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Background
The RNA sequencing (RNA-seq) technology has been the primary mean to explore the 
transcriptome in the past decade. Like the microarray technique, it can profile mRNA 
and non-coding RNA [1] transcripts with or without strand-specificity [2]. The flexibil-
ity of this technique makes it particularly valuable for identification of novel alternative 
splicing-isoforms [3], assembly of transcriptome [4], and transcript fusion detection [5].
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Accuracy is key to the transcript quantification. Despite that RNA-seq avoids the 
biases due to dye effects and hybridization in the microarray technology [6, 7], other sys-
tematic biases such as sequencing depths, transcript lengths, GC-contents, RNA degra-
dation along with variations in RNA isolation, purification, reverse transcription, cDNA 
amplification, and sequencing have been reported [8–10]. Thus, it is necessary to nor-
malize read counts preceding the downstream quantitative analysis.

One of the most widely used normalization methods is Reads per Kilobase per Million 
mapped reads (RPKM), [7] and its paired-end counterpart Fragments per Kilobase per 
Million mapped reads (FPKM), [4]. They assume the total contents of RNA nucleotides 
remain unchanged across different samples. In RPKM/FPKM, numbers of nucleotides 
are converted into numbers of transcripts by adjusting transcript lengths. This step is 
skipped in Counts Per Million (CPM). Similar to RPKM/FPKM, Transcripts Per Million 
(TPM), [11] assumes the total numbers of transcripts rather than nucleotides remain 
unchanged across different samples.

The assumption of the constant total RNA contents or transcripts is unrealistic in 
some situations [12]. Some scaling methods instead estimate the scaling factors accord-
ing to different criteria. Relative Log Expression (RLE), used in the package DESeq2 [13], 
estimates the scaling factor as the median ratio of each sample to the pseudo sample 
of pre-calculated median library. Trimmed Means of M-values (TMM), [14]), used in 
the package edgeR [12, 15], estimates the ratio of RNA production using a weighted 
trimmed mean of the log expression ratios.

Other methods have their own assumptions. Quantile method [16], widely used to 
normalize array data, assumes the transcript abundances follow an identical distribution 
across different samples. The idea is implemented in the packages limma [17]. A more 
sophisticated method Remove Unwanted Variation (RUV), [18]) utilizes factor analysis 
of control genes or samples to adjust for the nuisance of technical effects.

Biologists prefer housekeeping genes [19] in normalizing expression profiles. However, 
the definition of housekeeping genes is debatable, especially for non-model organisms.

The invariant gene set is a statistical counterpart to the housekeeping gene set [20]. 
In the microarray setting, the invariant set of probes are selected so that within-subset 
rank difference in the two arrays is small. When there are multiple samples, the invariant 
gene set are taken as the intersection of all sample pairs. As the size of samples increases, 
the invariant gene set would be reduced, and possibly close to null. By the same token, 
the existence of housekeeping genes for a large collection of samples, especially under 
a wide range of conditions, is questionable. However, in such a situation, either house-
keeping genes or an invariant set between a pair of samples can still be defined. This is 
a key motivation of the multi-reference normalization method proposed in this report.

The idea of normalizing pairwise samples with respect to multi-references followed 
by integrating them via removing the reference effects was initially proposed in the 
microarray setting [21]. We found the same principle is applicable for RNA-seq data, 
and proposed two specific parametric models in this report. As illustrated in Fig. 1, 
we first normalize each pair of target and reference samples by the least trimmed 
squares (LTS) regression, and then integrate multiple pre-normalized counts by the 
median polish method to get the final normalized counts. This multi-reference nor-
malizer is implemented as MUREN in R. MUREN is the first approach that carries 
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out pairwise normalization with respect to multi-references in the quantification of 
RNA-seq transcripts by far.

Crucial for normalization is the evaluation of its goodness. We claim that the good-
ness includes not only the reduction of bias and variation, but also the preservation of 
skewness of expression differentiation. The claim is supported by our biological inter-
pretation and statistical analysis of expression skewness, which is exemplified by a 
single cell data of cell cycle.

Methods
We propose a two-step normalization procedure for RNA-seq data: pairwise normali-
zation and integration. The introduction of the reference factor allows us to carry out 
robust normalization with respect to multiple references. The method emphasizes on 
robustness by adopting least trimmed squares (LTS) and least absolute deviations (LAD) 
in the two steps respectively. The general scheme of the proposed normalization method 
is shown in Fig. 1. We start off with a statistical principle of normalization.

A general statistical model of normalization

Suppose we have two RNA sequencing samples: one reference and one target. Denote 
the read counts of each transcript indexed by i from the target and reference samples 
by (Ti,Ri) and the true abundances of corresponding transcripts by 

(
T̃i, R̃i

)
 respec-

tively. Ideally, we expect (Ti,Ri) ∝
(
T̃i, R̃i

)
 . However, the proportional relationship 

might be disturbed in the steps of tissue isolation, PCR amplification, and sequenc-
ing. The effects of these uncontrollable factors are confounded with true expression 
level and we need a normalization procedure to adjust the observed read counts. In 
what follows, we describe a general model for the normalization of RNA-seq data.

Consider a system with 
(
T̃i, R̃i

)
 as input and (Ti,Ri) as output. Let s(·) = (s1(·), s2(·)) 

be the system function that accounts for all biases and variations due to uncontrolled 
biological and technical factors; namely,

Fig. 1  The workflow of MUREN. A The workflow takes the raw count table as input followed by log 
transformation; B Take all samples as targets and select a subset of samples as references, see the paragraph 
"Selection of multiple reference samples" for options; C Normalize each target sample with respect to each 
reference sample; D Integrate multiple pre-normalized counts into the final one; E Assess the goodness by 
examine the densities of pairwise log ratios and their skewness before and after normalization
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Our goal is to reconstruct the input 
(
T̃i, R̃i

)
 based on output (Ti,Ri) . The model thus 

describes a blind inversion problem, in which both system s(·) and input 
(
T̃i, R̃i

)
 are 

unknown.
The blind inversion scheme [22] leads us to think about the underlying relationship 

between target and reference. As a heuristic start, let us assume that the target and 
reference sample are biologically undifferentiated. In other word, the differences 
between target and reference are purely caused by random variations. Statistically, 
one can assume that the random variables 

{(
T̃i, R̃i

)
, i = 1, 2, . . . , n

}
 are independent 

samples from a joint distribution 
∼
� whose density centers around the straight line 

T̃ = R̃ , namely,

Assumption R1  E
(
R̃|T̃

)
= T̃ . In this case, s1(·) and s2(·) are roughly equal to the 

identity function. Next, we consider the general case. Since only the component of s1(·) 
relative to s2(·) is estimable in the pairwise normalization. Thus, we first let s2(·) that 
links the true and observed reference be an identity function, and thus R = s2

(
R̃
)
= R̃ . 

In MUREN, we estimate s1(·) in the pairwise normalization.

Without loss of generality, we further assume that.

Assumption M  s1(·) is a monotone (increasing) function.

Then Assumption R1 becomes

Assumption R2  E
(
R̃|T̃

)
= T̃  , namely, E

(
R|g(T )

)
= g(T ) , where g(·) = s−1

1 (·).

The next minimization result is the mathematical basis for the regression-based 
normalization.

Proposition 1  Suppose Assumption R2 is valid for some function g(·) . Then it is the 
minimizer of minlE[R− l(T )]2 , which equals E[R|T ].

This proposition motivates us to estimate g by minimizing the sum of squares

Finally, we consider the more practical situations. Suppose a portion 1− �(< 0.5) of 
transcripts are differentially expressed (DE) by a sufficiently large amount. Then the 
undifferentiated transcripts can serve as the invariant set of genes for the pairwise 
normalization, and denote their indices by U  . Now Assumption R2 is replaced by

Assumption R3  E
(
Ri|g(Ti)

)
= g(Ti), for i ∈ U .Then we estimate g by minimizing

(1)





Ti = s1

�
T̃i

�

Ri = s2

�
R̃i

� .

n∑

i=1

[ri − g(ti)]
2.
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Since U is unknown, we use least trimmed squares (LTS) to minimize the trimmed sum 
of squares, in the meantime, capture the set of undifferentiated transcripts. Because LTS 
removes the transcripts with large residuals, which usually are DE transcripts, the cor-
respondence justifies the estimates of LTS.

Parametrization

We parameterize g(t) by a simple linear function α + βt . Consider the regression model

where ri = log2(Ri + 1) and ti = log2(Ti + 1) are the log counts. The logarithmic trans-
formation plays the role of variance stabilization to meet the assumption of homosce-
dasticity in the regression models.

The normalized abundance/count of Ti with respect to the given reference is 
then   t̂i = ĝ(ti) = α̂ + β̂ti in the scale of log counts, or T̂i = 2ĝ(ti) − 1 = 2α̂(Ti + 1)β̂ − 1 
in the scale of raw counts. If β = 1 (single parameter form), ̂Ti = 2α̂Ti +

(
2α̂ − 1

)
≈ 2α̂Ti , 

the normalization is almost a scaling. If β is a free parameter (double parameter form), 
T̂i = 2α̂(Ti + 1)β̂ − 1 , the resulting power law represents a simple nonlinear transform 
from Ti to T̃i and vice versa. It means the scaling coefficients of the read counts of tran-
scripts at different expression levels are allowed to be different. Thus, it has higher flexi-
bility to model the possible non-uniformness in the steps of isolation, amplification, and 
sequencing of transcripts at low and high expression levels.

Least trimmed squares regression

Now we consider the parameter estimation of the regression model (2). Given a constant 
integer h, n2 < h < n , the least trimmed squares (LTS) estimate of θ = (α,β) is defined as

where e2[i](θ) is the i-th order statistic of {e21(θ), . . . , e2n(θ) }, where ei(θ) = yi − α − βti.
The LTS estimate is regression, scale, and affine equivariant. The breakdown point of 

θ̂ (LTS) is roughly equal to the trimming proportion (n− h)/n . The LTS estimate can reach 
the maximal breakdown point (((n− p)/2)+ 1)/n among the regression equivariant esti-
mates when h = [n/2] + [(p+ 1)/2] , where [x] is the integer part of x and p = 2 in mode 
(2). Finally, it is 

√
n-consistent and asymptotic normal in the case of continuously distrib-

uted disturbances [23].
At the value of the LTS estimate θ̂ (LTS) , we sort the residuals by: 

e2[1]

(
θ̂ (LTS)

)
≤ e2[2]

(
θ̂ (LTS)

)
≤ . . .≤ e2

[h]

(
θ̂ (LTS)

)
≤ . . .≤ e2[n]

(
θ̂ (LTS)

)
 , and empirically 

define the undifferentiated transcript set between a pair of reference and target samples as 
the transcripts corresponding to the smallest h squares. Similar to the case of least squares, 
the following is true for LTS.

∑

i∈U
[ri − g(ti)]

2.

(2)ri = α + βti + εi,

θ̂ (LTS) = argmin
θ

h∑

i=1

e2[i](θ),
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Proposition 2  The trimmed average 1n
∑h

i=1 e[i](θ̂
(LTS)) = 0.

That is, the average of the log ratios of the undifferentiated transcript set between a pair 
of samples is zero after normalization.

The above describe Part C of the MUREN workflow shown in Fig. 1. Next, we explain 
Part B.

Selection of multiple reference samples

Suppose the RNA-seq samples are indexed by {ω ∈ �} . Denote the set of undifferenti-
ated transcripts between two samples indexed by ω,ψ as �ω,ψ . Assume the criterion in 
the definition of undifferentiated transcripts sets remain the same across pairs of samples. 
The undifferentiated transcripts set of all the samples is given by � =

⋂
ω,ψ∈��ω,ψ . As 

the size of � increases, � would be reduced, and possibly close to null. By the same token, 
the existence of housekeeping genes for a large collection of samples under a wide range 
of conditions is questionable. However, in such a situation, either housekeeping genes or 
undifferentiated transcripts between a pair of samples may still be defined.

There are some ways to select references. Biologically, we can select one or several sam-
ples under each experimental condition as references and align every target sample to 
the reference set. In this strategy, the experiment design of biology provides certain prior 
knowledge. Statistically, we can get hints from some exploratory data analysis. For exam-
ples, the hierarchical clustering arranges samples by some measure of distance/dissimi-
larity. Heuristically, we can select the samples on different branches as references. Last, it 
is straightforward to select all samples as references if sample size is relatively small, and 
select a random subset of samples as references if the sample size is large. In the examples 
shown in this report, slight differences were observed across different sets of references.

Next, we describe the model in Part D of the MUREN workflow as shown in Fig. 1.

Transcript‑wise integration of multiple pre‑normalized counts

Suppose that a collection of k samples are to be normalized. Among them, l references are 
selected for pairwise normalization. Denote the pre-normalized count of ti , the count in 
the i-th sample, with respect to the j-th reference by t̂(ij) = α̂ij + β̂ijti , where α̂ij and β̂ij are 
estimated in pairwise normalization. Suppose the target and reference effects are additive 
after log transformation, i.e.

where i = 1, 2, ..., I, j = 1, 2, ..., J , µ, a(i), b(j), ǫ(ij) are the grand term, target effects, refer-
ence effects, and random errors respectively. We use this model to integrate the multiple 
pre-normalized counts into one final value by adjusting the reference effects. The final 
integrated log-count of the i-th sample is then µ̂+ â(i) . We estimate the parameters in 
a robust way so as to avoid the unwanted influences caused by outlier reference samples 
(see Results). Different from the model of pairwise normalization, the model (3) is a two-
factor model, whose design matrix is consisted of zeros and ones. This two-factor model 
(3) has a bounded design matrix. In this case, we choose to estimate the parameters by 
least absolute deviations (LAD) rather than least squares (LS).

(3)t̂(ij) = µ+ a(i) + b(j) + ǫ(ij),
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To understand the rationale of the model (3), we consider the specific situation in 
which the scaling coefficients of the read counts from different samples are at the same 
level. Now it suffices to consider the single-parameter case where βij =1 and αij = 0 . 
Since the LTS estimates in the pairwise normalization is consistent, that is, α̂ij ≈ 0 , both 
the sample and reference effects would be 0 approximately. In the original scale, the final 
scaling coefficients would be equal to 1 approximately. Namely, after normalization the 
counts would remain as they were.

Least absolute deviations estimate and median polish

The model (3) is identifiable subject to the constrains: 
median

{
a(i), i = 1, . . . , I

}
= median

{
b(j), j = 1, . . . , J

}
= 0 . The LAD estimate of 

ϑ = (µ, a(1), . . . , a(I), b(1), . . . , b(J )) is defined as

Similar to the results in the three-factor model in [21], we can show that the LAD esti-
mate is robust in the sense that the influence function of one observation is bounded. 
The influence function technically measures the effect of infinitesimal perturbation of 
one data point on the estimates. Not only is the LAD estimate robust, but also has some 
kind of efficacy. Its 

√
n-consistence or asymptotic normality is valid under certain regu-

larity conditions [24].
The general LAD can be formulated as a linear programming (LP) problem and thus 

be solved by the simplex or the interior point algorithm [25, 26]. For the specific two-
factor model (3), we prefer a simpler method to compute the LAD estimates, namely, the 
median polish method proposed by Tukey [27].

Efficient implementation of computation

In the integration step, one specific model of form (3) is assumed for each transcript, and 
the model parameters are not assumed to be related across transcripts. Consequently, 
the integration by median polishing is carried out for each transcript. However, in the 
single-parameter case where β = 1 , the integration can be simplified. Suppose in the 
pairwise normalization step, that the pre-normalized log counts of a specific transcript 
are t̂(ij) = ti + α̂ij , where α̂ij is the estimated parameter in the pairwise normalization of 
the i-th target with respect to the j-th reference. Plug it into model (3), we get

i.e.

The models of different transcripts become identical if we reparametrize a(i) by sub-
tracting corresponding (log) counts ti . Hence, the transcript-wise integration can be 
done through the integration of α̂ij’s. This is proved by the following proposition.

ϑ̂ (LAD) = argmin
µ,a(i),b(j)

I∑

i=1

J∑

j=1

∣∣∣̂t(ij) − µ− a(i) − b(j)
∣∣∣.

t̂(ij) = ti + α̂ij = µ+ a(i) + b(j) + ǫ(ij)

α̂ij = µ+
(
a(i) − ti

)
+ b(j) + ǫ(ij).
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Proposition 3  (Once-for-all computation) Consider the following two optimization 
problems,

M1:

M2:

If ϑ2 = (µ2, a
(1)
2 , . . . , a

(I)
2 , b

(1)
2 , . . . , b

(J )
2 ) solves M2 then 

ϑ1 = ϑ2 + (µ0, t1 − µ0, . . . , tI − µ0, 0, . . . , 0) solves M1, where µ0 = median
{
a
(i)
2 + ti

}
.

The proof is essentially substitution of the corresponding variables. Then the inte-
grated (log) count in the i-th sample is µ2 + a

(i)
2 + ti , this holds for all transcripts. More-

over, in this case, the reference effects are the same across transcripts, which is indicated 
by the same b(j) ’s in ϑ1 and ϑ2 . It implies that, even though in the general model (3) 
the parameters of the reference effects are not directly related across transcripts, they 
are identical in the single-parameter case. In other words, the adjustment of reference 
effect or the median polishing procedure only need to be carried out once for all the 
transcripts.

In the double parameter formulation, if we take LS estimate ( l2-norm) instead of LAD 
estimate ( l1-norm), replacing the constraints on medians by means, then model (3) is a 
two-factor ANOVA (analysis of variance) model with a complete design matrix. Conse-
quently, the average (log) counts of the i-th sample are

where αi and β i are the averages of α̂ij and β̂ij over index j respectively. Thus, the tran-
script-wise integration can be done through averaging coefficients α̂ij ’s and β̂ij ’s for each 
transcript.

Unfortunately, the algebra of l1-norm in LAD estimate is not so straightforward as that 
of l2-norm in LS estimate. Heuristically, we can polish coefficients of slopes and intercepts 
respectively and apply the results to all transcripts. The fast alternative is competitive in 
computation time for large scale data.

Results
Dataset A

It (GSE47792 [28]) comes from the Sequencing Quality Control (SEQC) project [29]. The 
study contains five groups of experiments of rat toxicogenomics that produced 30 RNA-seq 
samples (n = 3). In each group the treated rats were fed or injected with one of the following 

min
µ,a(i),b(j)

∑I
i=1

∑J
j=1

∣∣∣ti + α̂ij − µ− a(i) − b(j)
∣∣∣

s.t.median
{
a(i)

}
= median

{
b(j)

}
= 0

min
µ,a(i),b(j)

∑I
i=1

∑J
j=1

∣∣∣α̂ij − µ− a(i) − b(j)
∣∣∣

s.t.median
{
a(i)

}
= median

{
b(j)

}
= 0

µ̂+ â(i) = 1

J

J∑

j=1

(
α̂ij + β̂

ij
ti

)
= αi + β iti,
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drugs—methimazole (MET), 3-methylcholanthrene (3ME), betanapthoflavone (NAP), 
thioacetamide (THI), and N-nitrosodimethylamine (NIT); control rats were maintained 
without drugs. At the same time, all RNA samples were spiked in with the External RNA 
Controls Consortium [30] mixed sequences as the baseline truth. The ERCC sequences 
had four known control ratios of abundances, 1:1, 1:1.5, 1:2, and 4:1, respectively. Each ratio 
group consisted of 23 sequences distributed in a wide range of abundances.

Using dataset A we evaluate the accuracy of different methods by comparing their esti-
mated ratios of ERCC sequences with the known control fold changes/ratios. Hereafter 
ratios and fold changes are used interchangeably. Then we show that the common meth-
ods are applicable to the cases of regular transcription profiles yet less effective in the cases 
of asymmetrically regulated transcription profiles (ART). In the latter, the patterns of up- 
and down-regulated transcripts between certain pair of samples are different. In statistical 
words, the expression differentiation is skewed. ART can be visualized by an asymmetric 
density plot and be summarized by the statistical measure—skewness of log ratios. We pro-
pose a guiding criterion of normalization: recover true (log) ratios while preserving the log 
ratios’ skewness due to its biological context.

Dataset B

This [31] is from a plate-based single cell RNA-seq experiment of the murine multipotent 
myeloid progenitor cell line 416B transduced with oncogene CBFB-MYH11 (#cells = 192). 
The impact of log ratios’ skewness on normalization has been noticed in our past research 
[32], yet its biological meaning has not been addressed so far. Using dataset B we exemplify 
the skewness of log ratios biologically, thereby justify the above proposal. Specifically, we 
compare expressions of cells at different phases of cell cycles, and show that the differentia-
tion between phases is indeed skewed.

MUREN and other methods

MUREN has two available forms: the single-parameter (MUREN-sp) and the two-param-
eter (MUREN-dp). Other than MUREN, our evaluation and comparison also include Raw 
(Raw counts), CPM, Q (Quantile), RLE, RUV, TMM, TPM, and UQ (Upper Quartile [33]).

Notice that throughout the article, the log ratio (M-value) is defined as

and the log average (A-value) is defined as

MUREN recovers the true expression ratios (Dataset A)

Because the abundance ratios of ERCC spike-in sequences are known, it is most persua-
sive to compare the ratios recovered by various methods with the corresponding nomi-
nal values.

The results of THI experiments are illustrated by the enriched M-A plots in Fig. 2, in 
which the estimated log ratios are shown in points with fitted dashed lines, and the nom-
inal values are shown in solid lines. Less difference indicates higher accuracy. Results of 
the unnormalized counts (method Raw) systematically deviate from the corresponding 

logratio = log2(Counts1 + 1)− log2(Counts2 + 1),

logaverage = [log2(Counts1 + 1)+ log2(Counts2 + 1)]/2.
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solid lines. The systematic bias indicates the necessity of normalization. The scaling 
methods, including MUREN-sp, UQ, TMM, RLE and the log-linear MUREN-dp, per-
form a fair normalization. In comparison, the methods CPM and TPM that assume con-
stant total RNA contents or constant number of transcripts do not correct the counts 
adequately. In the opposite, the trends of estimated log ratios obtained by the nonlinear 
methods Q and RUV are heavily distorted. The similar results of other toxicogenomics 
experiments are shown in Additional file 1: Fig. S1–S4.

MUREN preserves the asymmetrically regulated transcriptome (Dataset A)

When the transcriptomic differentiation profile is (nearly) symmetric, namely the dis-
tribution of transcript-wise log ratios is (nearly) symmetric, the up- and down-regu-
lated transcripts are comparable. In this case, we cannot see much difference between 
MUREN, TMM, RLE, and UQ as shown in Fig. 2. The bottom panel in Fig. 3a shows the 
densities of normalized log ratios of all transcripts in THI experiments. The modes of 
the densities of most methods are near zero, except CPM, TPM, and Raw. The near-zero 
mode is an indicator of appropriate normalization, and this point will be elaborated later.

In the following evaluation, we perturbed the THI data by truncating the transcrip-
tome at the right tail as follows: first, summarize the counts by the medians of the three 
replicates respectively for the control and treatment samples; second, sort the transcripts 
in the ascending order by the ratios of the summarized treatment and control counts; 
finally, remove the top 15% transcripts from all samples. The truncated transcriptome is 
more asymmetric than the original one is.

UQ TMM RLE Q RUV

Raw MUREN-sp MUREN-dp   CPM TPM

0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15

-1

0

1

2

3

-1

0

1

2

3

log mean (A-value)

lo
g 

ra
tio

 (M
-v

al
ue

)

control fold changes 1:1 1:1.5 1:2 4:1

Fig. 2  Comparison of the log ratios of the ERCC sequences using M–A plots obtained by different methods. 
RNA-seq data are from THI experiments. The x-axis represents averaged normalized read counts (A-value). The 
y-axis represents log ratios (M-value). The ERCC sequence groups of different preset ratios are shown in four 
colors. Dots: log ratio estimate of individual ERCC sequence after normalization; dashed lines: fitted values 
of the dots by local smoothing (LOWESS); solid lines: nominal relationships between M- and A-values. The 
results of MUREN, UQ, TMM, and RLE are fair; Those of CPM and TPM are inadequate; Those of Q and RUV are 
distorted
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As shown in Fig.  3a (top panel), the asymmetry of the transcriptome results in the 
densities of RLE, UQ, TMM, and Q (orange and red lines) shifting towards right, which 
produces systematic biases. These methods are disturbed by the introduction of asym-
metry. By contrast, MUREN (green lines) is more resistant against the asymmetric per-
turbation and keeps its mode around zero. Notice that the results of CPM and TPM 
(violet lines) and Raw (blue line) leave their modes far away from zero. RUV (light blue 
line) has a sharp peak around zero which is trimmed by the y-axis limit. Even though the 
mode of RUV is not influenced, the shape of log ratios’ density is distinctively changed. 
See Additional file 1: Fig. S5 for a zoomed scope of densities.

Back to the ERCC sequences, Fig. 3b shows the M–A plots of ERCC sequences with 
selected methods applied to the truncated transcriptome. The results coincide with 
those in Fig. 3a. Compared with Fig. 2, we see obvious deviations, disturbed by the trun-
cation, between the fitted (dashed) lines and corresponding theoretical (solid) lines in 
the result of TMM. At the same time MUREN is immune to the asymmetry. See Addi-
tional file 1: Fig. S6 for the results of other methods.

Evaluate goodness of normalization by the densities of log ratios (Dataset A)

Part E concerns the evaluation of normalization. According to Proposition 3, the 
trimmed average of the log ratios between a pair of samples is zero after pairwise nor-
malization. If the log ratios of the undifferentiated transcripts set are roughly symmetric, 
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Fig. 3  Evaluation of different normalization methods by the truncated transcriptome in THI experiments. 
A Top panel: densities of log ratios of the truncated transcriptome. After truncation, RLE, UQ, TMM, and Q 
are disturbed by the truncation/asymmetry; the modes of log ratios’ densities from these methods shift 
notably towards right. MUREN is resistant against the disturbance and keeps its mode near zero. Bottom 
panel: densities of log ratios of the untruncated transcriptome. The methods CPM and TPM cannot adjust the 
modes of densities near zero. B M–A plots of ERCC sequences of selected methods applied to the truncated 
transcriptome. Compared with Fig. 2, TMM has larger deviations between the estimated and expected log 
ratios due to the influence of truncation. It cannot normalize the counts as well as it does for the untruncated 
transcriptome. By comparison, MUREN is resistant against the asymmetric perturbation. See Additional file 1: 
Fig. S5 for the results of other methods
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then the mode of log ratios’ density would be near the trimmed average, which is zero. 
This assumption is reasonable because the differentiations of housekeeping genes should 
be due to random fluctuations. Since we impose the restriction that median of the refer-
ence effect in (3) is zero, the mode would be near zero too after integration, Conversely, 
if the mode is near zero, it implies that the expressions of a majority of transcripts 
remain unchanged. Shown at the bottom in Fig. 3a are examples of the log-ratio densi-
ties of THI experiments. The log ratios of unnormalized counts show a unimodal dis-
tribution. After normalization, the mode is shifted near zero in all cases except for the 
results of CPM and TPM.

Another informative feature of the density is its shape. Later we will offer, by a typi-
cal example, a biological interpretation of the skewness of transcriptomic differentia-
tion. Thus, we recommend the normalization should not change the overall skewness 
or modality of log ratios’ distribution. Too flexible methods, usually nonlinear methods, 
tend to change the shape. The log ratios’ density together with the M–A plot offers a 
rather comprehensive diagnosis of the normalization goodness.

MUREN preserves the skewness of log ratios (Dataset A)

The shape of log ratios’ distribution, characterized by such as unimodality/multimodal-
ity and skewness, is a biological signature of transcriptomic differentiation. We propose 
that the aim of normalization has two folds: first, improve the accuracy of the log ratios; 
second, preserve the overall shape of log ratios’ density. Normalization, for example, 
should neither turn a positively skewed distribution to a negatively distributed one, nor 
turn a unimodal distribution to a multimodal one.

Hereafter, we quantify the skewness by the empirical measure S = 1
n

∑n
i=1

( xi−µ
σ

)3 , 
where µ is the sample mean and σ is the sample standard deviation. For each pair among 
the pooled samples from the five groups of the rat toxicogenomics experiments, we com-
pute the pairwise skewness. Next, we consider the collection of all pairwise skewness 
for raw counts and normalized counts, and denote them respectively by {Si} and {S′

i} . 
To measure the overall skewness difference between them, we define the mean absolute 
deviations index of skewness (MADSI) as MADSI = 1

m

∑m
i=1|Si − S

′
i| . Smaller MADSI 

indicates smaller change of skewness. The results are shown in Fig. 4. As we can see, the 
linear methods do not change the skewness too much, among them MUREN-sp has the 
minimum value of MADSI. However, the nonlinear methods like Q and especially RUV 
tend to alter the skewness boldly.

Normalization with multiple references is more reliable than that with a single one 

(Dataset A)

We have explained the necessity of normalization with multiple references in the 
theoretical setting. In practice, the results using single reference may not have much 
difference with those using multiple references, provided the differentiation is rela-
tively small and the data quality is high. But we cannot rule out the possibility that 
an outlier sample in the dataset due to contamination or errors in the sequencing 
process would be taken as the reference. Normalization with multiple references is 
not influenced by individual outlier reference sample while the normalization with 
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a single reference is influenced severely. Indeed, this is confirmed by simulations in 
which some samples were artificially disturbed by increasing or decreasing the counts 
randomly, see Additional file 1: Fig. S7 for details.

Skewed transcriptomic differentiation corresponds to increased/decreased activities 

of cells (Dataset B)

When we compare transcriptomes of two samples, positive/negative skewness of log 
ratios are characterized by a heavy right/left tail. This implies that certain biological 
processes are significantly up- or down-regulated from one sample to the other, Next, 
we show such an example of cell cycle transitions using single cell RNA-seq data.

Dataset B is from a single cell RNA-seq experiment spanning over different cell cycle 
phases: G1, S, G2, and M. G1 is the first growth phase, and rates of RNA transcription 
and protein synthesis are high; S is the DNA replication phase, in which most other bio-
synthesis turns lower; G2 is the growth phase preparing the cell for mitosis; the relatively 
short M phase undergoes cell division. We normalize the counts of each cell with its 
total counts. Using the tool implemented in the R package scran [34, 35] to annotate 
the cell cycle, we identify 50, 19, and 35 cells in the G1, S, and G2/M phases respectively 
with normalized cell cycle scores > 0.6.
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counts; blue: skewness distribution of normalized counts. The divergence between them is measured by the 
mean absolute deviations index of skewness (MADSI). The linear methods do not change the skewness too 
much; among them, MUREN-sp has the minimum value of MADSI. However, the nonlinear methods like Q 
and especially RUV tend to alter the skewness boldly
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If we compare the expression profiles of G1 versus S phases, the distribution of the 
log ratios is expected to be positively skewed because general biological processes 
involved in growth are more active in G1 phase than in S phase. Similarly, the distribu-
tion between S and G2/M phases is expected to be positively skewed; the distribution 
between G2/M and G1 phases is expected to be negatively skewed. Indeed, as shown in 
Fig. 5a, the distributions of pairwise skewness between cells at different phases validate 
the above conjectures. Moreover, under the null hypothesis that the skewness is ran-
domly positive or negative with equal probabilities, the nonparametric sign tests report 
extremely significant p-values. The conclusions agree with the changes of activities along 
the cell cycle phases.

Enlarged skewness of log ratios in pseudo‑bulk transcriptomes (Dataset B)

To investigate skewness at the bulk level, we merge the counts of cells in the same phase 
into pseudo bulk RNA-seq counts and normalize them with MUREN-sp. The diagnostic 
density plots along with the skewness are shown in Fig. 5b, in which MUREN adequately 
normalizes the pseudo bulk RNA-seq counts. The meaning of log ratios’ density is the 
same as what we interpret in the above. Moreover, the skewness of transcriptomic dif-
ferentiation at the pseudo bulk level is not only consistent with that at the single cell 
level, but also enlarged. Take G1/S ~ G2/M for example, the cell level skewness is over-
all positive (see Fig.  5a), yet none of the pairwise skewness exceeds 0.3. However, the 
skewness of pseudo bulk counts reaches as large as 0.376 (Fig. 5b), which is larger than 
the maximal skewness at the cell level. The same conclusion is true in the other three 
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Fig. 5  Cell cycle scRNA-seq data: the transition of phases is associated with the skewness of log ratios 
at both the single cell and the bulk level. AThe histograms of pairwise skewness of log ratios between 
cells at different phases. Left top: compared with cell in S phase, the cells in G1 phase are more active, in 
brief notation, G1 > S, and the transcriptomic differentiation is positively skewed; Right top: S > G2/M; left 
bottom: G2/M < G1; right bottom: G1/S > G2/M. Under the null hypothesis that the skewness is randomly 
positive or negative with equal probabilities, the nonparametric sign tests report extremely significant 
p-values. B Log ratios’ densities of pseudo bulk counts obtained by summing over cells in the same phase. 
After normalization by MUREN-sp, the modes of the densities of the pseudo bulk counts align to zero. 
The skewness of (normalized) bulk log ratios is consistent with that at the single cell level. Notice that the 
skewness of normalized and unnormalized log ratios has little difference
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comparisons. Thus, using this single cell RNA-seq data, we exemplified the skewness of 
biological differentiation at both the single cell and the bulk level.

Discussion
In this report, we address the issue—goodness of normalization in two aspects: (1) 
improve the accuracy of normalization; (2) preserve the skewness of differentiation. 
Specifically, we check the density plots of expression differentiation along with the M–A 
plots. The mode and skewness of the density are important indicators of normalization 
goodness.

The undifferentiated transcripts set between a pair of samples is consistent with the 
notion of housekeeping genes. With appropriate normalization, as we have shown, the 
average of the log ratios of the undifferentiated transcripts set is zero. Compared with 
trimmed average, mode can be visualized for diagnosis. If the symmetric assumption 
about the undifferentiated transcripts set approximately holds, then the mode of pair-
wise expression differentiation should be near zero, see Fig. 3a for such cases. Otherwise, 
as the mode shifts seriously away from zero, the differentiation of all other genes will be 
biased, and the quantification of up- and down-regulation would be biased, see the cases 
of inappropriate normalization in Figs. 2 and 3b. The unbiased quantification of gene dif-
ferentiation is crucial for downstream analysis such as gene set enrichment [36, 37], low 
rank decomposition [38], and inference of transcriptional regulation [39, 40]. Unbiased 
quantification of differentiation is the basis of DE gene calling as well. R packages such as 
edgeR [12, 15] and DESeq2 [13] model the raw counts by the negative binomial (NB) dis-
tribution with covariates, to call DE genes. The scaling factor estimated by MUREN-sp 
can be used to substitute the library size factor in edgeR and DESeq2 as an alternative, 
especially in the asymmetrically regulated transcriptome.

The ability of preserving the asymmetrical differentiation or skewness of data varies 
across different normalization methods as shown in the examples in Fig. 4. In particu-
lar, MUREN preserves the skewness using LTS, which has a breakdown value as high 
as 50%. According to the definition of breakdown value, the portion of data that devi-
ates from the principal component could be of any kind pattern including skewness [41]. 
Such examples can be found in [42].

This proposed approach does not depend on a parametric model models such as Pois-
son distributions or negative-binomial distributions on the read counts. The method is 
applicable to any dataset as long as the assumption that more than 50% genes are both 
undifferentiated and are not subject to distortion between a sample and a reference is 
valid.

The MUREN implemented in R package is ready for daily normalization of RNA-seq 
data. MUREN has an efficient implementation and is integrated with a parallel R pack-
age. For the THI data (6 samples), it takes less than half a minute with single thread on a 
generic desktop computer. For large datasets, the parallel implementation can be speci-
fied by one line of code.

At the beginning of normalization, we log-transform the raw counts plus an off-
set c, see Fig.  1a. We recommend the offset to be 1 for two main reasons. First, the 
raw counts are nonnegative, and the log-transformed counts are also nonnegative. 
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Moreover, log2(0 + 1) = 0, which means zero observed count is still zero after trans-
formation. Second, the fold change of low counts is vulnerable and radical. The offset 
1, indeed, shrinks the fold change to zero. Consider two raw counts 4 and 0, the fold 
change is infinite which is unreliable. Actually, we cannot determine the fold change 
accurately in this situation. Hence, a shrinkage of the fold change to zero is reason-
able. When the offset is 1, log2(4 + 1) − log2(0 + 1) = 2.3; when the offset is 0.0001, 
log2(4 + 0.0001) − log2(0 + 0.0001) = 15.3.

Conclusions
MUREN performs the RNA-seq normalization using a two-step statistical regression 
induced from a general principle. We propose that the densities of pairwise differentia-
tions are used to evaluate the goodness of normalization. MUREN adjusts the mode of 
differentiation toward zero while preserves the skewness due to biological asymmetric 
differentiation. Moreover, by robustly integrating pre-normalized counts with respect to 
multiple references, MUREN is immune to outlier samples.
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