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Background
Malaria is a well-known parasitic disease caused by Plasmodium parasites and 
affects populations in tropical and subtropical areas with a significant impact in the 
sub-Saharan African region. Although an approximate of 228 million cases of infec-
tion and a mortality rate of 405,000 has been reported for 2018, the World Health 
Organization states that the overall incidence of malaria has decreased from 2010 [1]. 
However, this rate of decrease plateaued with the development of resistance to cur-
rent treatments, necessitating new investigative approaches into disease treatment 
and eradication [1, 2]. A well-studied part of the parasite life-cycle is the blood stage 
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within the human host [3]. In this erythrocytic stage, merozoites infect red blood 
cells, where they mature and proliferate until the red blood cells burst and release 
more merozoites [4]. The erythrocytic stage is associated with clinical symptoms of 
malaria since parasites and infected red blood cells (iRBCs) activate the immune sys-
tem’s response, which can lead to symptoms such as fever, malaise and exacerbate 
anaemia [5]. The immune system, however, plays an important role in disease pro-
gression and response to treatment and vaccination. Taking its response into consid-
eration is therefore vital for a quantitative understanding of infection dynamics and 
intervention effects [5].

Upon malaria infection, the always-present innate immune system rapidly attempts 
elimination of the invading pathogen [6, 7]. The innate immune system is non-specific 
to an infection and fights microbes by secreting various proteins and cytokines and 
assisting the adaptive immune system [8]. The adaptive immune response takes longer 
to develop and can be sub-divided into two categories, namely humoral and cell-medi-
ated immune responses [7–9]. Here the humoral response would target free pathogens 
in the blood using antibodies produced from B-lymphocytes, whereas the cell-mediated 
response targets infected cells with T-cells differentiated from T-lymphocytes. Even with 
these multiple immune responses, malaria infection can persist in the body leading to 
severe complications and death [10].

Experimental methods such as bioluminescent, behavioural studies and a variety of 
assays can be used to investigate the malaria parasites, their interactions with the human 
and mosquito hosts and the immune system’s response to infection [6, 11, 12]. Clini-
cal studies are also used to investigate parasite interactions and treatment effects, using 
methods such as microscopy, rapid diagnostic tests and molecular assays [13]. Data from 
clinical and experimental observations can be encoded in mathematical models. These 
models can then be used to analyse the behaviour emerging as a function of interacting 
processes in the system, and to make quantitative predictions of how a system is influ-
enced by various alterations. A variety of within-host mathematical models describing 
the disease dynamics associated with malaria infection exist, with differential equation 
based models focusing on the time evolution of different cell populations within the host 
[14–37]. Simple models of the erythrocytic infection stage usually describe populations 
of healthy red blood cells (RBCs), infected red blood cells (iRBCs) and free roaming 
merozoites with some of these models extended to include immune system components 
[21–37].

When comparing these models it becomes evident that they often differ in their for-
malism, structure and in the interpretation of model components and simulation results 
depending on the purpose of the original study. In each model, the parametrisation of 
the biological processes approximate the dynamics that might only be realistic close to 
the reference state. In addition, the values of parameters could be imprecise due to the 
method of determination employed and a natural variation in values can occur in a pop-
ulation. Consequently, there is some uncertainty regarding the reliability and fidelity of 
the model predictions and their interpretations. For the purpose of this study we inter-
pret reliability as the extent to which model predictions can be trusted in the context of 
parameter uncertainty, and fidelity as the degree to which model predictions reflect real-
ity taking heterogeneity in a population into account.
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Various methods exist to quantify the effects of parameter variations or changes within 
a model. These can be used to determine the contribution of parameter uncertainty to 
variance in model prediction, to test model robustness against parameter changes and 
even assist in elucidating biologically relevant constituents for intervention with a cer-
tain outcome in mind.

In a biological system such as the human body, there is an expected range in which 
population sizes of cells may fall, as a natural variance will be seen in a population of 
individuals with slightly different characteristics (i.e. parameter sets). Robustness analy-
sis can demonstrate the possible model outcomes for individuals in a population where 
biological parameters can vary greatly between individuals. A robust model shows resil-
ience to changes in model inputs, presenting a more stable model [38, 39], although it 
should be able to account for variances seen in a population. If clinical ranges of observ-
ables (such as cell types) are available this analysis can also establish a degree of con-
fidence in the fidelity of model predictions given the variation seen in a population of 
heterogeneous individuals.

Considering the experimental uncertainty in parameter values, uncertainty analy-
sis allows one to quantify the contribution of uncertainty of a parameter to the over-
all uncertainty in model predictions [40]. Parameters are often obtained from literature 
where clinical measurements were pooled in studies not designed for model parametri-
sation. Uncertainty analysis can thus indicate which parameters have a large effect on 
model outputs when considering their variances.

Local sensitivity analysis is closely associated to uncertainty analysis, as it entails 
determining the change in model outputs (e.g. steady state values of model variables) 
when the inputs or parameters are varied one at a time in a localised parameter space 
around the reference state [41]. The method is applied to each parameter individually, 
while the rest are kept at the wild type values, and the results, shown as sensitivity indi-
ces, quantify the effect of each parameter on model outcomes near the reference state. 
Whereas uncertainty analysis indicates which parameters lead to the most uncertainty 
in model outputs given their variances, local sensitivity analysis quantifies the sensi-
tivities of model outputs to small parameter perturbations around a specific point in 
parameter space. For a review of possible applications of this analysis see [42, 43]. In the 
context of metabolic systems, metabolic control analysis (MCA) is a form of local sensi-
tivity analysis which entails calculating normalised partial derivatives of the model out-
puts (e.g. steady state concentrations or fluxes) with respect to system properties (rates, 
concentrations or parameters) [44–47]. In MCA the response coefficient is a sensitivity 
index quantifying the fractional change in the steady state outputs of the model variables 
or fluxes upon a 1% change in a parameter [47]. Beyond model sensitivity characterisa-
tion, this approach can also be used to indicate possible drug targets and their systemic 
effects [48–50] if one considers parameters with large responses to be potential weak-
nesses in the system.

The last type of analysis of interest here is a variation on robustness analysis where 
local sensitivity coefficients are calculated at each point in the complete parameter space. 
Ideally the parameter ranges should be defined according to the ranges observed in a 
population. Random parameter sets are constructed and the model simulated for each 
set - similar to the robustness analysis described above. The local sensitivities (response 
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coefficients) are determined for every parameter set (point in parameter space) and the 
results are pooled to visualise the spread of response coefficients (sensitivities) in a pop-
ulation. For this analysis the results can be visualised using histograms, and good robust-
ness of local sensitivities in a population is inferred when the results are well conserved 
with the most probable response coefficient corresponding to the wild-type result from 
local sensitivity analysis. This analysis can hence assist in determining if the results of 
the wild-type local sensitivity analysis are approximately retained in a heterogeneous 
population [48]. As this analysis samples the parameter set from the global parameter 
space, it could be considered a form of global sensitivity analysis, but since the aim is to 
analyse the robustness of the local sensitivity results, it will be defined as local sensitivity 
robustness analysis in this study. Global sensitivity analysis methods used on biologi-
cal models as described in [47] have different levels of computational and mathematical 
complexity. It would however be best to use methods that closely relate to the methods 
used for robustness and local sensitivity analyses for comparison.

This study focusses on analysing four published models of malaria infection where the 
immune system’s response is incorporated. The models were chosen based on their abil-
ity to describe the core dynamics of the disease with varying complexity of the immune 
system description. Additional considerations were their ordinary differential equa-
tions (ODE) structure, and comparability of model variables and processes. Uncertainty, 
robustness and sensitivity analyses were performed on these within-host models to 
determine the effect of parameter uncertainty and variability on the predicted disease 
dynamics, and to test whether the models could still give reliable and realistic predic-
tions while accommodating heterogeneity and uncertainty.

Model descriptions
The model of Anderson et al. [21] is one of the earliest models on which many others have 
built. This model includes four variables, describing the RBC, iRBC, merozoite and T-lym-
phocyte populations, where the T-lymphocyte population represents the immune effectors 
of the model. The model of Li et al. [22] has a very similar, albeit expanded model struc-
ture to that of Anderson et al. [21]. It includes immune effector parameters in Michaelis–
Menten–Monod functions to ensure saturation of processes corresponding to the immune 
system’s response. Niger and Gumel [23] extended the model of Anderson et al. [21] by par-
titioning the immune system response into two variables: the collective immune effectors 
and the antibodies specific to malaria infection. The model furthermore separated the iRBC 
population into different compartments, to account for parasite growth. The final model 
included for analysis is from the doctoral thesis of Okrinya [24]. Whilst also splitting the 
immune effectors into two groups as in the Niger and Gumel [23] model, the two immune 
response variables in this model denote innate and adaptive immunity. It includes an addi-
tional variable representing the gametocyte population within the host. The model struc-
tures are explained in the following section, and parameter definitions used to reproduce 
the models prior to analysis can be viewed in Additional file 1: Tables 1–4. It should also 
be noted that multiple model outputs describing different disease states were obtained in 
some publications, where parameter values were altered to showcase either parasite free or 
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endemic states. As we are interested in investigating the parameter effects on disease, only 
models describing infection were used.

Anderson model

Anderson et al. [21] formulated a within-host model of blood stage malaria infection, which 
includes the immune response to free roaming merozoites and iRBCs. The model construct 
with RBCs (x), iRBCs (y), merozoites (s) and T-lymphocytes (T) follows: 

 The model shows the natural birth rate of healthy RBCs, � , and natural death rates µx , 
αy , ds and aT for RBCs, iRBCs, merozoites and T-lymphocytes respectively. βxs is a 
transfer term present in three equations, where β denotes the probability of a merozoite 
infecting a healthy RBC. Thus, this term depends on, and influences merozoite (s), as 
well as available RBC population densities (x). The term αry describes the increase of 
merozoites due to the death rate of iRBC, where the cells burst and release r number of 
merozoites in the blood. The immune system component decreases the iRBC and mero-
zoite densities with rate constants g and h respectively, whilst also being activated by the 
iRBCs and merozoites with rate constants k and γ . Although this model specifies that 
T-lymphocytes are the immune effectors used to fight infection, they affect both mer-
ozoites and iRBCs. This indicates humoral and cell-mediated immunity with humoral 
immunity fighting against merozoites and cell-mediated immunity defending against 
iRBCs. This model, however, does not include an innate immune response as there is 
no natural birth rate for immunity effectors. Four different sub-models were published 
based on this model where the last model as shown here uses the complete structure 
where humoral and cell-mediated immunity is included.

Li model

Li et al. [22] contains four equations for variables H (RBCs), I (iRBCs), M (merozoites) and 
E (immune effectors). Here “immune effectors” include all biological immune effectors and 
no distinction is made between innate and adaptive immunity. 

(1a)
dx

dt
= �− µx − βxs

(1b)
dy

dt
= βxs − αy− gyT

(1c)
ds

dt
= αry− ds − βxs − hsT

(1d)
dT

dt
= γ sT + kyT − aT

(2a)
dH

dt
= �− d1H − αHM
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 This model extends the Anderson model, by incorporating non-linear bounded Michae-
lis-Menten-Monod functions to account for saturation of the immune-linked elimina-
tion processes. The first process of this kind is the removal of the iRBCs (I) by immune 
effectors E, represented by p1IE

1+βI  in Eq. 2b. In this term p1 is a rate constant for the rate at 
which immune effectors can remove iRBCs, and 1

β
 is viewed as a half-saturation constant 

for iRBCs. The same holds true for the term p2ME
1+γM , where p2 is the rate at which the 

immune effectors can remove the merozoites in the blood plasma, while 1
γ

 is a half-satu-
ration constant. k1 and k2 describe the proliferation rate of lymphocytes due to activation 
by iRBCs and merozoites, respectively. The immune response is split into two compo-
nents in the relevant equation  2d. Here the second term corresponds to the immune 
response component that proliferates due to the activation by iRBCs. The third term 
corresponds to the immune response component that is activated by merozoites. The 
merozoites are eliminated by the humoral immune effectors (rate constant p2 ) and the 
iRBCs by the cell-mediated immune effectors (rate constant p1 ). Immune effector acti-
vation is a saturable process and depends on the population density of the disease varia-
bles as well as the immune cell concentration, their binding and the efficiency of the 
process. Six sub-models were published with the same structure but changes were made 
in key parameters to obtain different disease dynamics. The one chosen here for analysis 
describes an endemic state of malaria infection where the immune system’s response is 
included.

Niger model

Niger et al. [23] contains age compartments ( Yi ) of the intracellular parasite stage (iRBCs), 
representing the different stages of parasite growth in an infected erythrocyte. The authors 
also proposed a more physiologically realistic model which splits the immune effectors into 
two groups: immune cells B and antibodies A. The model, which includes healthy RBCs (X) 
and merozoites (M), follows: 

(2b)
dI

dt
= αHM − δI −

p1IE

1+ βI

(2c)
dM

dt
= rI − µM −

p2ME

1+ γM

(2d)
dE

dt
= −d2E +

k1IE

1+ βI
+

k2ME

1+ γM

(3a)
dX

dt
= �X − βXM − µXX

(3b)
dY1

dt
= βXM − µ1Y1 − γ1Y1 − k1BY1

(3c)
dY2

dt
= γ1Y1 − µ2Y2 − γ2Y2 − k2BY2
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 For the first stage of infection Y1 , Eq.  3b shows infection of healthy RBCs dependent 
on β , the infection rate constant, as well as the variables X and M, depicting the healthy 
RBCs and merozoite population, respectively. The natural death rate µiYi of iRBCs and 
the progression rate to the next compartment, γiYi , both decrease the Yi population in 
each compartment. The immune system now additionally kills iRBCs, where ki is the 
immuno-sensitivity of the stage i iRBCs to immune effectors B. In this model n covers 
five stages where the parameter values differ slightly as shown in Appendix Table 3. B 
accounts for immune cells including the innate immune effectors, whereas A accounts 
for merozoites specific antibodies. This distinction is important as innate immune 
cells are ever-present, whereas antibodies are only formed when the acquired immune 
response is activated. For the immune cells B there is a natural background production 
rate of cells, �B , as well as a stimulation of production rate due to the presence of an 
infection (at a rate ρiYi ). This stimulation of the production happens due to all infected 
compartments including free merozoites. For antibodies there is only an increase of 
antibodies at a rate ηBM , dependent on the immune effector and merozoite populations. 
However, in this model the antibodies (A) are not included in any other processes and is 
therefore not integrated into the immune response that influence infection. The model 
used here shows a stable endemic state with an immune response.

Okrinya model

The Okrinya model [24] has an extra variable G for gametocyte population. The model 
with uninfected RBCs (X), iRBCs (Y), merozoites (M), innate immune cells (P) and adaptive 
immune cells (A), is given by: 

(3d)

.

.

.

dYn

dt
= γn−1Yn−1 − µnYn − γnYn − knBYn

(3e)
dM

dt
= r(µn + γn)Yn − µMM − kMBM − µβXM

(3f )
dB

dt
= �B + B(ρ1Y1 + ρ2Y2 + · · · + ρnYn + ρn+1M)− µBB

(3g)
dA

dt
= ηBM − µAA

(4a)
dX

dt
= �x −

βxXM

1+ c0A
− µxX

(4b)
dY

dt
=

βxXM

1+ c0A
− (µy + µn)Y − kyPY (1+ kaA)

(4c)
dM

dt
=

rµy(1− θ)Y

1+ c1A
−

βxXM

1+ c0A
− µmM − kmPM(1+ kbA)
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 The effector variable A represents the population of adaptive immune cells and include 
cells like B and T-cells, but the author interprets it as the concentration of antibodies. 
The immune effectors are thus split differently compared to the Niger model. Com-
parison to the structure of the Niger model also shows the differences in processes. For 
example, terms that include 1

(1+c1A)
 indicate the effect of antibodies blocking the infec-

tion. The term kmPM(1+ kbA) depicts the immune system’s successful removal of mero-
zoites, which is dependent on the concentrations of both the innate immune cells and 
merozoites. An extra parameter θ in the equations for M and G (Eq. 4c and 4d) is the 
fraction of merozoites that will develop into gametocytes and therefore not re-enter the 
erythrocytic cycle. As was seen for the Niger model, innate immune cells have a natu-
ral birth rate and a stimulation rate bought on by infection ( η1 ), whereas the adaptive 
immune effectors are only produced when there is an actual presence of disease. Note 
that a time delay ( t − d1 ) is included in the equation, to account for the interval between 
start of infection and production of adaptive immune cells. This time delay affects the 
dynamics upon infection but does not influence the achieved variable steady state val-
ues, and was ommited in our reproduction to simplify analysis. The model, describing 
pathogenesis in an infected individual with an immune response, was published in a 
dimensional and non-dimensionalised form. To enable the comparison of this model to 
the others, the dimensional model was used.

General remarks on model reproduction

Models were reproduced from literature using the published parameters values as the ref-
erence/wild-type set. Simulation results for steady state values of variables and dynamic 
behaviour were compared to published results and showed good agreement if not exact. It 
should be noted that for the Li model, some parameter sets used in a Monte Carlo simula-
tion presented here, resulted in oscillatory behaviour (limit cycle). In these cases, our analy-
ses were performed using the unstable steady state.

Parameter symbols and definitions differ between models. Biologically similar parame-
ters were therefore first identified and for the purposes of this study they are denoted by the 
same symbol (which might differ from the original symbols used in the models) as shown 
in Table 1. All parameter definitions and values for each model can be viewed in Additional 
file 1: Tables 1–4.

(4d)
dG

dt
=

rµyθY

1+ c1A
− µgG − kgPG(1+ kcA)

(4e)
dP

dt
= bm + η1(Y + φM)− µpP − P(kdY + knM)

(4f )
dA

dt
= η2{Y (t − d1)+ g2M(t − d1)} + µa(A0 − A)− A(η3Y + η4M)
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Results
Robustness analysis

Figure 1 shows the range of endemic steady state values for RBCs and iRBCs for 10,000 
parameter sets obtained by a Monte Carlo (MC) random sampling-based technique. All 
parameters were randomly varied within 10% of their wild-type values and the steady 
state values determined for each parameter set. The results for the models of Anderson 

Table 1  Relatable parameters between models

A parameter definition is given in terms of the rate in which it appears with the corresponding parameter symbol from each 
model. The symbol used to represent this parameter in the results section is emphasized in bold
atreated as a single parameter for the analyses conducted in the current study

Anderson Li Niger Okrinya

Elimination rate of merozoites by  immune effectors h p2 kM kM

Probability of infection of RBCs with free roaming merozoites β α β βX

Production rate of immune cells . . �B bM

Birth rate of healthy RBCs � � �X �X

Natural death rate of RBCs µ d1 µX µX

Natural death rate of iRBCs α δ µY5 µN

Death rate of innate immune cells / immune effectors a d2 µB µP

Natural death rate of merozoites d µ µM µM

Proliferation rate of immune effectors due to merozoites γ k2 ρ6 η1φ
a

Proliferation rate of immune effectors due to iRBCs k k1 ρ1 η1

Fig. 1  Robustness analysis results for the infected and healthy RBC populations of the Anderson and Niger 
models. Three different disease states are shown in the diagrams: (i) green—no infection, (ii) red—malaria 
infection without an immune response and, (iii) orange—infection with an immune response. The steady 
state values for the healthy RBCs decrease with infection in both models and increase again with the addition 
of the immune system. The values for the iRBCs start as none with no infection, increase to the highest 
achieved results when infection is added, and decrease again when the immune system is included in the 
model
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and Niger show three different disease states i.e. a healthy patient (green), an infected 
patient with no immune response (red) and an infected patient with an immune 
response (orange).

Note that the healthy RBCs and iRBCs are unitless in Fig. 1, as Anderson published 
units only in 1/day and Niger published units in “concentration”. With no infection 
(green) the healthy RBCs achieve the highest steady state values. These values are shown 
to drastically decrease with infection (red) and then increase with the addition of the 
immune response (orange). Although the values of the steady states reached for the 
infected population with the inclusion of the immune system is higher than those for 
infection without an immune response, the uninfected steady state values are not recov-
ered. For the iRBCs there are no steady state values in an uninfected individual, non-zero 
steady state values when there is infection, and subsequently  decreased steady state val-
ues with the added immune response. These results were shown to indicate the differ-
ences between disease states but as is evident, the values reached at steady state for the 
healthy and infected RBCs in the Anderson model are extremely low. These plots are 
therefore only to be used as a general representation of how these variable distributions 
will shift upon infection and the inclusion of the immune response. The general trend of 
the healthy and infected RBCs as seen for Fig. 1, where, for example, the healthy RBCs 
decrease with infection and then increase with the inclusion of the immune response, 
was present in all models with the simulation of the different disease states.

Table  2 shows the steady state value ranges obtained for all variables in each of the 
models with infection and an immune response. Note that immune effectors include 
cells from the innate and adaptive immune system. Antibodies (A) from the Niger 
model is not included in the immune effectors shown here as they are not classified as 
cells and the immune effectors for the Okrinya model includes only the innate immune 
cells. Robustness analysis should give all models 10,000 parameter sets with an equiva-
lent number of steady state values per variable, however, some of the Li parameter sets 
resulted in unphysical steady state values (negative concentrations), possibly due to the 

Table 2  The ranges of the steady state values for all variables obtained during robustness analysis

Variables have units of cells/µl
aThe Anderson and Niger models were published without units
bThe adaptive immune cells in the Okrinya model (defined as “antibodies” is in mol/cell , whereas the innate immune cells 
are in cells/µl . As such only the innate immune cell range is shown in the table for unit comparability. The range of the 
antibodies is 2.73× 10

−2 − 6.42× 10
−2

mol/cell

Andersona Li Nigera Okrinya

RBCs 7.59× 10
1− 3.73× 10

6− 3.97× 10
4− 1.12× 10

6−

1.18× 10
2

5.52× 10
6 6.00× 10

4
2.27× 10

6

iRBCs 4.26× 10
−1− 2.40× 10

3− 1.47× 10
3− 2.73× 10

4−

7.14× 10
−1

8.77× 10
3

3.07× 10
3 5.37× 10

4

Merozoites 1.62× 10
−2− 5.73× 10

2− 3.77× 10
1− 2.11× 10

3−

2.91× 10
−2

2.14× 10
3

1.07× 10
2

5.87× 10
3

Immune cells 1.27× 10
0− 6.86× 10

4− 4.44× 10
1− 1.21× 10

−1−

6.87× 10
0

1.60× 10
8 7.11× 10

1
1.78× 10

−1 b

Parasitemia ( %) 0.571− 0.066− 3.42− 2.31−

0.614 0.154 4.86 2.51
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instability mentioned in the “General remarks on model reproduction” section above, 
and were excluded from the results. To compare model outputs using the same number 
of parameter sets, the Li model therefore required additional sampling to obtain a total 
of 10,000 valid parameter sets.

Of all the models the Li model showed the best correlation to known clinical ranges 
for the healthy RBC population in infected individuals (4.41–6.48×106 cells/µL ) [51]. 
Immune effectors in the models do not corresponded to the published range of white 
blood cells (4.52–7.99×103 cells/µL ) [52]. It is also noteworthy that the range for the 
Li model’s immune effectors is very large, showing that the immune effectors are very 
sensitive to changes in the model parameters, which could also affect all other variables. 
The % parasitemia ranges can be calculated from these results using 100 · iRBCs

iRBCs+RBCs , for 
simulation results from the same parameter set. Given that severe malaria is classified as 
> 5% parasitized cells [53, 54], all models indicate low to moderate parasitemia with the 
Niger model verging the closest to severe malaria.

For the robustness results in Fig.  2, each model’s results were normalized to their 
median as all four models achieved different ranges of steady state values.

Although the parameter sets are obtained from uniform distributions, robustness 
analysis results show more of a normal distribution, indicating good robustness for all 
models. The Anderson model appears to be the most robust for the merozoites, with the 
Li model showing a wider range for both the merozoites and iRBCs. The Okrinya and 
Niger models also show good robustness for the iRBCs and merozoites.

Uncertainty analysis

The uncertainty analysis results indicate which parameters contribute the most to uncer-
tainty in model outputs given their variances. The results are summarized in Table 3 and 
shows which parameters contribute the most to uncertainty in the merozoite and iRBC 
populations in all four models.

For the first three models, parameters related to the death rate of immune effectors, 
µP , and the proliferation rate of immune effectors due to the activation by iRBCs, k1 , con-
tribute the most to uncertainty in merozoites and iRBCs model outputs. These param-
eters have a larger combined total contribution in the Li model as the total percentage 
adds to more than 70% , while it is considerably lower in other models. This indicates 
that there are other parameters in the Anderson and Niger models that can contribute 

Fig. 2  Robustness analysis results for the merozoites and iRBCs of all four models. The results were 
normalized to the median and shows the distributions of the disease variables. Robustness decreases in the 
order: Anderson (red) > Okrinya (orange) > Niger (green) > Li (blue)
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significantly to uncertainty in variable outputs. µP and k1 are significant contributors 
to uncertainty as variance in these parameters can greatly influence the strength of the 
immune system’s response to infection. In the Okrinya model the number of merozoites 
released per bursting iRBC and the birth rate of healthy RBCs lead to the most uncer-
tainty in the merozoite population. The more merozoites released per bursting iRBC, the 
higher the infection and successive infections, leading to large changes in the model out-
puts. Changes in the birth rate of healthy RBCs ( �X ), lead to changes in the number of 
RBCs for infection, also leading to significant changes in the model outputs. The death 
rate of iRBCs ( µY  ) similarly has a significant effect due to its impact on parasite produc-
tion and immune response.

Overall, for three of the four models, the death rate of immune cells and their prolif-
eration rate due to iRBCs have the largest contributions to uncertainty in model outputs. 
This indicates that the immune system components and lack of detail, contribute the 
most to uncertainty in the outputs of disease variables.

Local sensitivity analysis

The local sensitivity analysis results concerning comparable parameters between the 
four models is shown as a heatmap in Fig. 3. Only the disease variables are indicated as it 
is these variables that are of clinical interest. The results indicate the percentage change 
in the value of a variable at steady state upon a 1% change in a parameter value.

Four striking variable-parameter pairs are present in the Li model. The death rate of 
immune effectors, µP , increases both disease variables the most. With a response coeffi-
cient larger than 2, the analysis illustrates that a 1% increase in the death rate of immune 
effectors will increase the steady state population of merozoites and iRBCs by more than 
2% . This is due to a higher death rate of immune cells leading to fewer active immune 
cells to fight the merozoites. The proliferation rate of immune effectors due to the acti-
vation by iRBCs ( k1 ) show the exact opposite, where a 1% increase correlates with a 
decrease in the disease variable populations by more than 2% . This demonstrates that 
a small increase in how well the immune system’s response is activated, can lead to a 
dramatically better disease clearance. Additionally, the response coefficients obtained 
for the immune effector variables in the Li model showed extremely high responses on 

Table 3  Uncertainty analysis results in % contribution

The table indicates which parameters contribute the most to uncertainty in the model outputs of merozoites and iRBCs. µP

—Death rate of immune effectors, k1—Proliferation rate of immune effectors by iRBCs, r—Number of merozoites released 
per bursting iRBC, �X—Birth rate of healthy RBCs, µY—Natural death rate of iRBCs

Merozoites iRBCs

Anderson µP k1 µP k1

42.0 13.2 48.3 15.2

Li µP k1 µP k1

45.4 32.2 48.1 34.1

Niger µP k1 µP k1

34.3 14.4 55.8 23.4

Okrinya r �X �X µY

36.8 17.6 56.7 9.37



Page 13 of 21Horn et al. BMC Bioinformatics          (2021) 22:384 	

parameter perturbations, but was not included in the results shown here as it is a com-
parison of the disease variables only.

The death rate of immune effectors also delivers high response coefficients for the 
Anderson and Niger disease variables. These results emphasize the immune system’s 
response since maximizing the activation of the immune system relative to cell death 
assists with disease clearance. In the Okrinya model, the number of merozoites released 
per bursting iRBC, r, has the largest influence on the merozoite population, where the 
birth rate of healthy RBCs, �X , influences the iRBCs the most. Logically, the merozoite 
population will increase if more merozoites are released when a cell bursts and with a 
larger healthy RBC population, more cells can be infected to form iRBCs.

Interestingly, when inspecting the different models, the Okrinya model shows a direct 
correlation between the merozoite and iRBC populations, where if a parameter increases 
the population of merozoites, the iRBC population will also increase. This proportional-
ity in the disease variable responses is also seen with most of the prominent results such 
as the responses with respect to k1 and µP in all models. However, when considering 
the results for µM (the natural death rate of merozoites), it is evident that the merozo-
ites decrease whereas the iRBC slightly increase in the models of Anderson and Li. One 
would expect that if the death rate of merozoites increases and the merozoite population 
decreases, there would be fewer merozoites to infect RBCs and thus fewer iRBCs. The 
same should hold for the number of merozoites released per iRBC (r), where an increase 
in the parameter increases the merozoites and the iRBCs in the Niger and Okrinya mod-
els. The counter-intuitive results in the Anderson and Li models lay bare the differences 

Fig. 3  Results of the local sensitivity analysis. Parameters shown affect the disease variables the most 
in the reference state. Dark blue indicates a parameter that has a large negative influence on a variable, 
whereas dark red indicates a large positive influence on a variable. kM—Elimination rate of merozoites by 
immune effectors, β—Probability of infection of RBCs with free roaming merozoites, �B—Production rate 
of immune cells, �X—Birth rate of healthy RBCs, µX—Natural death rate of RBCs, µN—Natural death rate of 
iRBCs, µP—Death rate of innate immune cells/ immune effectors, µM—Natural death rate of merozoites, k2
—Proliferation rate of immune effectors by merozoites, k1—Proliferation rate of immune effectors by iRBCs, 
r—Number of merozoites released per bursting iRBC. Cross-hatching indicates parameters that were not 
present in a model
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in the immune systems in the models, where small changes in infection close to the ref-
erence state are responded to differently.

Overall, the local sensitivity analysis revealed the greatest sensitivities for parameters 
that affect the immune system, the number of merozoites released by bursting iRBCs 
and the availability of healthy RBCs for infection. Of these processes, the death rate of 
immune cells and the proliferation rate of the immune effectors due to iRBCs have the 
largest effects on the disease variables.

Local sensitivity robustness analysis

Using the parameter sets from the robustness analysis, local sensitivity analysis was per-
formed with respect to each parameter, with the model output generated from every 
parameter set used as a reference state. Response coefficients for a variable-parameter 
pair from all the parameter sets were pooled and visualized using probability distribu-
tion histograms. In Fig. 4, the same variable-parameter pair is displayed for all models. 
It illustrates the response coefficient distribution for the response of the iRBCs (Y) to 
the probability of infection of RBCs by free roaming merozoites. This variable-parame-
ter pair was chosen for comparison, as it is also present in the local sensitivity analysis 
results section.

Fig. 4  Local sensitivity robustness results. The histograms represent the pooled response coefficients for the 
sensitivity of the iRBCs, Y, for the probability of infection of RBCs with free roaming merozoites, β , obtained 
for all 10,000 parameter sets. The wild type response coefficients obtained with local sensitivity analysis is 
visualized as black dashed lines. All results shown here indicate good robustness of the local sensitivity results 
as the wild type response coefficients correspond to the most probable response coefficient in a population 
(the peak of the histogram)
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From the results it is evident that there is an approximately normal distribution 
for all four models. Furthermore, the response coefficients determined for all of the 
parameter sets are in a very small range, showing substantial conservation despite 
heterogeneity in a population setting. Results from the Anderson, Niger and Okrinya 
models displayed approximately normal distributions for all their variable-parameter 
pairs and their wild-type response coefficients correspond well with the most proba-
ble response in a population. The Li results, however, showed some irregularities with 
the immune effector variable pairs as can be seen in Fig. 5.

It is noteworthy how large the wild type response coefficients are for the Li model 
with a value of approximately 78, indicating that a 1% change in the infection rate of 
healthy RBCs with merozoites, will increase the immune effector population by 78% . 
The results furthermore reveal the great difference between the wild type, indicated 
as the black dashed line, and most probable, the peak of the histogram, response coef-
ficients. The wild-type response coefficients obtained with local sensitivity analysis 
showed large values for the immune effector E responses with respect to changes in 
most of the parameters. In Fig. 5 it is evident that the most probable response coeffi-
cient is much lower given these parameter ranges. Similar local sensitivity robustness 
behaviour was observed for all parameters that lead to large responses in the immune 
system variables in the local sensitivity analysis results. It should be noted, however, 
that the authors investigated the stability of their model and determined bifurcation 
parameters that produced oscillations. An example of one of the parameters used is 
k1 , where a value of 4.5001× 10−5 resulted in stable steady state values. As this value 
increases to larger than 4.5045× 10−5 , a periodic solution appears [22]. These values 
show how a very small perturbation in some parameters could lead to a large altera-
tion in the model behaviour. Although our analysis always considers the steady state 
value (or unstable steady state value in the case of oscillations), different parameter 
sets could lead to greatly varying response coefficients.

Fig. 5  Local sensitivity robustness results for the Li model. The response coefficient distributions of the 
immune effectors’ population E for the probability of infection of RBCs with free roaming merozoites, β , is 
shown. The wild type response coefficient obtained with local sensitivity analysis is visualized as a black 
dashed line. Poor robustness of the local sensitivities is inferred as the wild type response coefficient does not 
correspond with the most probable response coefficient in a population (the peak of the histogram)
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Overall, these results suggest that Anderson, Niger and Okrinya models all display 
conserved sensitivities and responses when considering population heterogeneity, whilst 
caution should be taken when interpreting analysis results of the Li model.

Discussion
Models describing the immune response to malaria infection were analysed to study the 
differences in model formalism and sensitivity to parameter values. The methods used 
in this investigation can indicate when models are more relevant for describing disease 
dynamics within an individual as well as in a population, whilst also giving insight into 
the necessity for parameter value certainty.

Robustness analysis was performed to obtain an indication of the spread of outcomes 
in a population and how it compares to the wild type outcome. Results indicated that the 
Anderson model was the most robust of all the models showing the most resistance to 
changes in parameter values and yielding results showing the least variation in outputs. 
However, this model is the oldest of the models, with limited detail of the interactions 
between the host immune system and the malaria parasites. The second and third most 
robust models are those of Okrinya and Niger. Between the two, the Okrinya is more 
mechanistically descriptive of the within-host dynamics of malaria infection. Robustness 
as defined here should, however, be considered in the context of parameter distributions 
observed in a population since one would expect the model to display a range of predic-
tions that correlate to what is observed in reality given such distributions.

Uncertainty analysis can be helpful to determine which parameters have a large influ-
ence on the uncertainty in model outputs. Parameter values were all varied within 10% 
around their wild type values for analysis. However, the parameter variances can be 
much larger in reality, owing to the difficulty of estimating parameter values, as well as 
variations between individuals due to differences in factors such as diets, ages etc. Gain-
ing more information on these parameters and their possible variances in a population 
could consequently be useful for further analysis and interpretations. Uncertainty anal-
ysis demonstrates how necessary it is to determine precise values or ranges for some 
parameters. In this study it was found that parameters of the immune system contrib-
uted the most to uncertainty in model outputs.

Local sensitivity analysis indicated that the death rate of immune effectors, the num-
ber of merozoites released per bursting iRBC and the proliferation of immune cells due 
to the presence of iRBC have the largest influence on the disease variables in all models 
around the published reference state. The Okrinya model further indicated the birth rate 
of healthy RBCs as a parameter of interest. We also found that a larger ratio of prolif-
eration to death rate of the immune cells can drastically affect the model outcomes and 
help with the attack on infection, and moreover it seems to be the largest influencer in 
all the models. Combined with decreasing the number of merozoites released per burst-
ing iRBC, this could lead to disease clearance. The two parameters corresponding to the 
immune system were, however, also present in most of the models as the parameters 
that contributed the most to uncertainty in model outputs.

Local sensitivity robustness analysis demonstrated how well response coefficients are 
conserved over the multi-dimensional parameter space. Good robustness of local sen-
sitivities was achieved for most response coefficients in the models, i.e. the wild-type 
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responses were well conserved in a heterogeneous population. The results of the Li 
model indicated poor conservation as the large response coefficients observed in local 
sensitivity analysis did not correspond with the much lower most probable response 
coefficients. Furthermore, in the Li model the range of some coefficients in a population 
varied from just above zero to approximately 80, showing the wide range of possible, but 
intuitively implausible, response coefficients in a population. The results for the Li model 
thus emphasises the necessity of this analysis, as it demonstrates how local sensitivity 
analysis may fail in giving insight into the responses in a population of different indi-
viduals. As is the case for this model, it could be as a result of transitions in qualitative 
behaviour such as the switch from steady states, to limit cycle oscillations observed here.

Conclusion
The results from local sensitivity analysis emphasize the importance of the immune 
response on the disease dynamics of malaria infection, as well as highlight parameters 
like the death and proliferation rates of immune effectors that could be investigated 
for disease eradication as these have the largest effect on disease variables. To further 
establish trust in reliability and fidelity of model predictions the uncertainty in specific 
parameter values needs to be minimised and clinical ranges obtained where possible. 
The robustness analysis indicated that the Niger and Okrinya models were robust in the 
sense that plausible outputs were obtained close to the reference state and local sensitiv-
ity robustness analysis showed that the local sensitivity results are relatively well con-
served in a population.

In the current study the goal was to establish a measure of confidence in models 
that encapsulate the core dynamics of a disease state, but the analyses described here 
can easily be extended to any deterministic models that have similar ODE structures, 
for malaria and for other diseases. For example, an improved within-host model could 
be constructed and analysed with a combination of components from the Niger and 
Okrinya models where models such as that from Song et al. [55] can be incorporated to 
include variables of resistant and non-resistant parasites as well as treatment parameters.

Although not the focus of this study, an additional benefit of sensitivity analysis as 
conducted here is that it can also point to possible drug targets and whether these tar-
gets are conserved in a population. Local sensitivity analysis indicated that the number 
of merozoites released per bursting iRBC has a large effect on all models and that an 
increased ratio of immune effector proliferation to death rate could be beneficial to dis-
ease clearance. The conservation of these results in the local sensitivity robustness analy-
sis shows that this could hold true in a population as well.

Methods of analysis
All reproductions and analyses of the models were completed in Wolfram Mathematica 
version 12 using standard Mathematica functions. Code used for analyses is provided as 
executable notebooks in Additional files 2–5, and in pdf format in Additional file 6.

Robustness analysis

Robustness analysis was used to determine the ranges and distributions of the disease 
variable outputs of each model. This method of analysis can indicate the expected steady 
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state values of within-host variables in a population and can also show which models are 
the most resilient to changes in model inputs (i.e. parameters). Monte Carlo (MC) ran-
dom sampling from uniform distributions was therefore used to obtain 10,000 param-
eter sets. In the absence of known ranges of parameters and to facilitate direct model 
output comparisons, all parameters were varied simultaneously within a 10% range of 
their wild type values for all models. These sets mimic different parameter sets of indi-
viduals within a population. All sets were used to determine the distribution of the dis-
ease variables’ values at steady state. Three different disease states were simulated to 
determine the difference in the ranges of the steady state values for the RBC and iRBC 
populations: (i) no infection, (ii) infection without an immune response and, (iii) infec-
tion with an immune response. Results for two of the models are shown in the results 
section for comparison. The sub-models where the immune system is incorporated from 
each of the four publications were then analysed with regards to their disease variables 
in the endemic state. Where required for comparison between models, in silico datasets 
were normalized to their median. The results are visualized with box-and-whisker plots.

Uncertainty analysis

Here we followed the method set out in [56]. To determine the uncertainty in variable 
outputs due to variability in parameter values, the variance ( σ 2 ) of the natural logarithm 
of each parameter ( pj ) is first calculated:

However, as the variance of many of the parameters in these biological models are not 
known, the variance of each parameter was calculated using a uniform distribution 
around its wild-type value with upper and lower bounds given by wild-type value ±10% . 
The results therefore indicate which parameters contributes the most to uncertainty 
in the model variable outputs. The individual contribution of each parameter variance 
σ 2
j (ln pj) to the total variance of each variable σ 2

j (Vi) is then calculated using:

The total variance of each variable can be determined by summation of the individual 
contributions:

The contribution of each parameter to model variable uncertainty is then given by:

Local sensitivity analysis

To determine for which parameters the disease variables are most sensitive in the refer-
ence state, local sensitivity analysis was performed . The method entails the perturbation 

σ 2(ln pj)

σ 2
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of one parameter at a time to see the effect on model outputs, indicated as a response 
coefficient. A response coefficient describes the percentage change of a model out-
put — in this case the steady state values of different variables V — upon a 1% change in 
model inputs or parameters p:

Numerically, the derivative is approximated by a finite difference formula using small 
perturbations around the wild type parameter value and noting the change on model 
output.

Local sensitivity robustness analysis

Local sensitivity robustness analysis was used to test for conservation of the local sensi-
tivity analysis results given parameter variations in a population. It would therefore be an 
indicator of whether the response coefficient results of a parameter-variable pair in the 
individual with the wild type parameter set, is the most common result in a population 
with differing parameter sets. Local sensitivity analysis, as described above, was there-
fore performed for 10,000 parameter sets obtained using MC random sampling from the 
uniform distributions of parameters in the complete parameter space (see “Robustness 
analysis” above). The response coefficients for a given parameter was pooled from each 
set and histograms were used to visualize results.
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