

Gene expression refers to the process of synthesizing genetic information from genes into 
functional gene products. Gene expression products are usually proteins, but the expression 
products of non-protein coding genes such as transfer RNA (tRNA) or small nuclear RNA 
(snRNA) genes are functional RNA. Over a period of time, there may be similar expressions 
between essential proteins. According to the studies of Horyu et al. [45], it was found that 
the Pearson correlation coefficient (PCC) is suitable for measuring the similarities between 

(1)DBN (u, v) =
|NG(u) ∩ NG(v)+ 1|

min(|NG(u)|, |NG(v)|)

Fig. 1  Flow chart of TGSO. (All the subgraphs in this figure were created by the first author using the open 
source software Cytoscape in combination with existing experimental data, without any borrowing.) The 
initial PPI, combined with subcellular localization and gene expression data as well as network topology 
information, was integrated to obtain the comprehensive protein interaction network, and the network and 
protein conservative score were put into the iterative model to obtain the final required protein score



Page 6 of 25Li et al. BMC Bioinformatics          (2021) 22:430 

gene expression profiles. Hence, based on the concept of PCC, for any a pair of proteins u 
and v, we can calculate the similarity between them as follows:

Here, Exp(u, i) is the expression level of the protein u on the i-th time node, and for any 
given protein u, its expression information on a series of n different time nodes con-
stitutes a vector Exp(u) = {Exp(u, 1),Exp(u, 2), ...,Exp(u, n)} . In addition, Exp(u) is the 
average expression value of the protein u, σ(u) is the standard variance for gene expres-
sion of the protein u.

Existing studies illustrate that the essentiality of proteins is related to the proteins or 
genes themselves and the molecular modules they belong to [46, 47], and the essential com-
plex biological module consists of a large number of essential proteins that are highly con-
nected and shared between biological functions [48]. Based on these findings, for any a pair 
of proteins u and v, we can measure the interaction between them in the original PPI net-
work G as follows:

Based on above formula (3), we can construct another weighted PPI network, namely, 
protein co-expression interaction network (CEN).

Construction of the CLN

Researches show that protein interactions in human bodies tend to coexist in the same cell 
compartment or adjacent cell compartments [49]. And it has been demonstrated that the 
introduction of subcellular localization information is of great help in screening essential 
proteins [28, 34, 35].

As shown in Fig. 2, the cell nucleus has the largest number of essential proteins, while 
Extracellular and Peroxisome have only a small number of essential proteins. Moreover, 
individual subcellular sites had similar amounts of essential proteins in three different data-
sets. For example, Nucleus accounts for about 40% of essential proteins in DIP, Essential, 
and Krogan. Recent research discover that 76% of protein–protein interactions in yeast cells 
occur between identical subcells [50]. And in many cases, the product of complex functions 
is more important than the function of individual proteins, and essential proteins tend to 
form protein complexes to perform important functions together [46, 47]. Hence, in order 
to distinguish the importance of different subcellular localizations, for any given subcellular 
location i, we define the total number of subcellular species related to i as follows:

Here, sub(i) represents the number of protein nodes associated with the subcellular loca-
tion i in the database. Hence, for any give protein u, we can define its self-localization 
score as follows:

(2)PCC(u, v) =
1

n− 1

n
∑

i=1

(

Exp(u, i)− Exp(u)

σ (u)

)(

Exp(v, i)− Exp(v)

σ (v)

)

(3)Connection(u, v) = PCC(u, v)+
∑

ε∈(NG(u)∩NG(v))

PCC(u, ε) ∗ PCC(v, ε)

(4)sub_score(i) =
sub(i)

∑N
k=1 sub(k)
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Here, L(u) is a collection of all subcellular localizations possessed by u.
Based on above formula (5), for any a pair of proteins u and v, we can further obtain 

the co-localization score between them as:

According to above formula (6),we can further construct a new weighted PPI network as 
the protein Co-Localization interaction Network (CLN).

Construction of the PCIN

Based on above three kinds of newly constructed weighted PPI networks such as the 
AND, CEN and CLN, for any given protein u, we can obtain a unique score for u as 
follows:

(5)S_score(u) =
∑

i∈L(u)

sub_score(i)

(6)colo_sub(u, v) =
|L(u) ∩ L(v)|

|L(u) ∪ L(v)|
∗
S_score(u)+ S_score(v)

2

Fig. 2  In the three data sets of Essential, Dip and Krogan, the percentage of Essential protein in 11 subcellular 
locations is represented by the thickness of the line, and the length of the outer ring represents the total 
proportion of Essential protein in this subcellular locations
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According to above formula (7), for any two given proteins i and j, we can define a com-
prehensive interaction between them as follows:

where N is the total number of protein nodes.

Construction of the TGSO

Peng et al. [38] found that the essentiality of protein is closely related to the degree of 
protein conservatism.

Figure  3 shows the brief results of using conservative scores alone to screen for 
essential proteins. The accuracy of this score reached 76% in the top 1% of the three 
databases. So the conservative score plays an important role in the recognition of 
essential protein, and we use this score as the initial score vector of protein.

For any given protein ui , let I(i) denote its homology score, Eq. (9) can be obtained 
by referring to [38], where ui ∈ V (i = 1, 2, ...,N )

S is the set of reference organisms which is used to get orthologous information of node 
V. s denotes its element. |S| denotes the number of its elements. Xs is a subset of node V. 
Its element has orthologs in organism s.

Then we can obtain the conservatism score O_score(i) corresponding to ui based on 
the original PPI network G as follows:

(7)LSG(u) =
∑

v∈NG(u)

DBN (u, v) ∗ (colo_sub(u, v)+ Connection(u, v))

(8)PCIN (i, j) =

{

LSG(i)/
∑N

k=1 LSG(k) if i = j

min(LSG(i), LSG(j))/
∑N

k=1 LSG(k) Otherwise

(9)I(i) =
∑

m∈S

Ti where Ti =

{

1 if ui ∈ Xm

0 Otherwise

Fig. 3  Conservative scores of performance in three yeast datasets
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Based on above formula (10), for all N different proteins p1, p2, ..., pN in G, then we can 
obtain their initial scores as follows:

Finally, based on above newly obtained initial scores and the newly constructed weighted 
comprehensive PPI network PCIN, we use iteratively based on the weighted PageRank  
[51] to obtain the critical scores of all proteins in G:

Here, the parameter α(0 � α � 1) is used to adjust the proportion of initial scores P0 
and last iteration scores Pt.

Based on the above descriptions, the general flowchart of our prediction algorithm 
TGSO can be mainly described as follows: 

Algorithm: TGSO
Input: Original PPI network G = (V , E) , subcellular location data, orthologous and gene expression data, the 
parameters γ and K

Output: Top K percent of proteins sorted by the vector P in descending order

Step1: Constructing the ADN according to the formula (1);

Step2: Constructing the CEN according to the formula (3);

Step3: Constructing the CLN according to the formula (6);

Step4: Constructing the PCIN according to the formula (8);

Step5: Obtaining the initial score vector P0 according to the formula (11);

Step6: Let t = 0 ; Obtaining P1according to formula (12);

Step7: Let t = t + 1 ; Obtaining Pt+1 according to formula (12);

Step8: Repeating Step7 until (||Pt+1 − Pt ||)/|E| < γ ;

Step9: Sort proteins by the value of P in the descending order;

Step10: Output top K percent of sorted proteins.

Result and analysis
Experimental data

In order to estimate the identification performance of TGSO, in this section, we will 
compare it with 13 different state-of-the-art competitive prediction models illustrated in 
the following Table 1.

Since saccharomyces cerevisiae includes the most complete PPI data and rich biologi-
cal information data, and is widely used to evaluate essential protein prediction models, 
we will first evaluate the performance of TGSO based on three saccharomyces cerevisiae 
related databases such as the DIP database [52], the Krogan database [53], and the Gavin 
database [54]. After filtering out repetitive interactions and self-interactions, as shown 
in the Table 2, we finally obtained a total of 5093 proteins and 24,743 interactions from 
the DIP database, 14,317 pairs of interactions between 3672 proteins from the Krogan 
database, and 1855 proteins and 7669 interactions from the Gavin database respectively.

Moreover, as a benchmark dataset for testing the accuracy of different identification 
models, a set of 1293 essential genes is derived from the MIPS [55], the Saccharomyces 

(10)O_score(i) =
I(i)

∑N
k=1 I(k)

(11)P0 = (O_score(1),O_score(2), ...,O_score(i), ...,O_score(N ))

(12)Pt+1 = (1− α) ∗ PCIN ∗ Pt + α ∗ P0
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Genome Database(SGD) [56], the Saccharomyces Genome Deletion Project Database 
(SGDP) [57], and the Database of Essential Genes (DEG) [58] simultaneously. In addi-
tion, the gene expression data of Saccharomyces cerevisiae is obtained from the work 
proposed by Tu et al. [59], which contains 6777 gene products and 36 samples. The 
orthologous information is downloaded from the InParanoid database (Version 7) 
[60]. Besides, as illustrated in above Fig.  2, we derived eleven subcellular locations 
related to eukaryotic cells from the COMPARTMENTS database [61, 62] as well.

Finally, in order to evaluate the uniqueness and efficiency of TGSO, in this sec-
tion, we will first adopt different measurements such as accuracy, jackknife, Preci-
sion Recall regression curve (PR-curves) and Receiver Operating Characteristic curve 
(ROC) to compare TGSO with 13 competitive prediction models shown in Table  1 
comprehensively. And then, we will further estimate the effect of the parameter α on 
the performance of TGSO.

Comparisons between TGSO and 13 representative methods

In this section, two kinds of datasets downloaded from the DIP database and the 
Krogan database separately are adopted to compare TGSO with 13 competitive pre-
diction models illustrated in Table  1. And as a result, Fig.  4 and Table  3 show the 
comparison results based on the DIP database and the Krogan database respectively.

Table 1  A rough introduction to other algorithms

Algorithm Network topology Biological information

DC [16] Degree Centrality No

IC [17] Information Centrality No

EC [18] Eigenvector Centrality No

SC [19] Subgraph Centrality No

BC [20] Betweenness Centrality No

CC [21] Closeness Centrality No

NC [22] Neighbor Centrality No

Pec [25] Edge clustering coefficient Gene expression data

CoEWC [26] Clustering coefficient Gene expression data

POEM [22] Degree Centrality, subgraph Edge clustering coef-
ficient, closeness Centrality

Gene expression data

ION [38] Edge clustering coefficient Orthologous data

CVIM [43] Average triangle, neighbor average triangle Orthologous data, gene expression data

TEGS [34] Edge clustering coefficient Gene Ontology, subcellular localization 
Gene expression data

Table 2  The detail information of the three PPI datasets

Dataset Proteins Interactions Essential Gene 
expression 
covers

DIP 5093 24743 1167 4981

Krogan 3672 14317 929 3610

Gavin 1855 7669 714 1827
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From observing Fig. 4, it is not difficult to see that in the top 1% (51) potential key pro-
teins, TGSO has screened out 48 true essential proteins, with an accuracy rate of 94%. 
Among 5% (255) and 10% (510) candidate critical proteins, there are 208 and 368 true 
essential proteins having been identified by TGSO separately, with an accuracy rate of 
82% and 72% as well.

Comparing with traditional centrality-based methods such as DC, IC, EC, SC, BC, CC 
and NC, the number of true essential proteins detected by TGSO has obvious advan-
tages. Especially except NC, TGSO predicts twice as many truly essential proteins 

Fig. 4  a Top 1% ranked proteins. b Top 5% ranked proteins. c Top 10% ranked proteins. d Top 15% ranked 
proteins. e Top 20% ranked proteins. f Top 25% ranked proteins. This figure illustrates the comparison of the 
number of essential proteins predicted by TGSO and 13 competing methods on the DIP dataset. The graph 
shows the number of truly essential proteins found by each method. The numbers in parentheses indicate 
the number of proteins ranked in each highest percentage
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as other centrality methods in the top 1% and 5% of candidate essential proteins. And 
simultaneously, in the top 10% predicted essential proteins, while comparing with DC, 
IC, EC, SC, BC, CC and NC, the prediction accuracy of TGSO has increased by 77.78%, 
75.24%, 88.72%, 88.72%, 102.2%, 90.67% and 30.5% respectively. Moreover, while com-
paring with methods that combined PPI networks with multiple biological data, such 
as Pec, CoEWC, ION, POEM and CVIM, TGSO can still achieve the highest prediction 
accuracy in any range from the top 1% to 25% of potential key proteins. Therefore, the 
results show that TGSO is the best predictor based on the DIP database.

From observing Table  3, it can be found that TGSO can achieve similar prediction 
performance based on the Krogan database. For instance, among the top 1% (37) can-
didate critical proteins, 35 true essential proteins have been detected by TGSO, with 
the accuracy rate of 95%, while in the top 15% (551) potential essential proteins, TGSO 
can still achieve the accuracy rate of 66.06%, which is 76.70% higher than that of the 
worst-performing CC, and 11.31% and 13.40% higher than that of the best-performing 
CVIM and TEGS respectively in these 13 tradition competitive models. Furthermore, 
with the increasing of candidate key proteins, the accuracy rate of all kinds of prediction 
models will decrease inevitably, but in the top 25%, the number of true essential pro-
teins detected by TGSO has reached 515, which is still much higher than 479 detected 
by CVIM and 480 discovered by ION. Hence, we can draw the conclusion that TGSO 
can achieve the best identification performance based on both the Krogan database and 
the DIP database while comparing with these 13 competitive state-of-the-art prediction 
models.

Validation with jackknife methodology

In order to evaluate the TGSO model more comprehensively and specifically, we 
extracted the top 1000 proteins sorted by importance score calculated by TGSO. TGSO’s 

Table 3  Number of essential proteins predicted by TGSO and 13 methods based on the Krogan 
database

This table shows the commonalities and differences between TGSO and the 13 competitive methods in Table 1 based on the 
Krogan database

Methods Top1% (37) Top5% (184) Top10% (367) Top15% (551) Top20% (734) Top25% (918)

SC 18 96 173 256 321 380

EC 20 91 173 251 317 378

BC 20 78 145 215 273 337

DC 20 78 145 215 273 337

IC 17 83 152 226 286 337

CC 13 68 142 206 262 326

NC 23 126 208 288 344 397

PEC 24 122 201 273 324 378

CoEWC 24 124 215 291 345 401

POEM 28 131 221 298 371 428

ION 31 133 238 317 392 480

CVIM 35 141 242 327 410 479

CVIM 32 142 246 321 392 449

TGSO 35 147 262 384 447 515
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ability to place experimentally validated essential proteins at the top of the ranked pro-
teins was evaluated with Jackknife [63]. The X-axis represents the ordered proteome of 
an organism, arranged from left to right with the strongest prediction to the least predic-
tion of importance. The Y axis is the cumulative count of essential proteins encountered 
as they traverse the ordered proteome from left to right. And as a result, Figs. 5 and 6 
illustrate the comparison results. From observing Fig. 5a, TGSO can achieve better per-
formance than these centrality-based methods including DC, IC, EC, SC, BC, CC and 
NC. Moreover, from observing Fig. 5b, the prediction performance of TGSO is signifi-
cantly better than those multiple biological data based methods such as Pec, CoEWC, 
POEM and ION as well. Although there are some partial overlaps among TGSO and 
CVIM and TEGS, as the number of candidate key protein increases to about 600, the 
prediction performance of TGSO will become significantly higher than both CVIM and 
TEGS, which indicates that TGSO is superior to both CVIM and TEGS. In addition, 
from Fig.  6a, b, it is to see that TGSO can achieve better performance than all these 
13 competitive methods. Especially, comparing with those methods that combined PPI 
networks with multiple biological data, while the number of candidate essential proteins 
reaches 300, TGSO can achieve much better performance than all these competitive 
methods simultaneously.

Fig. 5  Comparison of Jackknife curves of TGSO and 13 other methods under the DIP database. a Comparison 
between TGSO and DC, IC, EC, SC, BC, CC, NC. b Comparison between TGSO and Pec, CoEWC, POEM, ION, 
CVIM, TEGS
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Validation by precision–recall curves and ROC curves

In this section, we will further use the receiver operating characteristic curve (ROC 
curve) to evaluate the performance of TGSO. Studies show that the larger the area under 
the ROC curve (AUC), the better the performance of the model, and if AUC=0.5, it 
means a random performance [64–66]. In the three kinds of yeast cell databases includ-
ing the DIP, Krogan and GAVIN databases, the proportion of key proteins is very small, 
and the proportion of non-essential proteins and essential proteins is about 3 to 1. Stud-
ies show that while dealing with highly skewed datasets, the precision recall (PR) curve 
can provide more information about the performance of an algorithm [67]. Therefore, 
in this section, we will further adopt the PR curves to compare TGSO with 13 competi-
tive methods. As shown in Figs. 7 and 8, the AUCs achieved by TGSO is much higher 
than that of competitive methods based on both the DIP database and the Krogan data-
base. However, from observing Figs. 7b and 8b, we can find that the curves of TGSO and 
CVIM have a little overlap. Hence, in order to further evaluate TGSO and CVIM, we 
adopt the F1-score as well, and the comparison results are shown in Table 4.

From observing Table  4, not only the AUC achieved by TGSO is higher than those 
13 competitive methods based on both the DIP database and the Krogan database, 
but also the F1-score achieved by TGSO is superior to those 13 competitive methods 

Fig. 6  Comparison of Jackknife curves of TGSO and 13 other methods under the Krogan database. a 
Comparison between TGSO and DC, IC, EC, SC, BC, CC, NC. b Comparison between TGSO and Pec, CoEWC, 
POEM, ION, CVIM, TEGS
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simultaneously. Therefore, it is reasonable to believe that TGSO has better performance 
than all these traditional state-of-the-art methods.

Difference analysis of TGSO and 13 competitive methods

In order to better reflect the uniqueness and differences between TGSO and these exist-
ing competitive methods, we will further compare TGSO with 13 competing prediction 
models based on the top 200 ranked proteins and the DIP database in this section. And 
the comparison results are illustrated in Tables 5 and 6. In Tables 5 and 6, Mi represents 
one of these 13 competitive models, |TGSO ∩Mi| denotes the number of key proteins 
screened by both TGSO and Mi , while |TGSO −Mi| indicates the number of critical 
proteins found by TGSO instead of Mi . From Tables 5 and 6, it can be discovered that 
TGSO can screen out new key proteins that cannot discovered by any of these 13 com-
peting methods. And in addition, from observing the fourth and fifth columns in both 
Tables 5 and 6, it can be observed that the proportion of true essential proteins screened 
by TGSO alone is much higher than the proportion of true essential proteins screened 
alone by any of these 13 competing methods, which is further demonstrated by the 
results illustrated in Fig. 9 as well.

Fig. 7  ROC curve and PR curve of various methods of PPI network based on the DIP database. a Comparison 
of TGSO with DC, EC, IC, SC, BC, CC and NC. b Comparison of TGSO with Pec, CoEWC, POEM, ION, CVIM and 
TEGS
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Fig. 8  ROC curve and PR curve of various methods of PPI network based on the Krogan database. a 
Comparison of TGSO with DC, EC, IC, SC, BC, CC and NC. b Comparison of TGSO with Pec, CoEWC, POEM, ION, 
CVIM and TEGS

Table 4  The AUCs and F1-scores achieved by all methods based on the DIP and Krogan databases 
respectively

Method AUC (DIP) F1-score (DIP) AUC (Krogan) F1-score (Krogan)

TGSO 0.7813 0.5466 0.7808 0.5600

CVIM 0.7559 0.5217 0.7458 0.5411

ION 0.7522 0.5226 0.7413 0.5305

TEGS 0.7386 0.4959 0.7287 0.5148

POEM 0.6662 0.4528 0.6726 0.4704

CoEWC 0.6513 0.4528 0.6404 0.4476

Pec 0.6329 0.4062 0.6316 0.4264

NC 0.6879 0.4656 0.6584 0.4597

CC 0.6291 0.4143 0.6114 0.4282

BC 0.6250 0.4078 0.6248 0.4347

SC 0.6385 0.4233 0.6167 0.4309

IC 0.6657 0.4526 0.6573 0.4603

EC 0.6384 0.4235 0.6169 0.4308

DC 0.6705 0.4524 0.6583 0.4588
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General applicability of TGSO

In order to prove the applicability of TGSO, we will further execute some simple tests 
and comparisons based on the Gavin database in this section, and the experimental 
results are shown in the following Table 7.

As can be seen from Table  7, while comparing with these 13 competing methods, 
TGSO can achieve the best predictive performance in any range from the top 1% to 25% 
of potential key proteins, which demonstrates that TGSO is the best prediction model 
among these competitive models and has wide applicability.

Table 5  Commonalities and differences between TGSO and 13 competing methods based on the 
top 200 ranked proteins and the DIP database

This table shows the commonalities and differences between TGSO and the 13 competitive methods in Table 1 based on the 
DIP database

Different prediction 
methods (Mi)

|TGSO ∩Mi| |TGSO−Mi| Percentage of key 
proteins in TGSO−Mi 
(%)

Percentage of 
key proteins in 
Mi− TGSO (%)

DC 57 143 83.22 23.08

IC 53 147 82.99 23.13

EC 40 160 82.50 25.63

SC 40 160 82.59 25.61

BC 53 147 85.03 23.13

CC 44 156 82.69 25.64

NC 96 104 79.81 39.42

Pec 101 99 79.80 50.51

CoEWC 105 95 78.95 53.68

POEM 101 99 73.74 56.57

TEGS 117 83 73.49 67.47

CVIM 110 90 74.44 70.00

ION 71 129 77.52 63.57

Table 6  Commonalities and differences between TGSO and 13 competing methods based on the 
top 200 ranked proteins and the Krogan database

This table shows the commonalities and differences between TGSO and the 13 competitive methods in Table 1 based on the 
Krogan database

Different prediction 
methods (Mi)

|TGSO ∩Mi| |TGSO−Mi| Percentage of key 
proteins in TGSO−Mi 
(%)

Percentage of 
key proteins in 
Mi− TGSO (%)

DC 80 120 79.17 32.50

IC 83 117 78.63 29.06

EC 67 133 81.20 24.06

SC 64 136 81.17 24.05

BC 67 133 80.45 30.08

CC 59 141 81.56 23.40

NC 106 94 71.28 42.55

Pec 94 106 69.81 44.34

CoEWC 95 105 69.52 47.62

POEM 98 102 68.63 51.96

TEGS 108 92 63.04 55.43

CVIM 138 62 64.52 54.84

ION 69 131 70.23 59.54
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Fig. 9  The X-axis represents 13 competing methods. The Y-axis represents the proportion of real key proteins 
in Mi-TGSO or TGSO-Mi

Table 7  Number of essential proteins predicted by TGSO and 13 methods based on the Gavin 
database

This table shows the commonalities and differences between TGSO and the 13 competitive methods in Table 1 based on the 
Gavin database

Methods Top1% (19) Top5% (93) Top10% (196) Top15% (279) Top20% (371) Top25% (464)

SC 0 17 87 130 190 240

EC 0 38 94 134 166 209

BC 9 40 85 122 162 201

DC 7 36 101 158 222 264

IC 16 55 119 163 213 254

CC 11 45 93 135 180 221

NC 11 51 123 170 213 259

PEC 15 69 142 193 238 285

CoEWC 16 69 136 190 237 275

POEM 17 74 148 199 249 296

ION 17 73 150 207 263 312

CVIM 16 80 160 219 271 322

TGSO 19 81 165 221 279 332
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Effects of parameter on performance of TGSO

In this section, we will analyze the influence of the parameter α on the performance of 
TGSO. In TGSO, the parameter α with value between 0 and 1 is adopted to adjust the 
weight of the comprehensive interaction network PCIN and the protein conservatism. 
During simulation, we will adjust the value of α to study its influence on the perfor-
mance of TGSO. As shown in Table 8, based on the DIP database, while α is equal to 
0.2, the algorithm is in the top 1% and the top 25% respectively takes the maximum 
value of 48 and 671. When α is 0.4, there are two maximum values of 48 and 487. 
When α is 0.3, the algorithm reaches the maximum value in the first 1%, the first 10%, 
and the first 20%. Therefore, on the DIP, 0.3 is the best parameter. In addition, from 
observing the Table 9, it can be seen that based on the Krogan database, while α vary-
ing from 0.1 to 0.4, in the top 1% candidate key proteins, there are α maximum of 35 
true essential proteins detected by TGSO, with the accuracy rate of 95%. While α is 
set to 0.2, TGSO can achieve the best accuracy rate in the top 1% and 25% candidate 
key proteins. When α is set to 0.3 or 0.4, TGSO achieves the best performance in 
the two intervals respectively. Therefore, based on the Krogan database, if α is set to 
0.2 ,0.3, 0.4, TGSO can achieve the best performance. From Table  10, we can find 
that when α is between 0.1 and 0.4, only 0.3 occupies two maximum values. To sum 
up, based on these three kinds of databases, we will set α to 0.3 as the best value in 

Table 8  Effects of the parameter α to TGSO based on the DIP database

The [bold] indicates the maximum value in the row

This table shows the effects of the parameter α to TGSO based on the DIP database, and the table records the proportion of 
true key protein in the set of selected proteins

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Top1%(51) 46 48 48 48 48 48 47 47 47

Top5%(255) 196 205 208 208 208 208 209 202 192

Top10%(510) 336 348 368 363 362 354 352 339 330

Top15%(764) 454 483 484 487 476 470 466 451 437

Top20%(1019) 558 578 589 584 568 556 538 528 528

Top25%(1274) 646 671 661 648 644 633 619 610 597

Table 9  Effects of the parameter α to TGSO based on the Krogan database

The [bold] indicates the maximum value in the row

This table shows the effects of the parameter α to TGSO based on the Krogan database, and the table records the 
proportion of true key protein in the set of selected proteins

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Top1%(37) 35 35 35 35 34 34 34 33 34

Top5%(184) 141 145 147 151 146 146 153 145 141

Top10%(367) 242 259 262 262 264 262 256 253 242

Top15%(551) 326 350 364 362 358 357 349 343 336

Top20%(734) 417 443 447 449 438 427 423 413 404

Top25%(918) 502 524 515 501 494 493 488 477 469
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experiments for comparing TGSO with these state-of-the-art competitive models in 
this article.

Albation study

The previous comparative experiments confirmed that TGSO can effectively improve 
the performance of identifying essential proteins and is superior to existing meth-
ods in all aspects. In the design process of TGSO, three kinds of protein interaction 
networks such as ADN, CEN and CLN were involved from different perspectives. In 
order to analyze the positive contributions of these networks to the predictive per-
formance of TGSO, we designed the ablation experiment as follows: The initial PPI 
network is used as the control group, and the experimental groups are ADN, CEN 
and CLN. All groups are set with the same parameters for iterative calculation, and 
the optimal result of each group is taken as the representative value of the group. The 
three evaluation indicators of accuracy, AUC, and F1-score are compared, and the 
accuracy experimental results obtained are shown in Table 11.

It can be seen from above Table 11 that in DIP, the initial PPI network contains a lot of 
noisy data, which leads to poor recognition results. The new network topology of ADN 
has improved the initial PPI to a certain extent. Among these three kinds of networks, 
CEN, the protein co-expression network, has a greater improvement in the accuracy of 
the interval.

In addition, we considered the performance of several networks on the ROC and PR 
graphs. In the PR chart, the area under the curve of the CEN network was larger than 
that of other single networks. In the ROC curve chart, CLN performed even better. 

Table 10  Effects of the parameter α to TGSO based on the Gavin database

The [bold] indicates the maximum value in the row

This table shows the effects of the parameter α to TGSO based on the Gavin database, and the table records the proportion 
of true key protein in the set of selected proteins

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Top1%(19) 17 18 19 18 18 18 18 18 18

Top5%(93) 80 82 81 83 83 83 86 86 79

Top10%(196) 159 163 165 167 167 169 167 162 158

Top15%(279) 204 218 221 218 223 225 222 216 204

Top20%(371) 247 266 279 281 280 280 273 261 255

Top25%(464) 294 304 332 326 324 316 311 308 303

Table 11  Model accuracy rates of different networks based on the DIP database

The [bold] indicates the maximum value in the row

Network Top1% (51) Top5% (255) Top10% (510) Top15% (764) Top20% (1019) Top25% (1274)

InitPPI 28 115 239 348 438 533

ADN 34 168 294 398 491 570

CEN 46 206 340 452 527 610

CLN 41 175 313 444 527 616
PCIN 48 208 368 484 589 661
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Through ROC and PR graphs, we calculated the AUC and F1-score values of different 
network models, detailed results were shown in Table 12 and Fig. 10.

From observing above Table  12, the obvious based on the DIP database, the AUC 
value of CLN is 0.763, which is higher than Init (0.692), ADN (0.718), and CEN (0.738). 
And simultaneously, based on the Krogan and Gavin databases, CLN can achieve the 
maximum values of AUC and F1-score as well. Therefore, based on above experimental 
results, we can think that the CLN network, that is, the subcellular colocalization data, 
may have played the most critical role in the network construction of our prediction 
model. After analysis, the importance of CLN network is that it can successfully capture 

Table 12  The AUC and F1-score for all methods in three databases

The [bold] indicates the maximum value in the row

Method AUC (DIP) F1-score (DIP) AUC (Krogan) F1-score (Krogan) AUC (Gavin) F1-score (Gavin)

InitPPI 0.692 0.468 0.678 0.468 0.676 0.588

ADN 0.718 0.486 0.695 0.489 0.687 0.597

CEN 0.738 0.511 0.739 0.531 0.717 0.610

CLN 0.763 0.521 0.757 0.549 0.739 0.639
PCIN 0.785 0.555 0.781 0.560 0.760 0.647

Fig. 10  ROC curve and PR curve of various network based on DIP, Krogan,Gavin database. a DIP database. b 
Krogan database. c Gavin database
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characteristics that essential proteins often perform important functions collaboration 
in the same subcellular location. Therefore, it can provide a positive contribution to the 
performance of TGSO. In addition, it can be seen as well from the above experimental 
results that the integrated interaction network PCIN has higher recognition accuracy 
than any single network, since it can balance the advantages and disadvantages of mul-
tiple networks, and eliminate noisy data. Moreover, TGSO can achieve satisfactory per-
formance under multiple evaluation frameworks such as PR graph, ROC graph, AUC 
and F1-score, which has also fully demonstrated the rationality and excellence of net-
work integration.

Discussion
Essential proteins are indispensable materials to sustain life activities.In recent years, the 
development of computational methods for essential protein recognition has become a 
research hotspot, and many researchers have successively developed various algorithms 
based on PPI networks. With the gradual improvement of high-throughput biodata, 
more efficient prediction models have been proposed by combining PPI networks with 
biodata including the subcellular information and lineal homology information to screen 
essential proteins. Inspired by this, we first designed a subcellular co-localization score 
index and a co-expression index based on gene expression data and subcellular data of 
proteins separately. And then, a novel detection method called TGSO was designed to 
identify essential proteins based on multiple data fusion. Through comparative experi-
ments, it was confirmed that TGSO is superior to existing methods. Moreover, as for 
methods including CVIM and TEGS that adopt similar combination of PPI network 
topology and additional biological information with TGSO, although the numbers of 
essential proteins in top 200 ranked proteins are similar, but the detailed essential pro-
teins detected by TGSO is very different from that detected by TEGS and CVIM. Dur-
ing experiment, we tried to combine features selected by these models with features in 
TGSO, but experimental results showed that the recognition effect of fusing these fea-
tures is not ideal. Through analysis, this might be caused by that the criticality of key 
proteins is very diverse. For example, in TEGS, the importance of protein was predicted 
by combining GO annotation with homologous prediction and subcellular localization 
data. But many GO annotations were provided on the basis of orthology predictions, i.e. 
an annotation was provided in one species based on published experimental evidence. 
Hence, the same annotation was transferred to the orthologous proteins. If the term 
did not exclude homologous transferred by predicted orthology, it would make TEGS 
become highly redundant. In CVIM, gene expression and network topology information 
were adopted, but the subcellular location information was not considered. And moreo-
ver, the entropy weighted method was only used to integrate topological features, how-
ever, topological features often have lots of noisy data, so the effect of CVIM would be 
limited. In general, TGSO can achieve better predictive performance. In the future, we 
will carry out a more in-depth analysis of it, and look for better characteristic informa-
tion to collect key proteins found by different methods and improve the recognition rate 
of TGSO.
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Conclusions
In this paper, we propose a new prediction model:TGSO. In TGSO, DBN is introduced 
to construct the node aggregation degree interactive network (ADN), PCC is adopted 
to construct the protein co-expression interactive network (CEN), and the subcellular 
localization information is adopted to construct the protein co-localization interactive 
network (CLN) firstly. And then, by integrating these three kinds of interactive networks, 
a comprehensive protein interaction network (PCIN) is obtained. Next, through com-
bining protein conservatism scores with the PCIN, an iterative algorithm is proposed 
to calculate the essentiality score for each protein, which can be used to screen essential 
proteins efficiently. Finally, intensive experiments have been conducted to estimate the 
performance of TGSO based on the DIP, Krogan and Gavin databases separately, and 
experimental results show that TGSO can achieve more satisfactory performance than 
traditional state-of-the-art methods. In future work, we will introduce more biological 
information such as the protein–domain interactions and the gene ontology information 
to further improve the prediction performance of TGSO.
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