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Abstract

Background: SARS-CoV-2 related research has increased in importance worldwide
since December 2019. Several new variants of SARS-CoV-2 have emerged globally, of
which the most notable and concerning currently are the UK variant B.1.1.7, the South
African variant B1.351 and the Brazilian variant P.1. Detecting and monitoring novel
variants is essential in SARS-CoV-2 surveillance. While there are several tools for assem-
bling virus genomes and performing lineage analyses to investigate SARS-CoV-2, each
is limited to performing singular or a few functions separately.

Results: Due to the lack of publicly available pipelines, which could perform fast
reference-based assemblies on raw SARS-CoV-2 sequences in addition to identifying
lineages to detect variants of concern, we have developed an open source bioin-
formatic pipeline called HAVoC (Helsinki university Analyzer for Variants of Concern).
HAVoC can reference assemble raw sequence reads and assign the corresponding line-
ages to SARS-CoV-2 sequences.

Conclusions: HAVoC is a pipeline utilizing several bioinformatic tools to perform
multiple necessary analyses for investigating genetic variance among SARS-CoV-2
samples. The pipeline is particularly useful for those who need a more accessible and
fast tool to detect and monitor the spread of SARS-CoV-2 variants of concern during
local outbreaks. HAVoC is currently being used in Finland for monitoring the spread of
SARS-CoV-2 variants. HAVoC user manual and source code are available at https://www.
helsinki.fi/en/projects/havoc and https://bitbucket.org/auto_cov_pipeline/havoc,
respectively.

Keywords: SARS-CoV2, Variant detection, Reference assembly, Lineage identification,
Coronavirus, Sequence analysis

Background
Emerging pathogens pose a continuous threat to mankind, as exemplified by the Ebola
virus epidemic in West Africa in 2014 [1], Zika virus pandemic in 2015 [2], and the
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ongoing Coronavirus disease 2019 (COVID-19) pandemic. These viruses are zoonotic,
i.e. have crossed species barriers from animals to humans, alike the majority of emerg-
ing human pathogens [3, 4]. The likelihood of this host switching is enhanced by several
factors, e.g. global movement of people and animals, environmental changes, increased
proximity of humans, wildlife and livestock, and population expansion into new envi-
ronments [5].

The mutation and evolution rate of RNA viruses is considerably higher than their
hosts, which is advantageous for viral adaptation. Mutations in the viral genome are
most of the time silent or, if affecting phenotype, related to attenuation, although muta-
tions can also lead to more pathogenic strains. A new virus variant may have one or
more mutations that separate it from the wild-type virus already circulating among the
general population.

Coronaviruses (family Coronaviridae) are enveloped single-stranded RNA viruses,
which cause respiratory, enteric, hepatic, and neurological diseases of a broad spectrum
of severity among different animals and humans. Severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), a novel evolutionary divergent virus responsible for the
present pandemic, has devastated societies and economies globally. The SARS-CoV-2
pandemic has already infected more than 100 million people in 221 countries, causing
over 2.2 million global deaths as of 3rd February 2021 [6]. In autumn 2020, a new variant
of SARS-CoV-2 known as 20B/501Y.V1 (B.1.1.7) was detected in south-eastern England,
Wales, and Scotland [7]. This variant has since spread globally to more than 80 coun-
tries. The variant has undergone 23 mutations with 13-nonsynonymous mutations, four
amino acid deletions, and six synonymous mutations making the virus more transmis-
sible [8]. Another variant 20C/501Y.V2 (B.1.351) was detected in South Africa which was
genetically distant from the UK 20B/501Y.V1 variant [9]. This South African variant with
its two mutations in the receptor-binding motif that mainly forms the interface with the
human ACE2 receptor has also been widely spreading to circulate globally. It has been
noticed that some existing vaccines against SARS-CoV-2 are less effective against the
20C/501Y.V2 variant [10-12]. A third variant being closely monitored is P.1 detected
first in Brazil [13]. Interestingly, all these three variants have a mutation in the receptor
binding domain (RBD) of the spike protein at position 501, where the amino acid aspara-
gine (N) has been replaced with tyrosine (Y) enabling specific PCR to detect the N501Y
mutation [14].

Sequencing and computing consensus sequences or genomes from RNA viruses pre-
sent certain challenges. The mutation and evolution rate of RNA viruses is considerably
higher than their hosts, which is advantageous for viral adaptation. Mutations in the
viral genome are most of the time silent or, if affecting phenotype, related to attenua-
tion, although mutations can also lead to more pathogenic strains. A new virus variant
may have one or more mutations that separate it from the wild-type virus already cir-
culating among the general population. To detect these minor changes in viral genomes
requires bioinformatic tools with high accuracy and sensitivity, which tend to come
at the expense of computing speed. Currently, the most common sequencing method
employed with SARS-CoV-2 is a combination of PCR-based amplification followed
by Illumina sequencing. The resulting reads are then pre-processed and quality-con-
trolled for either a de novo or a reference-based assembly. To identify to what variant
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a sequenced SARS-CoV-2 belongs to, it is usually analyzed and classified with pangolin
[15] or Nextclade, which is a part of Nextstrain [16]. Each tool utilizes different nomen-
clature for classification [17, 18]. To date, most of the resulting sequences are submitted
to the GISAID database [19, 20] (contains over 1 million sequences as of May 1, 2020),
which has another classification system for the virus.

As more transmissible coronavirus variants are circulating worldwide, the role of
researchers and technology specialists in controlling the pandemic has received more
emphasis. The surveillance of virus variants by sequencing the SARS-CoV-2 genomes
would provide a fast way to monitor variants and their spread, however, there are only
few publicly available methods for quick reference-based consensus assembly and line-
age assignment for SARS-CoV-2 samples. For this purpose, we have developed a simple
pipeline, called HAVoC (Helsinki university Analyzer for Variants of Concern), for quick
reference-based consensus assembly from short reads sequenced with Illumina and lin-
eage assignment for SARS-CoV-2 samples. This will provide the end user a quick and
accessible method of variant identification and monitoring. The pipeline was developed
to be run on Unix/Linux operating systems, and thus can also be used in remote servers,
e.g. CSC—IT Center for Science, Finland.

Implementation

HAVoC consists of a single shell script, which performs reference-based consensus
assemblies to query SARS-CoV-2 FASTQ sequence libraries and assigns lineages to
them individually in succession. It does this using several bioinformatic tools publicly
available in Bioconda on Unix/Linux platforms. For HAVoC to be utilized, the user is
required to install these dependencies. This can be done for example via Biocanda with

the following command:

conda install fastp trimmomatic bowtie2 bwa sambamba samtools bedtools lofreq
beftools pangolin

The script can be started by typing the following line into your command line terminal:
sh HAVoC.sh [FASTQ directory]

The computing of consensus sequences starts with the tool detecting FASTQ files gen-
erated via paired end sequencing in a given input directory and checking that each query
FASTQ file has its corresponding counterpart, i.e. mates file. The names of the files are
modified to be more concise, e.g. Query-Seq:1_X123_Y000_R1_000.fastq.gz to Query-
Seq:1_R1.fastq.gz. The pipeline accepts FASTQ files both in gzipped and uncompressed
format.

For the analyses, the user can choose one of two bioinformatic tools to utilize in each
phase of the assembly. This can be done by typing the tool wanted (tools_prepro, tools_
aligner and tools_sam) within the options section in the beginning of the script file. For
example, if the user wants to deploy Trimmomatic to pre-process FASTQ files, the fol-
lowing line can be changed as follows:

From

tools_prepro="fastp"
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To

tools_prepro="trimmomatic”

Other options include the number of threads, minimum coverage below which a
region is masked (min_coverage), and whether to run pangolin to assign lineages to the
consensus genome (run_pangolin). An additional option allows HAVoC to be run in the
CSC servers (run_in_csc).

The pre-alignment quality control, e.g. removing and trimming low quality reads and
bases, removing adapter sequences, can be done with either fastp [21] or Trimmomatic
[22]. The former is used by default due to its faster processing speed. Also unlike Trim-
momatic, fastp does not require a separate file with adapters (NexteraPE-PE.fa or other
provided by the user) making it more usable for different sequencing protocols. In addi-
tion to increasing the quality of the reads, this step reduces the time of the following
alignment process in which the reads are then aligned to a reference genome of SARS-
CoV-2 isolate Wuhan-Hu-1 (Genbank accession code: NC_045512.2) provided in the ref.
fa file with BWA-MEM [23] or Bowtie 2 [24]. The end-user may also provide their own
reference genome in fasta format by copying it directly to the ref.fa file. BWA-MEM is
chosen by default due to it being faster compared to other contemporary tools utilizing
different alignment techniques [25]. For higher coverage contigs, the user may want to
use Bowtie 2 instead. The resulting SAM and BAM files are processed (includes sort-
ing, filling in mate coordinates, marking duplicate alignments, and indexing reads) with
Sambamba [26] or Samtools [27] and the low coverage regions are masked with BED-
tools [28]. After masking a variant call is done with LoFreq [29] before computing the
consensus sequence via BCFtools of Samtools [27]. Finally, the consensus sequence is
analyzed with pangolin [15] to assign a lineage. The whole process is depicted in Fig. 1.

Usage example

We are going to demonstrate a common use case for HAVoC with FASTQ files contain-
ing reads for SARS-CoV-2 sequences, provided by the Viral zoonoses research unit at
University of Helsinki, Finland. The reads were produced via Illumina sequencing. The
test files within the Example_ FASTQs folder contain paired-end FASTQ files for the UK
variant (UK-variant-1) and the South African variant (S-Africa-variant-1). To analyse
these example files, the aforementioned command needs to be deployed as follows:

sh HAVoC.sh Example_FASTQs

Results

The FASTQ files are processed and analyzed with the default options utilizing faster
bioinformatic tools (fastp, BWA-MEM and Sambamba) in ca. 2—5 min, depending on
the performance of the platform (local or server) and the size of the input FASTQ files.
After HaVoc has finished the analyses, each FASTQ file is moved to their respective
result folders within the FASTQ directory. Each result folder contains a FASTA file for
the consensus sequence (e.g. UK-variant-1_consensus.fa) and a CSV file with the lineage
information produced by pangolin (e.g. UK-variant-1_pangolin_lineage.csv). In addition
to these main result files, each directory contains the original FASTQ files, BAM files
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Fig. 1 Flowchart describing processes and steps performed by HAVoC pipeline. The pipeline constructs
consensus sequences from all FASTQ files in an input directory and then compares the resulting sequences
to other established SARS-CoV-2 genomes to assign them the most likely lineages. The pipeline requires

a FASTA file of adapter sequences for FASTQ pre-processing and a reference genome of SARS-CoV-2 in a
separate FASTA file. The adapter file is not required when running the pipeline with fastp option. Input files
are highlighted in green and the outputs in red

(original, indexed and sorted), variant call files (VCF) with mutation data, BED file used
for masking regions, and fastp report files with the results of FASTQ processing. The
resulting directory and file structure with the example files will look as follows:

Example_FASTQs/

UK-variant-1/

UK-variant-1.bam
UK-variant-1_R1.fastq.gz
UK-variant-1_R2.fastq.gz
UK-variant-1_consensus.fa
UK-variant-1_fixmate.bam
UK-variant-1_indel.bam
UK-variant-1_indel.vef
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UK-variant-1_indel_flt.vcf
UK-variant-1_lowcovmask.bed
UK-variant-1_markdup.bam
UK-variant-1_namesort.bam
UK-variant-1_pangolin_lineage.csv
UK-variant-1_sorted.bam
fastp.html

fastp.json

S-Africa-variant-1.bam

S-Africa-variant-1/

S-Africa-variant-1_R1.fastq.gz
S-Africa-variant-1_R2.fastq.gz
S-Africa-variant-1_consensus.fa
S-Africa-variant-1_fixmate.bam
S-Africa-variant-1_indel.bam
S-Africa-variant-1_indel.vef
S-Africa-variant-1_indel_flt.vcf
S-Africa-variant-1_lowcovmask.bed
S-Africa-variant-1_markdup.bam
S-Africa-variant-1_namesort.bam
S-Africa-variant-1_pangolin_lineage.csv
S-Africa-variant-1_sorted.bam
fastp.html

fastp.json

Each of the example UK variants should have been categorized as B.1.1.7 and
the South African variants as B.1.351 (with pangoLEARN release 2021-02-06). It is
important to note however, that as more sequences are uploaded and the pangolin
lineage nomenclature updated, the assigned lineages may differ from the expected
ones described in this paper.

Regions with low coverages (with default setting under 30) are marked with the let-
ter N during masking and represent gaps in the final consensus sequences.

HAVoC is comparable to alternative combinations of tools, e.g. Jovian and pangolin,
in both speed and accuracy. These tools however operate separately, and as of pub-
lishing, there are no single public tools that can both perform a reference-based con-
sensus assembly and a lineage identification in an easily accessible manner.

Conclusions

Early detection and understanding of the potential impact of emerging variants of SARS-
CoV-2 is of primary importance and can assist in more efficient surveillance and control
of the disease. The likelihood of emergence of novel SARS-CoV-2 variants of concern
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is increased and accelerated by the high mutation rates typical in RNA viruses and the
growing number of transmissions and infections both locally and globally.

With the rising number of variants detected worldwide and with many of them asso-
ciated with increased transmissibility and lower vaccine efficacy, there is an emerging
need for fast, efficient and reliable pipelines to help detect, identify and trace SARS-
CoV-2 lineages. These pipelines should in addition be accessible to researchers who may
not be familiar with utilizing complex bioinformatic tools or scripting pipelines.

Due to these challenges, we have developed HAVoC, a simple, reliable and user-friendly
pipeline, which can be simply downloaded from our repository and run without being
installed. The pipeline performs reference-based assemblies and lineage assignment
from SARS-CoV-2 samples sequenced with Illumina utilizing a combination of multiple
well-established third-party bioinformatic tools in current use. All its dependencies can
be installed via existing package managers, of which we recommend Bioconda. HAVoC
is currently being developed and updated in addition to being utilized for detecting and
tracing SARS-CoV-2 variants of concern, mainly B.1.1.7, B1.351 and P.1, in Finland.
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