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Background
Long read sequencing technologies such as PacBio and Nanopore are becoming increas-
ingly popular. However, Illumina’s short read approach continues to be the dominant 
sequencing technology at this time. Illumina reads have very low insertion deletion error 
rate but suffer from short length, short insert size, some systematic biases, and low-level 
carryover contamination from earlier runs [1–3]. These shortcomings in Illumina reads 
continue to make assembly of repeated regions a challenging problem [4–10].

The two basic strategies for assembly are reference based methods that align reads 
to a reference genome [11–16] and de-novo methods that use the overlaps among 
the reads themselves for assembly, without the need for a reference sequence 
[17–22]. Tools that align reads to genome graphs, such as, GraphAligner [23] and 
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SPAligner[24], are emerging and can also be used for producing assemblies. In this 
manuscript, we present two tools: SAUTE (Sequence Assembly Using Target Enrich-
ment) and SAUTE_PROT. Both assemblers take advantage of user provided target 
sequences to limit the search and heuristics to find homologs of target sequences sup-
ported by reads. We use “target” instead of “reference” for user provided sequences 
as the term reference typically refers to reference genomes used by reference based 
assembly methods.

Target sequences are nucleotide and protein sequences for SAUTE and SAUTE_
PROT, respectively. Conceptually, both tools build a de Bruijn graph on reads, search 
for subgraphs in the de Bruijn graph that have k-mers with a sufficiently high score to 
k-mers in the target sequence, and extend paths in subgraphs to find long enough assem-
blies that maintain a sufficiently high alignment score to a target sequence. We note that 
our approach is different from reference based assembly methods for RNA-seq reads as 
we are not aligning reads to a reference genome or explicitly generating splice variants 
by searching for splicing events. It is also different from tools aligning reads to genome 
graphs as we build the graph on reads.

Target sequences can be transcripts or proteins for RNA-seq reads and transcripts, 
proteins, or genomic regions for genomic reads. Target sequences can be from the same 
species as the species of the sample reads were generated from or a different species. 
However, as the type of target sequences SAUTE and SAUTE_PROT receive is different, 
the scoring schemes for aligning subsequences of a target sequence to k-mers or paths in 
the de Bruijn graph constructed from reads differ between the two tools. Additionally, 
k-mer size for SAUTE_PROT needs to be a multiple of three. Heuristics are designed 
to reduce the effect of strand specific errors in Illumina sequencing on the quality of the 
assembly. We show the advantages of this approach for genomic and RNA-seq assem-
bly in two scenarios where the researcher has nucleotide or protein target sequences: 
assembling coding sequences using distant orthologs and reporting multiple well sup-
ported variants for assembled regions. In the rest of the manuscript, we use SAUTE to 
mean both SAUTE and SAUTE_PROT unless specified otherwise.

Assembling RNA-seq reads using proteins of distant orthologs is of interest as we have 
reference genome assemblies for a limited number of species and RNA-seq reads from 
a much larger number of species. For example, as of October 2020, there were 89 Dros-
ophila species with RNA-seq reads sequenced using Illumina in Sequence Read Archive 
(SRA) of which 42 species had any assembly at NCBI and only 18 species had an assem-
bled genome with N50 of at least one megabase.

Assembling and reporting multiple well supported variants for an assembly is impor-
tant for several applications, such as, finding antimicrobial resistance (AMR) and vir-
ulence genes in microbial genomes that is a serious global threat [25–28], annotating 
genome features that can impact clinical genome diagnostics [29, 30], and finding muta-
tions in cancers for personalized medicine [31–33].

In order to assess the assembly approach in SAUTE, we assembled (i) RNA-seq 
reads for five species using orthologous pairs in Benchmarking Universal Single-Copy 
Orthologs (BUSCO) [34] for defining target and benchmark proteins, (ii) RNA-seq 
reads for five read sets from BioProject PRJNA590287 using Drosophila innubila and 
Drosophila melanogaster proteins as targets and Drosophila melanogaster proteins as 
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benchmark, and (iii) genomic reads from 763 microbial read sets from FDA-ARGOS [35] 
benchmark set using virulence and antimicrobial resistance genes as target sequences.

A coding sequence assembled by a method is said to recover a benchmark protein per-
fectly if it finds the full length of the protein at 100% identity. A coding sequence assem-
bled by a method is said to recover a benchmark protein as essentially complete if at least 
90% of the protein is recovered at ≥ 97% identity. We show that when percent identity 
of the alignment between read and target proteins is at least 75%, SAUTE finds more 
coding sequences that recover benchmark proteins perfectly or as essentially complete 
compared to de-novo assemblers rnaSPAdes and Trinity, assemblies reported by 
graph aligner SPAligner on assembly graphs generated by rnaSPAdes, and assemblies 
generated for each target sequence T by SPAdes on subsets of reads that align to T by 
DIAMOND[36]. When identity is below 75%, de-novo assembly methods occasionally 
outperform SAUTE.

Using AMRFinderPlus[37, 38] calls on reference genomes as benchmark, we find 
that SAUTE has higher sensitivity and precision compared to calls made on genome 
assemblies by SPAdes[39], calls made on genome assemblies by SPAdes supplemented 
by calls made on plasmidSPAdes[40] assemblies, calls made on assemblies generated 
by SPAligner on assembly graphs generated by SPAdes, and calls made on assemblies 
generated for each target sequence T by SPAdes on subsets of reads that align to T by 
HISAT2 [41]. It also has better sensitivity compared to calls made on genome assemblies 
by SKESA[42] but worse precision.

SAUTE can access reads directly from SRA and from files. SAUTE is currently used in 
production at NCBI for assembling AMR genes for the pathogen detection project [43, 
44]. Software for SAUTE is freely available [45] (see Availability and requirements).

Default values of the parameters for SAUTE are expected to give good results but for 
read sets that have low-coverage, we change two coverage parameters, minimum k-mer 
count and number of aligned reads for filtering, to one instead of the default of two. 
Runs with defaults and with low coverage parameters are referred to as SAUTE default 
and SAUTE low, respectively.

Implementation
We present the algorithm design for SAUTE, some dependencies, important optimiza-
tion details, and command lines used for doing the runs.

Algorithm design for SAUTE
The main steps for assembling reads using a target sequence in SAUTE are as follows:

•	 Read input and trim reads: SAUTE can receive input from files (fasta or fastq) or 
directly from SRA.

•	 Build two de Bruijn graphs (DBG): By default, SAUTE automatically chooses two 
k-mer sizes for building DBG. The longer primary k-mer is chosen as the largest odd 
integer that is at most half of the length of reads. The shorter secondary k-mer is 
chosen as larger of 21 and the largest odd integer that is at most a fifth of the length 
of reads. If target has protein sequences, then an additional condition of k-mer sizes 
being a multiple of three is enforced. A user can explicitly choose to provide both 



Page 4 of 22Souvorov and Agarwala ﻿BMC Bioinformatics          (2021) 22:375 

k-mer sizes and override the default behavior. If primary k-mer computed is shorter 
than 21, automatic k-mer size detection fails and the user is asked to provide the 
k-mer sizes to use. DBG for primary and secondary k-mers are referred to as primary 
DBG and secondary DBG, respectively. We use read count for k-mer K to refer to the 
number of times K is present in reads.

•	 Find and assemble subgraphs: For each target sequence, find subgraphs in the pri-
mary DBG using seeds (described below). Assemble by extending paths. When a 
path cannot be extended using primary DBG, or has only one choice for extension 
and certain read count conditions are met (described later), check if secondary DBG 
can be used to extend the path at this location while reverting to primary k-mer for 
the next step of the assembly. The graphs produced after all extensions using pri-
mary and secondary DBG are called assembled graphs generated using the target. 
For aligning a path to target, a dynamic programming algorithm is used. SAUTE uses 
match reward, mismatch penalty, gap open, and gap extend parameters. SAUTE_
PROT translates the assembled path on the fly using the genetic code specified by the 
user, and uses BLOSUM62 substitution matrix, gap open, and gap extend penalties. 
If the parameter that allows frameshifts in the assembly is used, a larger gap open 
penalty is used for such gaps.

•	 Filter graphs: As k-mers have less information than reads, some paths in an assem-
bled graph are not supported by reads. We filter such connections in the assembled 
graph using alignments of reads and read pairs to the assembled graph.

•	 Extend ends of paths: When a user wishes to assemble additional sequence beyond 
the ends of what can be assembled using the target, a flag called extend_ends can 
be provided. In this case, each end of each path in the assembled graph that remains 
after filtering is extended using the primary DBG as long as no alternate choice is 
available for any base in the extension.

•	 Report output: The result is reported in graphical fragment assembly (GFA) [46] 
output format and two fasta files.

Next, we describe selection of seeds for finding subgraphs, process for assembling paths, 
and filtering by reads and read pairs when assembling using a target sequence. If more 
than one target sequence is present in the target set, additional steps taken to remove 
redundancy are discussed. Finally, we present how assemblies are reported in three out-
put files.

Seed k‑mers

Let k be the size of the primary k-mer, S a k-mer in primary DBG, and p a position in the 
target sequence.

If target is a nucleotide sequence, let R be the sequence in the target starting at posi-
tion p of length k and M be the number of matches in the hamming distance between R 
and S. S is said to have a good alignment at position p in the target sequence if it has fol-
lowing properties:
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•	 A short suffix of size w (parameter word (default 8 bp)) at the end of S is an exact 
match to the last w bases of R.

•	 M is greater than minimum of k − 1 and V computed as 
V = ⌊k/10⌋ + k ∗ penalty/(reward + penalty)

If target sequence is a protein sequence, let R be the sequence in target starting at 
position p of length k/3, T be the translation of S, Rself  be the self-score of R aligning 
to itself using BLOSUM62, and Ralign be the score of R aligned to T without gaps using 
BLOSUM62. S is said to have a good alignment at position p in target if it has follow-
ing properties:

•	 A short suffix of size w (parameter word (default 12 bp translated to 4 aa)) in S 
translated to w/3 residues at the end of T is an exact match to the last w/3 residues 
of R.

•	 Ralign > 0.75 ∗ Rself

For comparing reverse complement of S to the target, the same rules for scores apply 
but instead of the last w bases, the first w bases of the reverse complement of S or w/3 
residues of translation of the reverse complement of S are matched to the first w bases or 
w/3 residues of R. This is because a hash table is used for finding exact matches and the 
hash is created using the last w bases of k-mers.

Let L be the read count for k-mer K. K is called a seed k-mer if it has following 
properties:

•	 K is in primary DBG.
•	 K has a good alignment to exactly one position p in the target sequence.
•	 K has at least one extension of 100 bp from both ends of K in the primary DBG. 

However, if protect_reference_ends flag is used, then this condition is not 
checked in the direction where p is less than 100 bp or 34 aa from the end of the tar-
get sequence.

•	 L > 1

•	 Let N be the maximum read count for any k-mer satisfying above four conditions at 
the same target position p. Then, L ≥ N ∗ fraction (default 0.05)

•	 Let X be the number of different k-mers at position p satisfying the above conditions. 
If X ≥ kmer_complexity (default 2000), then all seed k-mers for position p are 
deleted.

Seed k-mers serve as starting points for assembly. The last condition above affects posi-
tions in highly repetitive intervals. The k-mer intervals starting at all such positions are 
hard masked by replacing the target sequence by Ns for nucleotides or by Xs for pro-
teins. This effectively removes such intervals from the alignment process and will likely 
result in fragmented assembly.
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Assembling and aligning paths

Seed k-mers are extended to the left from the position of the target sequence preced-
ing the beginning of the seed and to the right after the end of the seed, referred to as 
left extension and right extension, respectively. The extensions do not include the 
seed k-mer, are independent of each other, and follow exactly the same procedure. We 
describe right extension below and use path to refer to one of the several possible right 
extensions. Same procedure easily extends for left extension.

At any stage, extension attempt results in three possibilities: (i) no k-mer exten-
sion is possible, (ii) only one k-mer extension is possible, or (iii) there are alternate 
choices. In the first case, the end of the path (commonly called as dead-end) has 
been reached and no further extension is possible.

In the third case, all k-mer choices using this k-mer length with counts below the 
threshold for extension fraction with respect to the maximum count for any 
choice are considered as noise and dropped. If more than one choice for extension 
survives this count based filtering, potential Illumina strand specific systematic error 
signatures are evaluated. The program does this by comparing counts observed on 
both strands. If there is a choice with counts balanced on both strands, all choices 
with counts seen in predominately one strand are dropped. If more than one choice 
for extension survives this strand based filtering, the position is called a fork posi-
tion and each choice is preserved as a valid branch for future extensions. The branch 
with the maximum count is explored next using the same process as if there was 
only one k-mer extension. If more than one branch has the same maximum count, 
ties are broken lexicographically using the sequence of the branch.

In the second case, there is no branching and we assess alignment quality of the 
path with the extension to see if the path meets the criteria for being similar to the 
target sequence. The initial state before the first extension is that best scoring posi-
tion is unknown and best score is 0. The alignment score of the path extended by the 
base is compared to the current best score for this path. The comparison results in 
three possibilities: (a) if the score is better, then the best score and the best scoring 
position are updated and extension along the same path is continued, (b) if the cur-
rent score is below the best score by at most the drop-off value, extension along the 
same path is continued, and (c) if the current score is below the best score by more 
than the drop-off value, the path and all stored branch points are clipped to the best 
scoring position. Such positions are marked as positions where forks existed and are 
positions to be used for filtering with reads and read pairs. The program continues 
with the next stored branch or the next seed k-mer.

A path is extended by one base only if the extension from the new k-mer produced 
by addition of the base to the previous k-mer (last k-mer of the end of the path) is 
also possible using the same criteria used for extending from previous k-mer to the 
new k-mer. If at the end of all extensions, the best scoring position is still unknown, 
then no right extension was possible. Otherwise, every k-mer in extension found 
that is also a seed k-mer is removed from the list of remaining seed k-mers.

Secondary DBG is used to find additional paths in regions suspected to have low 
coverage. It comes in play in the first two cases mentioned above. In the first case 
when no base is present in the primary DBG for extension, we consider extension 
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using secondary DBG. In the second case where only one extension is possible in the 
primary DBG, if the read count for the k-mer with added base is at most secondary 
k-mer threshold (default 1), then secondary DBG is also considered for extension. 
We note that with the default minimum count of 2 and secondary k-mer threshold of 
1, the read count condition is not met in the second case as every k-mer in primary 
DBG has count at least 2. The condition can be met only when secondary k-mer 
threshold is at least as large as minimum count, such as, with SAUTE low option 
where minimum count is set to 1.

Filtering by reads and pairs

For paired reads, SAUTE computes the insert size using de-novo connections of the 
mates as described in SKESA[42]. Three additional parameters needed for remov-
ing erroneous paths in assembled graph are number of reads needed to confirm a fork 
called aligned_count (default 2), number of reads that contradict a fork called 
not_aligned_count (default 3), and length of portion not aligned to the path not_
aligned_len (default 10). We will use Y for half of not_aligned_len.

The paths that can be checked by reads have the graph structure shown in Fig.  1. 
A segment C is connected to two forks on either end of the segment. The number of 
choices at each fork is at least two. Figure 1 shows that the left fork has segments A and 
B and the right fork has segments D and E. These forks may be present in the assembled 
graph or marked as positions with a fork during the assembly process. For each of the 
four paths in Fig. 1, namely A-C-D, A-C-E, B-C-D, and B-C-E, we compute confirm and 
contradict counts. Below we describe how to check path A-C-D; same method easily 
extends to any other path.

Find reads that have a substring with same sequence as that for segment C. For each 
such read R, align the substring in R to C and extend it on both ends on path A-C-D 
without mismatches. If the alignment has at least Y bases aligned to A and Y bases 
aligned to D, then R is said to confirm A-C-D path. However, if the condition is satisfied 
for A [D] but no base of D [A] is in the alignment and there are at least 2 ∗ Y  bases in the 
unaligned portion available for matching to D [A], then we say that the read contradicts 
A-C-D path. The path is considered incorrect if the number of reads contradicting the 
path reaches threshold not_aligned_count and the number of reads confirming the 
path is below aligned_count. In this case the path is removed and often results in 
duplication of some segments in the assembled graph as shown by E and E1 in Fig. 1.

For checking by pairs, we have one mate aligning to fork on the left and the other mate 
aligning to fork on the right with distance between the forks in the range as computed 
earlier for the insert size and in the expected orientation. Alignments for confirming a 
fork, contradicting a fork, and formula used is same as for reads above except that one 
fork is checked by one mate and the other fork is checked by the other mate.

A                          D A                                                                          D
C C                                              C1

B                          E E                  B                         E1

Fig. 1  Forks for filtering by reads and read pairs
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Multiple sequences in target set

If input target has more than one sequence, flag keep_subgraphs controls whether 
each sequence is assembled independently or if some are removed as redundant. If this 
flag is used, then each target sequence is assembled independently. Otherwise, assem-
bled graphs are checked for redundancy before and after the filtering step. For an assem-
bled graph X to be removed, there must exist another assembled graph G such that all 
k-mers in X are also present in G where k is size of secondary k-mer. Removing such 
graph reduces the running time without affecting results in almost all cases. The excep-
tion is when the target set contains sequences for the fused genes in addition to the 
individual genes that were fused. In this case, only the assembled graph for the fused 
gene would survive the redundancy removal and graphs for individual genes would be 
removed as redundant.

Output

The assembled graph is reported in GFA format. Key features of this format are segments 
(nodes) and links (edges). Segments specify the name for segment and its sequence. GFA 
format graphs can be viewed using Bandage [47] that was used for producing part D of 
Fig. 2.

Reporting of assemblies produced is controlled by target_coverage and min_
hit_len. The default for target coverage is 0.5 so an assembly (before extending ends 
if extend_ends is specified) that has length at least half of the target sequence length 
will get reported. Instead, a user can specify desired minimum length for reporting an 
assembly using min_hit_len parameter. If total number of assemblies to be reported 
is at most max_variants (default 1000), then all assemblies in fasta format are saved 
in the output file specified by all_variants. Otherwise, 1000 distinct assemblies are 
reported where for each assembly we compute sum of read counts for all k-mers of size 
secondary k-mer in the assembly, sort assemblies using this count in descending order, 
and report top 1000.

In cases where the total number of assemblies is extremely large, it may be use-
ful to report best supported path for each link in the graph. For this limited usage, we 

975 bp 990 bp 

3 bp 

NP_031994.2

NP_001269990.1

477 bp 1038 bp 

XP_030102161.1 NP_081703.1

XP_030102162.1 NP_001334578.1

3 bp 

NP_631888.1
Retained intron

-binding protein FUS isoforms-binding protein-associated factor 2N isoforms

-binding protein EWS isoforms

b RNAa TATA

c RNA d Low-complexity matches to reference sequence
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Fig. 2  Four subgraphs resulting from assembly of mouse reads using NP_631888.1 target sequence by 
SAUTE low are shown as graphs A, B, C, and D. Graph D consists of k-mers from low-complexity region of the 
target
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report all such sequences in fasta format that are saved in the output file specified by 
selected_variants. When more than one link produces the same sequence, it is 
reported only once.

Dependencies

SAUTE shares some modules with SKESA. Some of these include reading input, trim-
ming reads, computing insert size, k-mer counting method that has an option for using a 
hash table and a Bloom filter [48], k-mer search method, building DBG for a given k-mer 
size and a given minimum number of times the k-mer should be present in reads (called 
min_count). Additional code dependencies include (i) freely available Boost library 
[49], (ii) SRA toolkit library if direct access to SRA is desired for retrieving reads, and 
(iii) the long integer implementation from [50] for k-mers.

Optimization

Optimization for extending same k‑mer multiple times

A k-mer K can be a substring in several branches of an extension to the left or right 
of the same seed. If same extensions beyond K can be expected from more than one 
branch, it is useful to detect the situation and collapse the branches at K. To achieve this, 
we define anchor k-mers as follows.

Suppose a path L is extended by a base b resulting in last k-mer A in path L that 
includes b. Let the best scoring position in L be p and d the length of sequence between 
position p and base b. Then, tuple (L, p) is an anchor if and only if d < k/4.

When another path Q is adding base b that gives k-mer A, process checks whether the 
best scoring position for A in Q is also p or not. If it is, then Q merges with L at A and no 
further extensions are needed for Q. Otherwise, Q continues extension beyond A with-
out merging with L.

Choices for assembling highly repetitive regions

Repetitive regions longer than the k-mer size could result in very complex output 
graph and excessive running time. To deal with this problem, SAUTE has the following 
heuristics:

•	 As explained in the section on seed k-mers, certain positions on the target may have 
a very large number of seed k-mers. Such positions are hard-masked and may lead to 
the graph being split in subgraphs; causing breaks in assembly.

•	 If extension enters a repetitive area, there can be a large number of positions where 
there are forks and the number of paths to follow may become very high. SAUTE cal-
culates the average fork density for the suffix of size buf_length (default 200 bp) 
of the assembly. If the fork density is above the threshold specified by max_fork_
density (default 0.1), assembling for the current seed k-mer is stopped and the 
program moves to the next seed k-mer.

•	 To perform filtering by reads and read pairs, SAUTE must expand the assembled 
graph at each fork by read length or insert length, respectively. For highly complex 
graph this may result in an astronomical number of sequences. If needed, SAUTE 
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reduces the expansion length, so that the number of sequences is below the allowed 
threshold max_path (default 1000).

•	 Each successful step of reads and read pairs filtering removes a path from the assem-
bled graph and reduces the number of sequences which could be generated from 
the graph. On the other hand, as explained earlier, it may increase the number of 
segments in the graph by duplicating some segments. In rare cases, it may result in 
an incomprehensible graph. If the number of segments increase more than 15 times 
the initial number, the filtering process is deemed unsuccessful, and the graph is 
returned to its original state.

Commands for programs

Command lines for, say, running SRR4381672 for SKESA and SPAdes are as follows:
skesa –fastq SRR4381672_1.fq,SRR4381672_2.fq –cores 4 –mem-

ory 16 –use_paired_ends

spades.py -1 SRR4381672_1.fq -2 SRR4381672_2.fq -t 4 -m 16 -o spades.SRR4381672
For running plasmidSPAdes, option –plasmid is added to above command for 

SPAdes. Similarly, for running rnaSPAdes, option –rna is added to above command 
for SPAdes.

For SKESA, if direct SRA access is available, one can instead do the following:
skesa –sra_run SRR4381672  –cores 4 –memory 16 

–use_paired_ends

For SAUTE default, the command line is as follows:
saute –reads SRR4381672_1.fq,SRR4381672_2.fq  –targets tar-

get.fa –gfa SRR4381672.gfa –all_variants SRR4381672.vars.fa  

–selected_variants SRR4381672.sel.fa  –extend_ends –keep_sub-

graphs –cores 100

For running SAUTE low, options
–min_count 1 –aligned_count 1

are added to above command line for SAUTE default.
For running SAUTE_PROT instead of SAUTE, saute is replaced by saute_prot in 

above command lines and parameter to specify –genetic_code to use for translation 
is added.

For running RNA-seq read sets, option
–protect_reference_ends

is added to SAUTE and SAUTE_PROT runs.
Command line for AMRFinderPlus run is as follows:
amrfinder –plus -n SRR4381672.vars.fa

Index for DIAMOND is built with command:
diamond makedb –in target.fa -d diamond_index.target

Reads for each mate are aligned to above index with command:
diamond blastx -d diamond_index.target -q SRR4381672_1.fq -o 

SRR4381672_1.tsv

Index for HISAT2 is built with command:
hisat2-build target.fa hisat2_index.target
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Reads are aligned to above index with command:
hisat2 -x hisat2_index.target –no-head –no-spliced-alignment 

–no-sq -k 7000 -1 SRR4381672_1.fq -2 SRR4381672_2.fq

Command line for SPAligner is as follows:
spaligner spaligner_config.yaml -s target.fa -k 77 -g 

SRR4381672.gfa -t 8 -o SRR4381672.spaligner -d <option>

For nucleotide and protein target sequences, parameter -d has value pacbio and pro-
tein, respectively. The input graph specified with -g is the GFA files for assembly graph 
with scaffolds. Value of -k is determined manually by looking at the k-mer value in the 
last column of lines starting with L in the GFA file.

Results and discussion
In this manuscript, we present analysis using three types of data sets [51]: 

	(i)	 RNA-seq BUSCO  set that assembles one read set each for five species: human 
(Homo sapiens), mouse (Mus musculus), corn (Zea mays), worm (Caenorhabdi-
tis elegans), and thale cress (Arabidopsis thaliana). Orthologous protein pairs in 
BUSCO derived from OrthoDB v10.1 are used to define benchmark and target 
protein sequences.

	(ii)	 RNA-seq THO set that assembles five randomly chosen read sets from 
PRJNA590287. This BioProject sequenced samples for Drosophila melanogaster to 
study effect of variations in genes in THO complex and piRNA pathway on tran-
scription activity. We use Drosophila melanogaster and Drosophila innubila pro-
teins for five gene families in THO gene complex as target sequences and Dros-
ophila melanogaster proteins as benchmark.

	(iii)	 AMR set that assembles genomic reads from 763 microbial read sets from FDA-
ARGOS benchmark set. We use virulence and antimicrobial resistance sequences 
used by the pathogen detection pipeline as the target set.

We compare SAUTE to Trinity v2.9.1 and SPAdes v3.14.0, including rnaSPAdes, 
plasmidSPAdes, and SPAligner modules of SPAdes, as they are the most widely used 
assemblers. As the names imply, rnaSPAdes is for assembling RNA-seq reads, plas-
midSPAdes is for assembling plasmids from whole genome sequencing data that may 
harbor some virulence and AMR genes, and SPAligner aligns reads to a genome graph. 
SPAligner in SPAdes v3.14.0 was used for nucleotide target sets but we had to use the 
publication version of SPAligner for protein target sets as authors are merging the code 
for protein target sets into release versions (personal communication). We also assem-
bled AMR set with SKESA developed for assembling microbial read sets. AMRFinder-
Plus v3.8.4 was used for finding AMR gene calls. For the experiment of finding subset 
of reads that align to each target sequence and assembling those subsets using SPAdes, 
referred to as  CLUSTER  assemblies below, we used DIAMOND v2.0.7.145 for aligning 
reads to protein target sequences and HISAT2 v2.0.5 for aligning reads to nucleotide 
target sequences.

For assessment, alignment between protein sequences was done using BLASTP and 
between protein sequence and nucleotide assembly using TBLASTN of the BLAST suite 



Page 12 of 22Souvorov and Agarwala ﻿BMC Bioinformatics          (2021) 22:375 

of software. Defaults were used for both except that we turned low-complexity filtering 
and composition-based statistics off.

Assessment of RNA‑seq set using BUSCO protein pairs

Table 1 gives information for the RNA-seq BUSCO read sets used for each of the five 
species, the clade they belong to, and the number of species in OrthoDB for that clade 
after excluding Ornithorhynchus anatinus from the mammalian clade. We excluded 
Ornithorhynchus anatinus from our analysis as a large fraction of proteins for this spe-
cies are shorter in OrthoDB than those in GenBank and also shorter than the corre-
sponding orthologs for human and mouse (data not shown). This gives a total of 99 read 
and target set combinations. Assemblies were generated with SAUTE default, SAUTE 
low, rnaSPAdes, Trinity, SPAligner, and CLUSTER. Trinity failed to assemble 
thale cress and worm read sets. SPAligner assemblies were generated by aligning pro-
teins in target sets on assembly graphs generated by rnaSPAdes. SAUTE low was run 
with three limits of 10, 100, and default of 1000 maximum variants (option max_vari-
ants) reported per graph.

Assessment criteria used proteins for the read species in the orthologous pairs defined 
in BUSCO for human, mouse, thale cress, and worm. As corn is not in OrthoDB, we 
used RefSeq proteins annotated on the corn reference assembly GCF_000005005.2 for 
finding orthologs for the proteins for 15 liliopsida species in OrthoDB. Additional file 1 
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Fig. 3  RNA-seq assembly comparison using BUSCO set: Number of additional proteins recovered perfectly 
by SAUTE_PROT low with a maximum of 10 variants reported per graph compared to rnaSPAdes is shown as 
a function of the percent identity of the alignment between the target and read protein. SAUTE_PROT low 
performs worse than rnaSPAdes only for the worm reads assembled using Trichinella spiralis target, but slightly 
outperforms rnaSPAdes for the small subset of Trichinella spiralis target sequences whose alignment to worm 
proteins have identity ≥ 75%
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lists all 99 combinations of read and target sets. For each combination, it also gives the 
median identity between orthologous protein pairs and number of benchmark proteins 
for the pair that are recovered perfectly or as essentially complete using coding regions 
assembled by each assembly method. For each of the five species, Table 2 displays subset 
of the data from Additional file 1. It shows the row with the smallest median identity, 
the row with smallest median identity that is at least 75%, and the row with the largest 
median identity. Also shown are rows for human reads assembled with mouse proteins 
and vice versa as the lowest median identity ortholog in mammalian clade for human 
and mouse is over 75% and these species pairs are of high interest.

Figure 3 plots number of additional proteins recovered perfectly by SAUTE low with 
maximum of 10 variants reported per graph compared to rnaSPAdes as a function of 
the percent identity of the alignment between the target and read protein pairs for rows 
shown in Table 2. These results show that when percent identity of orthologous proteins 
used as target is at least 75%, SAUTE low even with a maximum of 10 variants reported 
per graph finds more coding regions that recover proteins perfectly or as essentially 
complete for all read and target set combinations.

Assessment of RNA‑seq set for THO genes

For RNA-seq THO set, we used eight Drosophila melanogaster proteins for five genes in 
the THO complex as benchmark. Table 3 shows proteins from Drosophila melanogaster 
and Drosophila innubila used as targets for SAUTE, CLUSTER, and SPAligner assem-
blies. Table  4 shows that SAUTE finds more coding regions that recover benchmark 

Table 1  Read and target information for RNA-seq BUSCO set

Count in the last column is the number of species in OrthoDB v10.1 for the clade after excluding Ornithorhynchus anatinus 
from the mammalian clade

Read sp. SRA runs Clade Count

Corn SRR1588569 liliopsida 15

Thale cress SRR5344669, SRR5344670 eudicots 31

Worm SRR10005501 nematoda 7

Mouse SRR10982198 mammalia 23

Human SRR1957703, SRR1957706 mammalia 23

476 bp 320 bp 71 bp 357 bp 

1 bp (A)
37x 

127 bp
G|125|G
19x, 20x 

127 bp
C|125|T
27x, 27x

1 bp (G)
18x

1 bp (T)
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1 bp (C)
20x
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T|10|C|63|A|61|C
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Region A Region B

Fig. 4  Variants reported in assembly of SRR10541157 by SAUTE low for thoc5 protein. SAUTE produces 
correct variants using pairing information in reads for region A while the variant produced by both rnaSPAdes 
and Trinity is not supported by any paired read. Region B shows haplotyping achieved using reads alone as 
highlighted in yellow and additional haplotyping achieved using pairing information
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proteins perfectly compared to rnaSPAdes, Trinity, and CLUSTER. We did not 
include results for SPAligner assemblies in Table  4 as they are not an improvement 
over rnaSPAdes assemblies for this data set. SPAligner does not recover assembly for 
NP_608646.3 on SRR10541159 read set with either target protein. SPAligner assem-
blies using Drosophila innubila proteins as target sequences also have lower coverage or 
percent identity for an additional 11 assemblies compared to rnaSPAdes.

Figure 4 highlights an example illustrated by assembly of SRR10541157 using target 
NP_611856.1 where SAUTE is able to correctly produce a variant using pairing informa-
tion in reads while the variant produced by rnaSPAdes, Trinity, and SPAligner are 
not supported by any paired read. We note that assemblies produced by SAUTE using 
XP_034478414.1 as target that has only 63.2% identity to NP_611856.1 are same as that 
produced by using NP_611856.1 as target. It is interesting that CLUSTER with either 
target protein also produces the correct variant for this read set.

Assessment of AMR set

FDA-ARGOS database [35] consists of regulatory grade sequences for microbes. It con-
tains both the finished assembly and read sets for the same sample that makes it suit-
able to be used as a benchmark for comparing assemblies of read sets. AMRFinderPlus 
reports on the finished assembly and assemblies produced by different tools for the cor-
responding read sets were used to find gene calls made by an identical sequence match 
(tagged as ALLELEX or EXACTX by AMRFinderPlus) to assess if the expected variants 
were recovered by the assemblies produced by different methods.

Additional file 2 gives the read sets and corresponding finished assembly for AMR set. 
Table 5 shows the sensitivity and precision achieved by assemblies produced by SKESA, 
SPAdes, SAUTE, plasmidSPAdes, CLUSTER, and SPAligner when we use the 
calls on the corresponding finished assembly as the benchmark. It shows that SAUTE 
has higher sensitivity and precision compared to calls made on genome assemblies by 
SPAdes, calls made on genome assemblies by SPAdes supplemented by calls made on 
plasmidSPAdes assemblies, calls made on CLUSTER assemblies, and calls made on 
SPAligner assemblies. It also has better sensitivity compared to calls made on genome 
assemblies by SKESA but worse precision. SKESA has lower true positive and higher 

Table 3  Drosophila melanogaster and Drosophila innubila proteins in THO complex genes, their 
lengths, and alignment percent identity between orthologous pairs

Drosophila melanogaster Drosophila innubila Percent 

Gene Isoform Protein Length (aa) Protein Length (aa) Identity 
(%)

A NP_722763.1 1641 79.42

tho2 B NP_608646.3 1642 XP_034472414.1 1660 79.38

C NP_001259905.1 1641 79.32

thoc5 NP_611856.1 616 XP_034478414.1 616 63.21

thoc6 All NP_648557.1 350 XP_034481127.1 346 73.45

Hpr1 NP_649594.1 701 XP_034485608.1 716 77.59

A NP_728489.2 288 70.55

thoc7 B NP_612011.1 287 XP_034481424.1 273 70.18
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Table 4  Comparison of Drosophila melanogaster protein recovery for genes in THO complex

Gene and 
isoform

Method/Reads SRR10541157 SRR10541159 SRR10541107 SRR10541200 SRR10541164
Read bases 
(Gb)

2.51 2.78 2.95 3.47 4.49

tho2  
isoform A

SAUTE w/ D. 
mel

1..1527, 100% Full, 100% Full, 100% Full, 100% Full, 100%

SAUTE w/ D. inn 1..1527, 100% Full, 100% Full, 100% Full, 100% Full, 100%
rnaSPAdes Not found Not found Not found Not found Not found

Trinity Not found Full, 100% Not found Not found Not found

Clust w/ D. mel Not found Not found Not found Not found Full, 100%
Clust w/ D. inn Not found Not found Not found Not found Not found

tho2  
isoform B

SAUTE w/ D. 
mel

Full, 100% Full, 100% Full, 100% Full, 100% Full, 100%

SAUTE w/ D. inn Full, 100% Full, 100% Full, 100% Full, 100% Full, 100%
rnaSPAdes Full, 100% Full, 100% Full, 100% Full, 100% Full, 100%
Trinity Full, 100% 1..1528, 100% Full, 100% Full, 100% Full, 100%
Clust w/ D. mel Full, 100% Full, 100% Full, 100% Full, 100% Not found

Clust w/ D. inn Not found Not found Not found Not found Not found

tho2  
isoform C

SAUTE w/ D. 
mel

Not found Not found Not found Not found 1..1539, 100%

SAUTE w/ D. inn Not found Not found Not found Not found 1..1539, 100%

rnaSPAdes Not found Not found Not found Not found Not found

Trinity Not found Not found Not found Not found Not found

Clust w/ D. mel Not found Not found Not found Not found Not found

Clust w/ D. inn Not found Not found Not found Not found Not found

thoc5 SAUTE w/ D. 
mel

Full, 100% Full, 100% Full, 100% Full, 99.5% Full, 100%

SAUTE w/ D. inn Full, 100% Full, 100% Full, 100% Full, 99.5% Full, 100%
rnaSPAdes Full, 99.8% Full, 100% Full, 100% Full, 99.5% Full, 99.7%

Trinity Full, 99.8% Full, 100% Full, 100% Full, 99.5% Full, 99.7%

Clust w/ D. mel Full, 100% Full, 100% Full, 100% Full, 99.5% Full, 99.7%

Clust w/ D. inn Full, 100% Full, 99.8% Full, 100% Full, 99.5% Full, 100%
thoc6 SAUTE w/ D. 

mel
Full, 99.7% Full, 99.7% Full, 100% Full, 99.7% Full, 99.7%

SAUTE w/ D. inn Full, 99.7% Full, 99.7% Full, 100% Full, 99.7% Full, 99.7%

rnaSPAdes Full, 99.7% Full, 99.7% Full, 99.7% Full, 99.7% Full, 99.7%

Trinity Full, 99.7% Full, 99.7% Full, 99.7% Full, 99.7% Full, 99.7%

Clust w/ D. mel Full, 99.7% Full, 99.7% Full, 99.7% Full, 99.7% Full, 99.7%

Clust w/ D. inn Full, 99.7% Full, 99.7% Full, 99.7% Full, 99.7% Full, 99.7%

Hpr 1 SAUTE w/ D. 
mel

Full, 100% Full, 100% Full, 100% Full, 100% Full, 100%

SAUTE w/ D. inn Full, 100% Full, 100% Full, 100% Full, 100% Full, 100%

rnaSPAdes Full, 100% Full, 100% Full, 100% Full, 100% Full, 100%

Trinity Full, 100% Full, 100% Full, 100% Full, 100% Full, 100%

Clust w/ D. mel Full, 100% Full, 100% Full, 100% Full, 100% Full, 100%

Clust w/ D. inn Full, 100% Full, 100% Full, 100% Full, 100% Full, 100%

thoc7  
isoform A

SAUTE w/ D. 
mel

Not found Not found 24..288, 100% 10..288, 100% Not found

SAUTE w/ D. inn Not found Not found 24..288, 100% 10..288, 100% Not found

rnaSPAdes Not found Not found Full, 99.7% 10..288, 100% Not found

Trinity Not found Not found Full, 99.7% 10..288, 100% Not found

Clust w/ D. mel Not found Not found Full, 99.7% 10..288, 100% Not found

Clust w/ D. inn Not found Full, 99.7% 12..288, 99.6% 10..288, 100% Not found
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false negative count compared to SAUTE because the conservative heuristics in SKESA 
can cause some AMR genes that can be assembled by SAUTE to be only partially assem-
bled or split in multiple contigs. SKESA also has lower false positive count compared to 
SAUTE as it has more aggressive filtering for carryover contamination.

Multiple variants in a graph

The distribution of number of variants produced for each graph in AMR and BUSCO 
sets when assembled using SAUTE default and SAUTE low, respectively, is shown in 
Table 6. Only one graph in sets for THO genes produced 32 variants, seven produced 
16 variants, and remainder had a maximum of 8 variants. Table 6 shows that for most 
graphs, only a few variants are produced but some graphs can produce a large number of 
variants. Additional file 1 shows that a few more benchmark proteins can be recovered 
perfectly or as essentially complete when maximum of 100 or 1000 variants are reported 
per graph instead of 10. We suggest that for applications such as AMR gene detection 
and studying THO genes that are interested in finding existence of specific variants, 

 SAUTE_PROT low (SAUTE) and CLUSTER (Clust) used proteins in Table 3 for Drosophila melanogaster (D. mel) and Drosophila 
innubila (D. inn) as targets. Cells in bold and highlighted in yellow show cases where the D. mel protein is recovered 
perfectly and there is at least one method that does not recover it perfectly. Proteins recovered as full length are marked as 
’Full’; otherwise, coordinates on D. mel protein recovered are provided 

Table 4  (continued)

Gene and 
isoform

Method/Reads SRR10541157 SRR10541159 SRR10541107 SRR10541200 SRR10541164
Read bases 
(Gb)

2.51 2.78 2.95 3.47 4.49

thoc7  
isoform B

SAUTE w/ D. 
mel

Not found Not found Not found 10..287, 100% Not found

SAUTE w/ D. inn Not found Not found Not found Not found Not found

rnaSPAdes Not found Not found Not found Not found Not found

Trinity Not found Not found Not found Not found Not found

Clust w/ D. mel Not found Not found Not found Not found Not found

Clust w/ D. inn Not found Not found Not found Not found Not found

Table 5  Sensitivity and precision achieved by different methods using AMRFinderPlus calls made on 
assemblies of 763 read sets and the corresponding finished assembly in FDA-ARGOS set

Set True False False Sensitivity Precision
positive positive negative

SAUTE default 2801 575 22 0.99 0.83

SAUTE low 2803 833 20 0.99 0.77

SKESA 2674 308 149 0.95 0.90

SKESA + SAUTE default 2801 577 22 0.99 0.83

SKESA + SAUTE low 2803 834 20 0.99 0.77

SPAdes 2716 794 107 0.96 0.77

plasmidSPAdes 915 362 1908 0.32 0.72

SPAdes + plasmidSPAdes 2720 809 103 0.96 0.77

Cluster 2756 1209 67 0.98 0.70

SPAligner 2738 925 85 0.97 0.75
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default of a maximum of 1000 variants reported per graph is used while for applications 
such as annotation, a smaller number such as 10 is sufficient.

As an example, the maximum number of variants produced in any graph when mouse 
reads are assembled using mouse proteins is 103,356 with NP_631888.1 as target. Fig-
ure 2 shows that SAUTE low finds four de Bruijn subgraphs using NP_631888.1 as tar-
get. Variants produced recover seven known proteins for mouse perfectly, one reported 
variant has a retained intron, and 103,356 variants come from the subgraph that is 
composed of low-complexity sequences. Of the seven proteins recovered perfectly by 
SAUTE low, Trinity recovers three perfectly, rnaSPAdes recovers only one perfectly 
and one as essentially complete, SPAligner recovers one perfectly, and CLUSTER does 
not recover any proteins perfectly or as essentially complete. We note that using the 
option that collapses SNPs into ambiguous bases, SAUTE low reports 220 variants for 
the low-complexity subgraph instead of 103,356. This example shows that number of 
variants reported by SAUTE can be high for targets with low-complexity regions, but it 
also shows that even with such targets, it finds more correct variants not found by rnaS-
PAdes and Trinity.

Production usage

As of July 28, 2020, SAUTE had been used by NCBI pathogen detection pipeline to 
assemble AMR genes for over 500,000 read sets including assemblies for Salmonella 
enterica (278,133 assemblies), E.coli and Shigella (89,600 assemblies), Campylobacter 
jejuni (51,750 assemblies), Listeria monocytogenes (32,124 assemblies), and Klebsiella 
pneumoniae (17,381 assemblies). All species assembled and number of read sets assem-
bled is shown in Table 7. These species are tracked in the pathogen detection pipeline 
because of their importance in detecting pathogens in the food supply chain and in 
hospitals.

Conclusions
Illumina sequencing technology continues to be the dominant technology at this time but 
it has short reads and short insert size that make de-novo assembly of repeated regions a 
challenging problem. SAUTE assembler is designed for assembling genomic and RNA-seq 

Table 6  Number of variants produced by graphs generated by SAUTE default on AMR set and 
SAUTE_PROT low on BUSCO set

Number of Number of graphs (percent %)

variants AMR BUSCO

1 177,185 (96.83) 607,609 (60.16)

2 4407 (2.41) 204,994 (20.30)

3 230 (0.13) 34,205 (3.39)

4 946 (0.52) 63,283 (6.27)

5-10 172 (0.09) 53,370 (5.28)

11-100 50 (0.03) 41,143 (4.07)

101-1000 5 (0) 4316 (0.43)

> 1000 0 (0) 1054 (0.10)

Total 182,995 1,009,974
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reads sequenced using Illumina that utilizes user specified genomic regions or genes of 
interest for guiding the de-novo assembly. The assembly approach finds subgraphs in the 
de Bruijn graph that correspond to the user specified sequences and compares the assem-
blies to those sequences to stay close to the specified regions. We showed that for RNA-
seq data, target proteins can have only 75% identity and still be used to produce complete 
coding regions from the reads. Examples of heavily studied subtrees at this level of diver-
gence in the Tree of Life are organisms as divergent as e.g. placental mammals or cereal 
grasses. As the tree of life is filled in with better quality sequences suitable to be used as 
targets, SAUTE will yield better results for more read sets.

Genomic sequence assembly using antimicrobial resistance and virulence genes as tar-
get, RNA-seq sequence assembly with proteins from THO complex genes, and comparison 
with modules of SPAdes was used to show that SAUTE complements de-novo assemblers 

Table 7  Species and number of read sets for the species assembled in the pathogen detection 
pipeline using SAUTE for antimicrobial resistance genes as of July 28, 2020

Species Number 
of read 
sets

Salmonella enterica 278,133

E.coli and Shigella 89,600

Campylobacter jejuni 51,750

Listeria monocytogenes 32,124

Klebsiella pneumoniae 17,381

Enterococcus faecium 14,072

Neisseria 9308

Pseudomonas aeruginosa 4594

Vibrio cholerae 3556

Acinetobacter baumannii 3204

Enterococcus faecalis 3176

Legionella pneumophila 2848

Clostridioides difficile 1439

Enterobacter 1319

Staphylococcus pseudintermedius 1253

Vibrio parahaemolyticus 1170

Candida auris 744

Serratia marcescens 709

Mycobacterium tuberculosis 539

Citrobacter freundii 494

Klebsiella oxytoca 390

Vibrio vulnificus 365

Providencia alcalifaciens 253

Clostridium perfringens 223

Cronobacter 148

Corynebacterium striatum 98

Clostridium botulinum 95

Aeromonas hydrophila 26

Morganella morganii 20

Elizabethkingia anophelis 19

Kluyvera intermedia 1

Total 519,051
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for genes that are not assembled and when some of the variants for the gene are not assem-
bled by the de-novo assemblers. Two coverage parameters in SAUTE can be changed to 
assemble read sets with low-coverage. Another flag can be set for collapsing SNPs into 
ambiguous bases. Additional comparisons with Trinity, SPAligner, and assembling subsets 
of read that align to use specified sequences show that SAUTE outperforms these methods.

Future work on SAUTE includes exploring additional ways of analyzing complex de 
Bruijn graphs. We showed an example where current process is inadequate: the possible 
number of variants exceeds over hundred thousand and are from low-complexity regions. 
Another direction for future work on SAUTE is to incorporate long read data or known 
transcripts from additional species to make informed choices in such extreme cases.
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