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Background
The human leukocyte antigen (HLA) genes encode key constituents of the human adaptive 
immune system and are amongst the most polymorphic genes of the human genome [1]. 
Currently (Jan. 2021), the public immunopolymorphism database IPD-IMGT/HLA lists 
27,059 different alleles for the six “classical” HLA genes (A, B, C, DRB1, DQB1, DPB1) alone, 
and it is still growing substantially at each quarterly release [2]. For haematopoetic stem-cell 
transplantation (HSCT), allelic matching between patients and donors for these HLA genes 
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is a key determinant of success [3], as each mismatch increases the likelihood of severe 
complications for patients [4, 5].

The role of killer-cell immunoglobulin-like receptor (KIR) genes on HSCT outcome is not 
yet well understood, although several studies report an influence of donor KIR genotype on 
long-term survival after transplantation [6, 7]. With 17 genes, extensive gene copy number 
variation and 1110 (Dec. 2020) described alleles in the IPD-KIR database, the KIR region 
also harbours formidable genetic diversity.

Large-scale sequence-based HLA and KIR genotyping is performed routinely for stem-
cell donor registries and in clinical laboratories. Due to the diversity and complexity of 
these regions, high-resolution genotyping of the relevant genes crucially depends on the 
quality and comprehensiveness of the reference sequence databases [8, 9].

At present, for only 30% of the known HLA alleles the full genomic sequence is known, 
and the reliable reference-grade characterisation of genomic sequences of newly discov-
ered HLA and KIR alleles remains technically challenging. The non-coding regions of 
these genes may contain extensive homopolymer tracts, i.e., stretches of single nucleotide 
repeats, or short tandem repeats [10]. Some genes may harbour structural indel variation, 
leading to differences of up to several kb in length between two alleles in a single heterozy-
gous individual (e.g., Intron 1 of HLA-DRB1*03:01:01:01, 7,994 bp, and Intron 1 of HLA-
DRB1*07:01:01:01, 10,281 bp, differ by 2,287 bp). Especially the KIR region contains large 
repeats, inversions and low-complexity regions. Additionally, due to extensive gene copy 
number variation in KIR, a single individual may accommodate three or more alleles for 
specific KIR genes.

Here, we present DR2S (Dual Redundant Reference Sequencing), a tool designed to 
facilitate generating full-length phase-defined haplotype sequences in reference quality. 
While DR2S has been tested extensively on and optimised for HLA and KIR genes, it can be 
applied to any locus. Our approach takes advantage of the respective strengths of two read-
ily available types of sequencing platforms: the accuracy of Illumina short-read sequencing 
and the read lengths achievable by third-generation single-molecule sequencing platforms.

While short-read sequencers typically produce highly accurate sequences, the length of 
a read is limited to about 300 bp. This is in many cases not sufficient to correctly phase 
allelic variants and thus results in ambiguous genotypes. Third-generation single-molecule 
sequencing technologies such as nanopore sequencing by ONT (Oxford Nanopore Tech-
nologies, Oxford, United Kingdom) or SMRT sequencing by PacBio (Pacific Biosciences, 
Menlo Park, California) are able to produce contiguous reads of several thousand base 
pairs. Yet, sequencing accuracy on these platforms is still severely limited and per-read 
error rates of up to 10% to 15% are common, especially in regions rich in homopolymers 
and repeats.

Currently, DR2S utilises data from targeted experiments, i.e., sequencing of full-length 
amplicons of the genes of interest. Separate fastq files from each sequencing experiment in 
combination with a generic reference sequence serve as input for DR2S.

Implementation
DR2S is implemented as an R package [11]. It relies heavily on Bioconductor [12] and 
requires bwa [13], minimap2 [14] and IGV [15] to be installed on the system. The use 
of system-wide installed samtools [16] is recommended, but the Rsamtools package 
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may be used as a fallback [17]. DR2S is open source and available from GitHub (https://​
github.​com/​DKMS-​LSL/​dr2s). The framework of the DR2S pipeline and its major mod-
ules are described below. All mappings of short-reads are carried out using the mem 
algorithm of bwa whilst long-reads are mapped using minimap2.

Setup

The starting points for a DR2S analysis are gene-specific long-reads (PacBio or ONT) 
and short-reads (Illumina) of one or more samples provided as fastq files and a generic 
reference sequence of the gene that is analysed. It is also possible to rely exclusively on 
long-reads for haplotype separation and consensus calling, although this might not allow 
resolving repeat regions or homopolymers at a quality sufficient for submission to a ref-
erence database. In the case of HLA and KIR genes, providing the locus name as part of 
the initial run configuration is sufficient, for other genes a fasta file containing a refer-
ence sequence is required. All steps of the analysis workflow can be configured interac-
tively in R or via YAML or JSON configuration files.

Filtering and variant definition

In a first step, a sample-specific reference sequence is created by mapping the short-reads 
to the generic reference sequence and calling the consensus (Fig. 1a). In this step, it is 
possible to reduce the sequencing coverage by sub-sampling the reads. The sub-sam-
pling step is applied after the initial mapping and reads are sampled based on the cover-
age, and not on the number of reads alone. Consensus sequences are always inferred 
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Fig. 1  Workflow: Top panel: a The short-reads are mapped to the generic reference and a consensus is called 
to serve as a sample-specific reference. Short-reads (b) and long-reads (c) are mapped to the sample-specific 
reference. Left panel: Heterozygous positions (HPs) are defined in the short-reads (d) and used to infer the 
genotype at these positions in the long-reads (e). “True” HPs are distinguished from artefacts by linkage 
analysis (f) and only true HPs are clustered into haplotypes (g). Right panel: Haplotype-specific long-reads are 
used to iteratively define draft haplotype consensus sequences (h) which are polished by the short-reads to 
call final haplotype consensus sequences (i) 

https://github.com/DKMS-LSL/dr2s
https://github.com/DKMS-LSL/dr2s
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from the mapping by extracting the consensus matrix and subsequently calling a major-
ity-rule-based consensus sequence.

Next, both, long-reads and short-reads, are re-mapped to the sample-specific refer-
ence sequence (Figs. 1b, c, 2).

Optionally, the long-read mapping may be used to winnow out low-quality long-
reads, where “read quality” is assessed as similarity to a Position Weight Matrix (PWM) 
derived from the same mapping. The short-read mapping is used to infer the coordinates 
of non-gap heterozygous positions (HPs) with a minor allele frequency above a defined 
threshold (default 0.2; Fig. 1d).

The short-read-derived HP coordinates are then used to pinpoint heterozygous posi-
tions in the long-read mapping (Fig. 1e). The genotype at each non-gap HP is inferred 
for each long-read separately. Long-reads which do not cover at least 90% of HPs and 
HPs which are not covered by at least 30% of the long-reads are discarded.

Some HPs may be sequencing or mapping artefacts and should thus not be used for 
allocating reads to alleles. Such non-informative HPs are identified by linkage analysis 
(Fig. 1f ), where linkage is measured as Cramér’s V between all pairs of HPs. The matrix 
of pairwise linkage measures is used to cluster HPs into two groups, one with high intra-
cluster linkage and the other with low intra-cluster linkage (Figs. 1f left, 3). HPs in the 
group with lower linkage are excluded if the mean intra-cluster linkage values between 
the two groups differ by more than a set threshold (Figs. 1f right, 4).

Based on the remaining long-reads and HPs, reads are categorised into haplotype-spe-
cific long-read sets (Fig. 1g). The number of possible haplotypes is not limited to two, as 
expected for single-copy heterozygous genes, but DR2S can also deal with cases of multiple 
gene copies as encountered, for example, in the KIR region or in polyploid organisms.

Long‑read clustering

To generate haplotype-specific long-read sets, the genotype of each HP in each long-read 
is used to construct a Position-Specific Distance Matrix (PSDM). A PSDM can be derived 

Fig. 2  Read coverage and heterozygous positions in the primary mapping: The initial coverage of 
short-reads (SR) and long-reads (LR) against a generic locus-specific reference. Heterozygous positions 
(HP) and indels are colour-coded. HPs are shown by two colours, where both should, ideally, cover half of 
the height at a position. In this example, most HPs are present at the same position in both short-reads and 
long-reads. Observations of HPs that differ between short- and long-reads are common and are usually 
caused by differing allele imbalances between the two sequencing experiments. The clustering into two 
haplotypes is based on these HPs
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from a PWM by weighting the distance between two reads by the nucleotide weights at 
each heterozygous position such that differences in major genotypes at a position count 
more towards distance than differences between major and minor genotypes. As an exam-
ple, consider a heterozygous position with a distribution of 50% A, 45% G and 5% T nucleo-
tides. Here, the position should contribute more heavily to the overall sequence distance 
between two reads if the reads feature A and G, respectively, while a T is more likely to 
derive from a sequencing error.

Hierarchical clustering is applied to the PSDM and the cut height, i.e., the most likely 
number of clusters is inferred using adaptive branch pruning as implemented in the dynam-
icTreeCut package [18]. If this approach yields more clusters than the expected number of 
alleles, only the most distant clusters are retained. All reads are then re-scored with respect 
to the PWMs derived from the retained clusters generating haplotype membership coeffi-
cients. Finally, only a fraction of reads best representing each cluster based on haplotype 

Fig. 3  Linkage of heterozygous positions: Correlation matrix of pair-wise linkage between all HPs. The 
order of positions in this plot is based on a hierarchical clustering of pair-wise distances. Positions with a 
low correlation to many other positions (indicated by a light color) are most likely sequencing artefacts and 
excluded from long-read clustering

Fig. 4  Linkage of heterozygous positions: Linkage between HPs measured by Cramér’s V. Several potential 
HPs are not linked to other HPs and are thus excluded from long-read clustering
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membership coefficients are retained for further processing (see Fig. 5). This strategy effec-
tively eliminates chimeric reads formed during PCR and other amplification or sequencing 
artefacts from interfering with downstream haplotype reconstruction, as long as chimeric 
reads stay less abundant than reads true to the actual alleles present in a sample.

Consensus calling

The long-reads retained for each cluster are now considered to be derived from distinct 
alleles and stored in separate fastq files to serve as input for generating draft haplotype-
specific reference sequences.

For that purpose, each haplotype-specific long-read set is mapped iteratively to a con-
sensus sequence created at the previous iteration (Fig.  1h). The consensus sequence 
for the first iteration is derived from the initial mapping step by extracting a consen-
sus matrix from the mapping and keeping only reads of the haplotype. The iterative 
refinement of the consensus sequences allows the resolution of haplotype-specific indel 
variants. Two iterations are generally sufficient for long-reads to converge on a draft ref-
erence sequence (see Fig. 6).

In the final step, these draft references are corroborated or polished as necessary using 
the short-read data.

Consensus polishing

To polish the long-read-derived haplotype-specific draft reference sequences, short-
reads are also classified based on their putative haplotype of origin.

a

b

Fig. 5  Long-read clustering: a Histogram of the haplotype membership coefficient of clustered long-reads. A 
negative value suggests a read membership in haplotype B, a positive value suggests a read membership 
in haplotype A. The dashed vertical lines mark heuristically determined thresholds for retaining long-reads 
to iteratively generate haplotype-specific consensus sequences. b Hierarchical clustering dendrogram. Each 
leaf represents a long-read. The blue horizontal line indicates the adaptively chosen cut-height for separating 
reads into two clusters
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To that end, short-reads that cover an HP are assigned to a haplotype cluster based on 
the respective long-read cluster. Short-reads that do not cover HPs are distributed to all 
haplotype clusters. Finally, short-reads are mapped to the long-read-derived haplotype-
specific draft reference sequences obtained in the previous step. The final consensus 
sequences are derived from these short-read mappings (Figs. 1i, 7). Remaining ambigui-
ties that are covered by clustered short-reads reads should be resolved after this step.

Reporting and editing

During a run, statistics and diagnostics plots are created at each step to aid evaluating 
the quality of haplotype reconstruction. A coverage plot is created for each mapping, 
highlighting heterozygous positions, indels and positions that do not match the refer-
ence (Figs. 2, 6, 7). Each step of the long-read clustering is documented by plots such 
as the dendrogram of the hierarchical clustering analysis and the sequence logo of the 
HP matrix for each haplotype (Fig. 8). Potential problems and artefacts, such as posi-
tions that remain heterozygous in the final haplotype-specific mappings or longer inser-
tions that cannot be resolved automatically, are reported and may need to be corrected 
manually. To aid manual correction, configuration files for IGV are created that allow 

a b

a b

Fig. 6  Iterative mapping of long-reads: Haplotype-specific references for haplotypes a and b are created 
iteratively. While some ambiguities remain in the long-read pileup after an initial round of mapping 
(mapIter1), alignment accuracy is significantly improved by remapping the reads sets against consensus 
sequences derived from the first mapping (mapIter2). The majority of HPs in the mapping are resolved at 
the end of the iterative mapping (lower panel). Some positions still harbour deletions, denoted by the purple 
bars, which need to be resolved by short-reads in the final mapping step

Fig. 7  Final mapping of long-reads and short-reads to the refined, haplotype-specific references: 
Heterozygous positions (HP) and indels are colour-coded. Purple bars in the coverage plot (e.g. at position 
∼ 400 bp in haplotype B) visualise deletions that are present in the short-read mappings of both haplotypes 
and indicate spurious insertions or positions that are hard to resolve using long-reads alone. Bicoloured 
positions denote existing ambiguities in the final mapping, in this example caused by positions where 
short-reads are not clustered with the two haplotypes as expected (e.g. at position 790 in haplotype A). It is 
still possible to resolve such positions using long-reads, even if they were not used for the initial haplotype 
clustering. The final consensus sequences are derived from these mappings
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quickly visualising the long-read and short-read mappings at positions deemed ambigu-
ous by the software (Fig. 9). The consistency of homopolymer runs is checked separately 
for positions that exceed a configurable homopolymer run length. Here, distributions of 
homopolymer lengths over individual reads are calculated and plotted for each haplo-
type, and the mode value is compared to the homopolymer length of the final consensus 
sequence of the respective haplotypes (see Fig. 10).

Manual edits are made in a preliminary alignment file of the haplotype consensus 
sequences (Fig. 11). To evaluate the effects of manual edits, functions are provided to 
remap haplotype-specific reads to the updated references (Fig. 12) and to visualise the 
remapping results. This allows for a straightforward iteration over problematic positions 
that the software could not resolve automatically. Once the user has asserted the cor-
rectness of the haplotype reference sequences, they can be “checked out” into final fasta 
files.

a

b

Fig. 8  Sequence logo of heterozygous positions: Most positions clearly distinguish the two haplotypes a 
and b. Only few positions in both haplotypes are of low bit-wise information content

Fig. 9  Alignments of long-reads and short-reads against one inferred haplotype: This screenshot from 
IGV (Integrative Genomics Viewer) shows PacBio reads (upper panel) and Illumina reads (lower panel) 
aligned to one of the inferred haplotype sequences prior to manual correction. The alignments are easily 
visualised using configuration files automatically generated by DR2S. This example demonstrates remaining 
ambiguities in the short-reads at positions 790 and 809. These positions were also observed in the final 
mapping plot. The long-reads at these positions are unambiguous and can be used to guide the manual edit



Page 9 of 15Klasberg et al. BMC Bioinformatics          (2021) 22:236 	

Fig. 10  Example of homopolymer visualisation: Short-reads that cover a homopolymer exceeding a set 
length are visualised by histograms. The true length of a homopolymer is usually the mode value, i.e. the 
length supported by most reads. In this example, haplotype A has a homopolymer length of 14 at position 
7553, while haplotype B has a homopolymer length of 17 at position 7016

Fig. 11  The preliminary alignment of all haplotypes: Sequences of all haplotypes can manually be edited in 
a text editor and can be checked by remapping reads to the changed sequence. In this example, ambiguous 
positions at positions 790 and 809 in haplotype A are denoted by the IUPAC codes S and Y, and need to be 
manually checked and corrected

Fig. 12  The remapping of short-reads and long-reads to manually updated references: All heterozygous 
positions and indels have been resolved and the final sequences are fully phased. The ambiguous positions 
in haplotype A are still shown as the composition of reads is not changed during the reporting, but the 
long-reads show a correct consensus sequence
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Results and discussion
We developed DR2S specifically to address the challenge of assembling and ascertaining 
novel HLA and KIR allele consensus sequences using easy-to-generate next-generation 
sequence data from heterozygous samples. We have been using DR2S routinely and suc-
cessfully to create several hundred high-quality, fully-phased, reference allele sequences 
for HLA and KIR genes for submission to the IPD-IMGT/HLA and IPD-KIR databases 
[19].

We compared the performance of DR2S to two existing haplotype assembly tools, 
WhatsHap [20] and HapCUT2 [21]. These tools were chosen based on their ability to 
utilise both short-read and long-read genomic data as input and their reported per-
formance relative to alternative solutions. Note that both WhatsHap and HapCUT2 
require BAM/CRAM files containing reads aligned to a genomic reference and a VCF 
file containing corresponding variant calls (SNVs and indels) as input. It is left to the 
user to generate these input data from unmapped sequence data, although a recom-
mended workflow exists for WhatsHap (https://​whats​hap.​readt​hedocs.​io/​en/​latest/​
guide.​html).

We evaluated the three phasing tools using HLA sequence data created by long-
range whole-gene amplification followed by fragmentation for shotgun sequencing 
on an Illumina MiSeq instrument and direct long-read sequencing on PacBio’s Sequel 
II and ONT’s MinION platforms with R10.3 flow cells, respectively, as described pre-
viously [19]. Five samples were sequenced for six HLA genes (HLA-A, -B, -C, -DRB1, 
-DQB1, and -DPB1) on the Illumina and ONT platforms. Five additional samples were 
sequenced for five HLA genes (HLA-A, -B, -C, -DQB1, and -DPB1) on the Illumina and 
PacBio platforms. To phase these samples with WhatsHap and HapCUT2, we followed 
WhatsHap’s recommended workflow, using bwa mem and minimap2 for the initial 
short-read and long-read mapping, respectively, followed by variant calling on short-
reads alone using the FreeBayes variant caller [22]. All analyses were carried out using 
the default parametrisation of the respective tool.

Since for none of these samples independent allele sequence data were available, we 
established “ground truth” haplotype sequences by performing an initial run of DR2S 
followed by a careful visual inspection and manual curation of all resulting allele 
sequences. We used these curated sequences as the basis for calculating the error rates 
of each tool without manual curation. The haplotypes assembled by each tool for each 
sample and gene were attributed to their target ground truth haplotype by overall simi-
larity. The accuracy of the haplotype reconstruction was assessed using mismatch error 
rate and phase switch error rate as metrics. We defined mismatch errors as single vari-
ants or indels not matching the target ground truth haplotype nor attributable to the 
alternative ground truth haplotype, and phase switch errors as single variants or runs of 
consecutive variants attributable to the alternative ground truth haplotype per sample 
per gene. Error rates were calculated by considering the total number of deviating posi-
tions of a ground truth haplotype to the gene-specific generic reference sequence used 
in the initial mapping step of each tool, as the maximum number of possible errors. For 
both, PacBio and ONT long-reads, DR2S reconstructed the most accurate haplotypes 
both with respect to mismatch and phase switch errors (Fig. 13).

https://whatshap.readthedocs.io/en/latest/guide.html
https://whatshap.readthedocs.io/en/latest/guide.html
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In addition to real HLA sequence data sets, we also compared the performance of 
DR2S, WhatsHap and HapCUT2 using simulated sequencing data. This should miti-
gate the potential biases arising from using DR2S for creating ground truth sequences 
in the first place. To simulate benchmark data we used the ground truth sequences 
derived from the real data sets as seeds. Simulations of Illumina MiSeq data were car-
ried out using InSilicoSeq [23] with a targeted read depth of 2000 and the miseq 
model file provided. PacBio and ONT data were simulated with PBSIM2 [24]. We used 
the P5C3 model for PacBio data and R10.3 for ONT data, respectively. The parameters 
for sequencing error ratios were used as suggested by PBSIM2, i.e. a mean accuracy of 
85% and a substitution/insertion/deletion ratio of 6/50/54 and 23/31/46 for PacBio and 
ONT, respectively. Both tools were chosen for their ability to simulate reads without the 
need to first build empirical error models based on supplemented sequence data, which 
again might have introduced a bias towards DR2S. Again, for both, simulated PacBio and 
simulated ONT long-reads, DR2S delivered the most accurate haplotypes of all three 
tools with regard to mismatch and phase switch errors (Fig.  13). For DR2S, we found 
that all remaining mismatching positions were flagged by the tool as potentially prob-
lematic, thus facilitating manual curation.

All tools exhibited comparatively large heterogeneity in error rates across HLA genes, 
especially with the real data sets (Fig. 13a). This likely reflects the fact that data quality 
across samples and loci varied widely, especially with regard to read coverage (compare 
Fig. 14), the sequence complexity of the specific alleles found in a sample, and the dis-
tance of specific alleles to the reference sequence used for the initial mappings. Over-
all, we found little difference in error rates with regard to the two long-read sequencing 
technologies used (Fig.  13b). This indicates that the generally larger per-read error 
rates of nanopore reads relative to PacBio reads are not necessarily an impediment to 
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Fig. 13  Benchmarking DR2S against two other haplotype assembly methods. Mismatch and phase switch 
error rates for different HLA genes (a) and average error rates across all genes (b). The panels show results 
for ONT long-reads in combination with Illumina short-reads (ONT), PacBio long-reads in combination with 
Illumina short-reads (PacBio) and simulated ONT or PacBio long-reads in combination with simulated Illumina 
short-reads (simu_ONT and simu_PacBio). Note that different samples were used with both long-read 
sequencing technologies and that no PacBio long-read data were available for HLA-DRB1 
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accurate haplotype reconstruction, at least if used in conjunction with highly accurate 
short-reads.

Overall, even without manual curation, DR2S showed a reduction of approximately 
40–70% in mismatch error rate over both HapCUT2 and WhatsHap, depending 
on the sequencing technology (Fig. 13b and Table 1). In only three of 23 locus- and 
sequencing-technology-specific comparisons (HLA-B with PacBio and HLA-DPB1 
with ONT and PacBio technologies) DR2S exhibited slightly higher mismatch error 
rates than HapCUT2. This is likely due to the heavy emphasis put by DR2S’s work-
flow on iteratively refining the reference used for read mapping, and the aggressive 
pre-selection of sequence reads used for haplotype reconstruction according to their 
haplotype membership coefficient (compare Fig. 5). Thereby DR2S arguably achieves a 
cleaner base for assembling the two haplotypes harboured by a heterozygous sample. 
In contrast, HapCUT2 and WhatsHap leave it to the user to provide a read mapping 
and a set of variants to be phased. The recommended workflow for these tools does 
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Fig. 14  Coverage of the benchmarked samples: Boxplot of observed sequencing coverage by gene and 
sequencing platform

Table 1  Mismatch and phase-switch error rates of different sequencing technologies and 
haplotype assembly methods

Error class Technology Method Mean error rate Reduction 
DR2S (%)

Mismatch ONT DR2S 0.00398 0

HapCUT2 0.01033 61.47

WhatsHap 0.00921 56.79

PacBio DR2S 0.00272 0

HapCUT2 0.00457 40.48

WhatsHap 0.00939 71.03

Switch ONT DR2S 0.00089 0

HapCUT2 0.00378 76.46

WhatsHap 0.00768 88.41

PacBio DR2S 0.00000 0

HapCUT2 0.00543 100.00

WhatsHap 0.00913 100.00
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not provide any guidelines as to how to prepare or pre-process the sequence data for 
potentially improved results.

Moreover, in contrast to HapCUT2 and WhatsHap, DR2S exhibited only two phase 
switch errors across all analysed samples (Fig.  13 and Additional file  1: Table  S1). 
Again, this is likely due to the read pruning strategy employed by DR2S when assign-
ing long-reads to allele clusters, which effectively eliminates or reduces artefacts such 
as PCR chimeras or low-quality reads that otherwise may interfere with haplotype 
assembly.

These results demonstrate that DR2S can be used to create haplotype sequences 
for highly polymorphic genes such as the HLA genes with very high accuracy. How-
ever, it is also clear that for any haplotype assembly tool, depending on the raw data 
quality and the complexity of the region of interest, occasional errors will be intro-
duced. If the aim is to submit the resulting consensus sequences to a database, con-
fidence in the resulting sequences is of particular importance and some degree of 
visual sequence validation is inevitable. Extant tools do not explicitly cater for this 
need, thus requiring expert bioinformatics knowledge to create custom workflows for 
inspection and validation of their results. In contrast, DR2S implements a number of 
post-processing features to alert the user to potentially dubious positions, to facilitate 
visual inspection of the alignment data using preconfigured IGV plots, and to itera-
tively edit and re-evaluate haplotype reference sequences. The easy manual inspection 
of mappings and problematic positions ensures highly trustworthy final sequences.

In our environment, DR2S is used in a compute cluster and a single sample/gene usu-
ally needs between 5 and 20 minutes to finish on 8 cores, depending on sequencing cov-
erage and gene length.

Conclusions
DR2S is a largely automated workflow designed to create high-quality fully-phased refer-
ence allele sequences for highly polymorphic gene regions such as HLA or KIR. Designed 
to work with a combination of short-read and long-read amplicon data from a region of 
interest, it shows superior performance to comparable tools both in terms of mismatch 
errors and phase switch errors. In addition, DR2S offers supporting tools to appraise the 
quality of the resulting haplotypes, perform manual edits, and assess the consequences 
of these edits. DR2S has been used by biologists to successfully characterise and submit 
more than 500 HLA alleles and more than 500 KIR alleles to the IPD-IMGT/HLA and 
IPD-KIR databases.

Availability and requirements
Project name: DR2S
Project home page: https://​github.​com/​DKMS-​LSL/​dr2s
Operating system(s): Linux
Programming language: GNU R
Other requirements: Samtools, BWA, minimap2, IGV
License: MIT
Any restrictions to use by non-academics: None.

https://github.com/DKMS-LSL/dr2s
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