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Abstract 

Background:  Principal component analysis (PCA) is commonly applied to the atomic 
trajectories of biopolymers to extract essential dynamics that describe biologically rel-
evant motions. Although application of PCA is straightforward, specialized software to 
facilitate workflows and analysis of molecular dynamics simulation data to fully harness 
the power of PCA is lacking. The Java Essential Dynamics inspector (JEDi) software is a 
major upgrade from the previous JED software.

Results:  Employing multi-threading, JEDi features a user-friendly interface to control 
rapid workflows for interrogating conformational motions of biopolymers at various 
spatial resolutions and within subregions, including multiple chain proteins. JEDi has 
options for Cartesian-based coordinates (cPCA) and internal distance pair coordinates 
(dpPCA) to construct covariance (Q), correlation (R), and partial correlation (P) matrices. 
Shrinkage and outlier thresholding are implemented for the accurate estimation of 
covariance. The effect of rare events is quantified using outlier and inlier filters. Apply-
ing sparsity thresholds in statistical models identifies latent correlated motions. Within 
a hierarchical approach, small-scale atomic motion is first calculated with a separate 
local cPCA calculation per residue to obtain eigenresidues. Then PCA on the eigen-
residues yields rapid and accurate description of large-scale motions. Local cPCA on 
all residue pairs creates a map of all residue-residue dynamical couplings. Additionally, 
kernel PCA is implemented. JEDi output gives high quality PNG images by default, with 
options for text files that include aligned coordinates, several metrics that quantify 
mobility, PCA modes with their eigenvalues, and displacement vector projections onto 
the top principal modes. JEDi provides PyMol scripts together with PDB files to visualize 
individual cPCA modes and the essential dynamics occurring within user-selected time 
scales. Subspace comparisons performed on the most relevant eigenvectors using 
several statistical metrics quantify similarity/overlap of high dimensional vector spaces. 
Free energy landscapes are available for both cPCA and dpPCA.

Conclusion:  JEDi is a convenient toolkit that applies best practices in multivariate 
statistics for comparative studies on the essential dynamics of similar biopolymers. JEDi 
helps identify functional mechanisms through many integrated tools and visual aids for 
inspecting and quantifying similarity/differences in mobility and dynamic correlations.

Keywords:  Essential dynamics, Principal component analysis, Hierarchical principal 
component analysis, Kernel principal component analysis, Sparse principal component 
analysis, Subspace analysis, Outlier detection, Rare events, Covariance shrinkage
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Background
The widespread use of molecular dynamics (MD) simulation of biopolymers [1] has cre-
ated a greater need for statistical tools to analyze atomic trajectories. A thorough analysis 
helps identify mechanisms responsible for biological function. Molecular conformation 
is represented by a vector space with dimension equal to the number of degrees of free-
dom (DOF), often taken as Cartesian coordinates of selected atoms. Internal DOF can 
also be employed, such as distances between pairs of atoms. [2, 3] Certain distance pairs 
may characterize a functional motion, which in some cases can be measured experi-
mentally as illustrated in myosin. [4] Principal component analysis (PCA) is a method 
from multivariate statistics to reduce the dimensionality of the vector space, allowing the 
essential dynamics (ED) [5] of large molecules to be expressed in terms of a small num-
ber of collective motions. [3, 6, 7]

To calculate ED one can consider using specialized software or a MD simulation pro-
gram [8, 9] to perform PCA on its outputted trajectories. [10] However, MD programs 
that perform ED lack the sophistication for a thorough analysis. Standalone program 
Bio3D [11] runs in R, limiting its utility to low throughput loads. ModeTask [12] runs 
from a command line or as a PyMol plugin. ModeTask is used for PCA and normal mode 
analysis and offers good visualization, but has minimal statistical analysis functionality. 
The standalone software JED [13] provides a means for large scale comparative analyses 
and has many more statistical analysis tools than Bio3D or ModeTask, plus JED offers 
good visualization by providing PyMol scripts. Despite many advantages, JED requires a 
steep learning curve to use properly.

With Java Essential Dynamics (JED) as a forerunner, the JEDi software includes novel 
hierarchical PCA methodologies, more statistical tools and multithreading is added to 
achieve real-time analysis. JEDi handles high throughput analysis involving large num-
bers of input files simultaneously for comparative analyzes controlled by turning on-
and-off switches from a single input file to inspect molecular motions in great detail.

Feedback from JED users indicated a desire to examine ED with varying resolutions 
controlling the number of DOF representing the dynamics. Several requests were made 
to improve the user-interface for making it easier to inspect the high dimensional data 
and statistical outputs. In addition to addressing these concerns, JEDi has new function-
ality to quantify the role of rare events and makes it easier to employ different statistical 
models simultaneously. Realizing that most tasks are repeated many times, it became 
clear that a toolkit to conveniently and coherently perform a comprehensive set of real-
time operations is needed.

In this report, we describe a major upgrade to JED on two fronts. First, the user-inter-
face has been completely changed to execute inspection of data using workflows that 
automate repetitive analysis. The previous high barrier learning curve is greatly reduced 
due to the simplified user-interface that makes it easy to control how to inspect the data 
with explicit user-options. Second, additional novel computational algorithms have been 
included in the package, such as hierarchical PCA, which offers unique capabilities in 
analyzing large systems at high spatial resolutions, sparsification of statistical matrices to 
extract latent correlated motions, and filters to quantify the effects of rare events. With 
an emphasis placed on data inspection, the JED software is now called JEDi, for Java 
Essential Dynamics inspector.
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A schematic of the JEDi toolset is shown in Fig. 1. The scope of analysis tools avail-
able in the JEDi toolkit for computing and interpreting the ED of single and multiple 
molecular trajectories includes: (1) Specification of multiple subsets of atoms/residues 
with multiple levels of spatial resolution (or coarse-graining) and distributed selection of 
DOF; (2) Statistical moments of all variables up to fourth order, with options for select-
ing variables through thresholding; (3) Outlier processing including removal of outliers 
and selection of outliers based on thresholds, with model to model comparisons; (4) 
Optimal covariance conditioning; (5) Multiple types of PCA including a novel hierarchi-
cal cPCA, the determination of a coupling score between all residues in a subset, and 
generalizing dpPCA for any selection of atom pairs; (6) Three models of PCA using the 
covariance, correlation and partial correlation matrices are available with quantitative 
subspace comparisons; (7) More than a dozen kernel PCA analyses with PCA filtering 
for rapid processing are available; (8) default comprehensive graphical outputs, includ-
ing PyMol scripts to visualize individual principal component (PC) modes and essen-
tial motion over user-selected time scales as movies; (9) Creation of free energy surfaces 
from the top two PC modes; (10) A verbose option allows flat files to be given as part of 
its output. The output files are compressed in bzip2 format to reduce storage require-
ments. Finally, JEDi is programmed with multi-threading to complete all the analyses 
rapidly.

Implementation
In multivariate statistics the process of PCA is commonly applied to three types of sta-
tistical models, given by the covariance matrix, Q, the correlation matrix, R, and the 
partial correlation matrix, P. For all three statistical models, a spectral decomposition is 
performed. The eigenvectors are called PC modes. The rank ordering of the eigenvalues 
for Q from highest to lowest quantifies variation in collective variables.

Within a quasi-harmonic approximation [14], the PC modes from the Q associated 
with position coordinates are equivalent to the normal modes of vibration, where the 

Fig. 1  Overview of the JEDi workflow
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largest variation corresponds to the lowest frequency motion [15]. As such, PCA on 
Q provides a description of ED similar to normal mode analysis. Applying PCA on R 
allows correlated motions to be tracked without being biased toward the large amplitude 
motions. Applying PCA on P yields correlations between variables with the effects of all 
other variables removed. The application of PCA on the standard statistical measures Q, 
R, and P used in multivariate statistics have been implemented previously in the context 
of ED. [13].

Alignment of conformations

A molecular trajectory provides snapshots (frames) depicting a set of sampled confor-
mations, denoted as {X(t)} where t is a discrete frame index. The vector X may describe 
a subset of atoms within the system. All atomic coordinates are read in from a set of 
standard format PDB files. With this information, any subset of residues may be stud-
ied at various levels of atomic resolution, from all atom to alpha carbon atom only. For 
a subset consisting of m atoms, X will be a column vector of dimension 3m since each 
atom has (x, y, z) coordinates in Cartesian space.

For n observations, and m atoms the position covariance matrix associated with x, y 
and z coordinates per atom is constructed from a 3m× n data matrix, A. The 3m rows 
define the conformation of the system and the n columns represent the number of 
frames sampled in a trajectory that describe how the molecular conformation evolves 
in time. The molecular conformation deforms as the center of mass and orientation of 
the system changes over time. Due to global translations and rotations, all frames are 
aligned using an intermolecular correspondence set (ICS) of atoms.

The conformation of each frame is aligned to a reference structure using the quater-
nion alignment method [13]. The reference structure is usually selected as one of the 
conformations in a trajectory. The choice of reference structure is arbitrary, however it 
is necessary to use the same reference structure throughout an analysis. To facilitate a 
comparative analysis across many systems, the aligned coordinates {Xa} of each confor-
mation in each trajectory have the same atoms in the ICS aligned to the same reference 
structure. JEDi outputs the aligned coordinates {Xa} for all trajectories that are synchro-
nized to the specified reference PDB structure, and to be use in subsequent calculations, 
such as performing displacement projection plots.

The A data matrix represents the aligned coordinates with respect to the ICS with the 
mean of these coordinates subtracted. Thus, A = {Xa − �Xa�} Then, Q = (AAT )/(n− 1) , 
where AT is the transpose of the data matrix. The 3m× 3m Q matrix is real and sym-
metric, which guarantees only real eigenvalues and real components in eigenvectors. 
The quadratic form of Q ensures all eigenvalues are non-negative. This form of calculat-
ing Q is quite common, as it provides a simple unbiased estimator for the population 
covariance matrix. When using distance pairs there is no need to align the data since the 
distances between pairs of atoms are invariant under translations and rotations.

Statistical sampling

A variety of methods to quantify sampling adequacy and perform outlier detection are 
provided. To assess how well each variable (or DOF) is sampled, the Measure of Sam-
pling Adequacy (MSA) for each variable and Kaiser-Meyer-Olkin (KMO) statistic are 
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calculated [16, 17]. The problem of determining outliers in molecular dynamics (MD) 
trajectories is complicated because important functional mechanisms can be triggered 
by rare events that are not well sampled during a simulation, yet these outliers are at risk 
of being thrown out of the analysis. Furthermore, if some DOF are not sampled well, it 
is not prudent to ignore these variables altogether, although it is valuable to know where 
statistical inference is weak. The inclusion or exclusion of outliers have a major effect on 
the covariance matrix. For this reason, the best practices for covariance matrix estima-
tion is implemented.

It is well known that the sample covariance matrix Q, defined above, generally provides 
a poor estimator for the population covariance matrix when the number of samples is 
not much larger than the number of variables. For this reason, an adaptive-covariance 
shrinkage (ACS) algorithm [18] is implemented to obtain an improved covariance esti-
mation. The target matrix for ACS shrinkage is “Diagonal-Unequal-Variances”. The 
ACS algorithm determines the optimal shrinkage intensity based on the variance of the 
entries of the sample covariance matrix.

Previously, JED used a rare-event shrinkage (RES) algorithm that replaces detected 
outliers based on a user-defined threshold with the mean for each DOF. The RES algo-
rithm is retained in JEDi because it offers the advantage that the user can dramatically 
increase shrinkage by setting a low outlier threshold, and effectively turn off shrinkage 
by setting a high outlier threshold. The combination of RES and ACS methods yields 
robust unbiased estimates for the covariance matrix. See Fig. 2a. The accurate estima-
tion for Q translates to accurate estimates for R and P because the correlation and par-
tial correlation matrices derive from the covariance matrix. With shrinkage, subsequent 
spectral decomposition of the statistical models yield more reliable insights into the 
essential subspaces due to improved consistency as quantified by cross-validation when 
using subsampling.

Matrix conditioning

The inverse of Q is used when calculating the partial correlation matrix. For the inverse 
of Q to exist, zero eigenvalues from the spectral decomposition of Q cannot occur. It is 
important to assess the physical relevance of the smallest eigenvalues of Q in terms of 
the last significant digit of the data. Since the data is obtained from PDB files that record 
position coordinates to 3 decimal places, any uncertainty (via standard deviation) that 
is less than one thousandth of an Angstrom is below baseline noise. To accommodate 

Fig. 2  a Outlier processing and covariance estimation. b Sparsification of the R and P matrices
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this physical reality, a default floor threshold of 10−6 Angstrom-squared is applied to the 
eigenvalues of Q. After a spectral decomposition is made for Q, the Q matrix is recon-
structed through outer products of its eigenvectors where all eigenvalues less than the 
floor threshold are replaced with the threshold value. This reconstruction procedure 
is an improvement over a similar method to regularize the covariance matrix when an 
accurate inverse of Q is needed. [19] Using the physically based floor thresholding pro-
cedure, the inverse of Q (called the precision matrix) always exists, and is then used to 
calculate P.

Characterization of essential dynamics

Spectral decomposition yields eigenvectors, each with an eigenvalue, that define a com-
plete set of orthogonal collective modes. When eigenvalues from Q are plotted against 
mode index sorted from highest to lowest variance, a “scree plot” typically appears indi-
cating a large fraction of molecular motion is captured using a small fraction of modes. 
These modes define an “essential subspace” that describes the motions with largest 
amplitude. This processing has become standard practice, and like JED, JEDi offers all 
the usual outputs, such as scree plots, plots for the mean square fluctuations (MSF) of 
each PC mode and the combined MSF from the top set of modes specified by the user.

When large-scale motions underlie biological function, such as a hinge-bending 
motion between domains, the essential subspace captures functional dynamics. How-
ever, when functional motion has an amplitude less than dominant motion that is 
unrelated to function, such as a swinging C-terminus not tied to function, then the top 
modes of Q will not be biologically relevant. For this reason, JEDi allows users to apply 
PCA to subregions within a system. By selecting subsets of atoms, which need not be 
contiguous, biologically relevant motions are possible to identify, which would other-
wise be missed when analyzing the entire system. In addition, the statistical models of R 
and P provide different insights that Q does not offer.

For R, PC modes with eigenvalues greater than 1 suggest potentially biologically rel-
evant correlated motions. The influence from an increasing number of the original vari-
ables occurs as the eigenvalue increases. For P, the maximum eigenvalue is 2. Due to 
the nature of the partial correlation, there will be many variables with eigenvalue near 2. 
[20] The PC modes from R elucidate where correlations are present between variables, 
while the PC modes from P point to the variables that enhance or dampen the corre-
lated motions. The comparison of the R and P matrices can help identify ‘suppressor’ 
and ‘activator’ variables in the subset. [20–24]

After spectral decomposition is performed on the Q, R, and P statistical models, the 
aligned conformations are projected onto the selected top modes to create scatter plots. 
These scatter plots either show displacement vector projections (DVP) where the origin 
is defined by a user-selected conformation, or principal components where the origin is 
at the mean position taken over all conformations in the ensemble. These scatter plots 
allow for the inspection of the collective dynamics in two-dimensional cross-sections of 
conformational space to facilitate comparisons. JEDi outputs this information graphi-
cally, where each quarter of the trajectory has a distinct color so that the evolution in 
time can be traced. In summary, JEDi offers convenient tools to quantify how similar/
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different the essential subspaces are comparatively based on the top modes of each type 
of statistical model.

Outlier and inlier filtering

A comparison technique of examining the difference in the essential subspaces derived 
from first removing outliers and then selecting them characterizes the effects of rare 
events. The procedure sets a z-score threshold on each variable, or optionally a MAD 
score [25]. Within each frame, looking at each variable, if the value of a variable is below 
a set threshold, then that variable is said to be an inlier, otherwise an outlier. Using the 
same RES method of replacing the identified inlier or outlier by the mean (or median) of 
the variable, two distinct covariance matrices are constructed associated with inliers and 
outliers. The different results from both covariance matrices, as well as the two R and 
two P statistical models that derive from each covariance matrix are subsequently com-
pared using any of the available tools such as subspace comparison. Difference in the 
essential motions of the inliers versus the outliers glean insight into how the rare events 
influence molecular function.

Sparsification of statistical matrices

To interrogate the characteristics of correlated motions, thresholding is available for the 
sparsification of the R and P matrices. See Fig. 2b. The user can set thresholds separately 
for these analyses. The process of sparsification sets matrix entries that are below the 
threshold to zero. A sparsified matrix accentuates the correlated motions by diminish-
ing the effects of motions with low correlations, since these low values are susceptible to 
noise. Subsequent spectral decomposition of these sparse matrices provides a clear view 
of the correlated dynamics within the selected region of interest.

When prompted, JEDi performs PCA analysis on both the original (unaltered) and 
sparse matrices, and then compares the resulting subspaces quantitatively. Moreover, 
JEDi will allow the user to compare corresponding entries in R and P. When the abso-
lute value of the difference in these entries is greater than a user defined threshold, the 
correlation between two variables is either being enhanced or suppressed by other vari-
ables (DOF). JEDi generates a 2D map of where corresponding matrix elements in P are 
greater or lesser than that within R, and exceed the set threshold. This map identifies the 
interactions that activate or suppress correlated motions. This feature can be used on the 
P and R matrices or any of their sparsified versions.

The key to identifying important interactions between variables is in setting appro-
priate thresholds in the absolute differences between the entries in the P and R matri-
ces, and examining the direction of the difference under different levels of sparsification. 
Using sparsified matrices with a variety of thresholds can therefore glean insight into 
physical pairwise interactions that might be relevant to molecular function.

Trade‑off in spatial and statistical resolutions

An effective statistical analysis requires balancing the level of spatial resolution with the 
DOF intrinsic to the data. Consider a residue with twenty atoms, ten heavy atoms, four 
backbone atoms and one alpha carbon atom. Note that a heavy atom is a non-hydro-
gen atom. In this case, there are 60 DOF available. If the all-atom level of resolution 
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is selected, then all 60 DOF are considered. At the heavy atom resolution 30 DOF is 
considered. A backbone analysis (defining N-C-C-O atoms) deals with 12 DOF. An 
alpha-carbon analysis uses only 3 DOF. Not all DOF are equally informative to ED. For 
example, the 3 DOF for the alpha carbon atom is commonly used because it tracks the 
overall motions of a residue well, although information about conformational changes 
within the residue is lost.

Increasing the spatial resolution allows greater detail in conformational motion to be 
explored, but statistical resolution decreases as more DOF are considered for the same 
number of frames sampled. Besides lowering statistical inference, increasing spatial 
resolution increases the computation time, where the CPU time to perform spectral 
decomposition scales as DOF3 . The other complication of tracking more data is having 
a higher dimensional dataset that needs to be interpreted. In general, increasing spatial 
resolution decreases statistical resolution and vice versa. Therefore, JEDi gives the abil-
ity to select subregions within a system with specified spatial resolution to optimize this 
trade-off for elucidating functional mechanisms.

Hierarchical PCA and distributed DOF

To concurrently increase spatial and statistical resolution, a novel hierarchical PCA 
(HPCA) is employed. To our knowledge HPCA was proposed as covariance split-
ting [26], but not implemented in the same way. Here, HPCA uses residues to define a 
complete set of building blocks for distributed DOF. Each residue is allotted a specified 
number of DOF (h) that represent local conformational motion of either all atoms or all 
heavy atoms within a residue. These are distributed DOF that encompass the entire set 
of specified residue atoms, obtained by applying cPCA to each residue yielding a set of 
eigenvectors, which we call an eigenresidue, and a set of PCs (generalized coordinates), 
which we call residuePCs. Those residuePCs are then used to construct a new covariance 
matrix, which when factored and convoluted with the eigenresidues yields an atomic 
level approximation of the ED.

For this method to work, it is required that the same aligned conformations are used 
for the entire region of interest as well as for each residue within that region. In other 
words, a single coordinate system must be used for the entire calculation. This also 
ensures the results will be consistent with a direct brute force approach. Using a sin-
gle global alignment, a set of residuePCs is stored for each residue. The number of resi-
duePCs used to represent a residue defines the number of DOF for that residue. The 
residuePCs are a set of generalized coordinates representing the internal motions of a 
residue, where the top modes capture most of the large-scale motions. It is worth men-
tioning that if all residuePCs for each residue are used, HPCA will give exactly the same 
results as a standard cPCA approach, and it will require approximately the same CPU 
time.

Due to the nature of covariance PCA, the top PC modes (i.e. most relevant eigenresi-
dues) capture the dominant atomic motions that occur locally within each residue. As 
such, the desired spatial resolution is easily controlled, where a smaller h yields a faster 
calculation with less spatial resolution. The entire system, or a selected sub-region of 
interest, is represented by an incomplete basis set of eigenresidues. Each DOF corre-
sponding to an eigenresidue encodes distributed information throughout the residue. 
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Dropping DOF means information is discarded in a conceptually similar way as when 
the carbon alpha atom is used to represent an entire residue within a protein. However, 
unlike the carbon alpha approach, the most relevant conformational motion that takes 
place within each residue is prioritized in the top most eigenresidues. As such, diminish-
ing returns sets in as h is increased.

With HPCA, an all-atom resolution ED analysis is possible for thousands of residues. 
For example, a protein with m residues using h = 3 (i.e. 3 eigenresidues per residue), 
captures 3 distributed DOF per residue. This 3m× 3m covariance matrix is the same 
size as a carbon alpha approach. Within common practice of considering only the top 
PC modes with greatest variance as indicated by a scree plot, HPCA provides an excel-
lent approximation. Moreover, the calculation time for HPCA will be substantially faster 
and allow for a substantial reduction in memory usage.

When analyzing the dominant large-scale motions in large proteins, it is not required 
to retain atomic level detail. In this case, setting h = 1 provides sufficient accuracy. A 
user can override the h = 3 default, setting h to satisfy specific needs. As a general rule 
of thumb, h should be small for large systems, and made larger for smaller systems.

Residue‑residue coupling map

Eigenresidues are also employed to characterize residue-residue coupling. For two or 
more residues, a user selects a set of residues of interest. At the all-atom level, this resi-
due set defines a subregion where alignment is done separately for every residue pair 
within the selected region, and then all eigenresidues are calculated for each residue 
separately. For each pair of residues, an eigenresiduepair is constructed from the eigen-
residues for each participating residue, and the associated PCs, called residuepairPCs 
are generated.

Selecting h DOF (residuepairPCs) per residue leads to a 2h× 2h mode coupling covar-
iance matrix (MCCM). After performing an eigenvalue decomposition on the MCCM, 
the 1st and 2nd half of the components of a PC mode from the MCCM respectively cor-
respond to the 1st and 2nd eigenresidues in a given residue pair. A scoring function is 
introduced to quantify the degree of participation of each residue each PC mode of the 
MCCM.

The mean square fluctuation (MSF) for each component of a PC mode is calcu-
lated. Since each mode is normalized, the sum over MSF over all components is 1. 
Summing MSF over the 1st and 2nd half of the components of the k-th mode leads 
to w1(k) and w2(k) weights, where w1(k)+ w2(k) = 1 . These weights give the respec-
tive fraction of participation of residue 1 and 2 in the k-th mode. When w1(k) is near 
50%, there is strong mode coupling between the residues. Mode coupling strength 
decreases as w1(k) deviates farther from 50%. The scoring function is defined as 
s =

∑h
k=1

g(w1(k)− w1(k))�(k)/TR(MCCM) where �(k) is the eigenvalue of the k-th 
PC mode of the MCCM, TR() is the trace operation, and g is a Gaussian probability den-
sity centered at 0, with standard deviation set at 0.25. Note that the range of the dif-
ference, (w2 − w1) is between -1 and 1. This scoring function smoothly quantifies the 
degree of mode coupling per mode, weighted by the percent variance in the data that the 
mode captures.
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The scoring function for mode coupling strength has dependence on h. The most rel-
evant information that impacts the scoring function comes from the top eigenresidues, 
which is why increasing h beyond the scree point leads to marginal change in scores. 
However, rapid convergence of the sum over modes does not occur because the nature 
of the modes change as the size of MCCM increases as h increases. Nevertheless, the 
score slowly converges with stable results generally occurring for h > 9 . Being that the 
calculations are extremely fast, h = 12 is used as a default to ensure qualitatively con-
sistent results are produced. A heat-map image of the matrix showing the propensity of 
residue-residue coupling for all residue pairs in the selected subregion is given as output. 
The user can change h to monitor the sensitivity of the results.

Summary of dependencies and features

The Java code for JEDi can be downloaded from: (https://github.com/charlesdavid/JEDi).
Key resources include executable JAR files, input files, and a User Manual (Additional 

File 1). Additional resources are provided regarding PCA, essential dynamics, and exam-
ple datasets. JEDi is written in Java. The machine on which JEDi is to be run should have 
JRE version 1.8 or higher installed. The programs can be run from compiled source or 
from the provided executable jar files.

Dependencies

The following external libraries are required and are packaged with the JEDi program:

•	 JAMA Matrix: Jama-1.0.3.jar
•	 Java Commons: jcommon-1.0.23.jar
•	 Apache Commons Compress: commons-compress-1.19.jar
•	 JFreeChart: jfreechart-1.0.19.jar, jfreechart-1.0.19-experimental.jar, jfreechart-1.0.19-

swt.jar
•	 PDF Estimator: estimatePDF.jar

Features

1	 Multi-threading. The JEDi_Driver_MT.java class instantiates all methods to run 
the JEDi tookit using multi-threading. The user must allocate CPU and memory 
resources.

2	 Task management. To inspect high dimensional data relies on specifying which types 
of analysis to perform, and associated analysis parameters. The task of setting up a 
JEDi run is made simple by having the JEDi driver class read in a single input file that 
contains all needed information.

3	 User manual. Details of how to use each task in JEDi with recommendations on how 
to apply the methods are provided in the JEDi user manual.

4	 Prepocessing step. A preliminary run generates a JEDi formatted coordinate matrix 
file for all atoms in the PDB files that are read in as trajectory data. This initial step 
makes subsequent subset analyses much faster to perform. It also serves to guaran-
tee that the specified atoms/residues for subset selection are correctly represented 
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in matrix form. After this step, the intial PDB files are not used, except for the refer-
ence PDB file used for performing coordinate alignments. Input highlights for the 
preprocessing step are:

•	 The PDB files may be single chain or multi chain, in standard format.
•	 The PDB files may be uncompressed, zipped, gzipped, bzipped, or tarred.
•	 JEDi will process PDB records with header ‘ATOM’ or ‘HETATM’ only.

	  Output highlights for the preprocessing step are:

	 •	Variable statistics plots: mean, variance, skew, kurtosis
•	 Matrix of atomic coordinates before and after the optimal alignment is performed 

(when doOutputCoordinates=true)
•	 Conformation RMSD and residue RMSF.
•	 The B-factors in a PDB file, replaced with residue RMSF.

5	 Analysis types. The user can specify multiple subregions (subsets of atoms) for anal-
ysis using different levels of resolution, and different types of PCA. Analysis type 
highlights are:

•	 All Atom → all atoms in the PDB.
•	 All Atom Hierarchical
•	 Heavy Atom → all atoms except hydrogen.
•	 Heavy Atom Hierarchical
•	 Backbone → 4 backbone atoms (N-C-C-O).
•	 Alpha Carbon → Cα atoms only.
•	 Atom List → user defined atoms.
•	 Distance Pair → user defined pairs of atoms.
•	 Individual Residue → all atoms within residue.
•	 Residue Pair → all to all coupling scores.

6	 Statistical models. Selection of three model types:

•	 Covariance (always performed)
•	 Correlation
•	 Partial Correlation

7	 Visualization. The user can choose the number of most relevant modes to retain and 
visualize by subset. Two types of visualization are possible:

•	 Individual mode dynamics.
•	 Dynamics of selected top modes combined.

8	 Data exploration. There are many parameters that the user can adjust to change the 
characteristics of the analysis during the inspection process. The outputs of these 
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analyzes informs the user about the nature of the essential dynamics to help eluci-
date the mechanisms behind biologial function. Input highlights for customizing 
inspection are:

•	 Dimension of ED → number of top modes.
•	 Hierarchical PCA → number of eigenresidues.
•	 Outlier processing → Z-score or MAD score.
•	 Atom subsets → variance, skew, kurtosis.
•	 Down sampling → to strobe frames.
•	 Frame selection → for basin analysis.
•	 Sparsification → R and P thresholds.
•	 Kernel PCA → types and parameters.
•	 Free energy surfaces → smoothing level.
•	 Verbosity → output file types.

	  Output highlights for data inspection are:

	 •	Mean, variance, skew, kurtosis per variable.
•	 MSA scores and KMO statistic.
•	 Statistical models → plot Q, R, P matrices.
•	 All eigenvalues for Q, R and P.
•	 Scree and cumulative percent variance plots.
•	 MSF per mode → unweighted and weighted.
•	 Reduced matrices → atom to residue.
•	 Displacement vector projections (DVP).
•	 Topmost PC modes → Q, R and P.
•	 High quality PNG images → default output.

9	 Subspace comparisons. A powerful suite of tools are available to make quantitative 
subspace comparisons between different statistical models and selected subregions. 
Output highlights are:

•	 Cumulative overlap (CO).
•	 Root Mean Square Inner Products (RMSIP).
•	 Comparison to random basis per subspace.
•	 Canonical principal angles (PA). [27]
•	 Comparisons between statistical models.

10	Standalone drivers. Additional Java programs can be run to perform comparative 
analysis or additional analyses. These programs are:

•	 VIZ_Driver: Individual and Essential motions from Q, R, and P results can be 
generated for any user-selected window of PC-modes, corresponding to observ-
ing molecular motions on different time scales with fine control of parameters.
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•	 POOL_Driver: Pools together multiple trajectories into a single dataset to facili-
tate another JEDi analysis on the collection of data.

•	 SSA_Driver: Runs comparisons between a pair of trajectories. The outputs are 
CO, RMSIP and canonical PA.

•	 FES_Driver: Creates a free energy surface for any two user-selected PC-modes.
•	 KPCA_Driver.java: Performs kernel PCA analysis with option to select kernels 

and use PCA output or raw data.

Results
Key features of JEDi are illustrated by analyzing MD trajectories for two beta-lactamase 
proteins. The results presented here were generated on a high performance computer 
(HPC). With the possible exception of analyzing all-atom models of a whole biomole-
cule, typical calculations by users are accessible on a modern laptop computer. How-
ever, running JEDi on a HPC takes full advantage of multi-threading. A user wishing to 
perform multiple analyses in the same run may request as many processors as there are 
analyses to run simultaneously. This allows users to inspect data in various ways in real 
time with what if scenarios.

MD simulations

The simulations used for illustrative purposes are all-atom molecular dynamics simula-
tions of TEM-1 and TEM-52 beta-lactamase. The simulations were performed for 500 ns 
each using the GROMACS MD simulation software, generating 10, 000 conformations 
per trajectory. Details for the parameters and protocols for the simulations have been 
published previously. [28]

Running JEDi

Packaged as a Java library, JEDi is also distributed as JAR files. Each standalone JAR takes 
a parameter file as input. The main JAR file, JEDi_Driver_MT.jar, reads the main param-
eter file that consists of a set of key value pairs specifying which analyses to run, data 
files to read, and parameters for each analysis. The JEDi parameters file is designed for 
’plug and play’ functionality. This format makes it easy to manually edit the file via com-
mand line and automate editing via scripts for high-throughput applications. The main 
input file directs JEDi to perform preprocessing, run all methods on all selected models 
and do all selected analysis, as well as modifies user serviceable settings.

Output of JEDi is routed to directories that are created during execution of the pro-
gram. In the top level of the output directory information about the statistics of each 
subset can be found, as well as trajectory files if they are chosen to be output. Each anal-
ysis performed is handled by a distinct thread assigned from a thread pool in a multi-
threaded environment, which directs output to a sub-directory where each statistical 
model is assigned to its own directory. This ensures threads do not clash and output 
is cleanly segregated. For each analysis, JEDi provides the raw data in a compressed 
bzip2 form for efficient memory storage, as well as high quality PNG files that provide 
instant access to results for users to consider without the need to use third party plotting 
software.



Page 14 of 23David et al. BMC Bioinformatics          (2021) 22:226 

Workflow

A JEDi workflow consist of two steps. First raw structure information is converted into 
convenient matrix format in the preprocessing step. JEDi can read and write data in the 
standard PDB format. In the preprocessing step all PDB files found in a specified direc-
tory are parsed and converted into a trajectory matrix. A full path name can be given 
for the reference PDB file, which is used for methods that require coordinate alignment. 
Multiple trajectories from different files can be placed in different directories. All trajec-
tories are aligned to the same reference structure using atoms in the ICS shared among 
all frames to preserve interpretability. When comparing multiple trajectories, JEDi can 
combine them into one for comparative analysis via the pooling driver (with optional 
down sampling). Importantly, trajectories can only be pooled if they share identical 
atoms, and they must be listed in the same order within the PDB files.

The second step of JEDi analysis is to perform PCA. JEDi supports cPCA at the Alpha 
Carbon, Backbone, Heavy Atom, and All Atom level, Hierarchical PCA at the Heavy 
Atom and All Atom level, dpPCA between specified atoms, Individual Residue PCA, 
and Residue Pair Coupling Analysis. All of these can be run in the same job in a multi-
threaded way for efficient computation. In addition to PCA, post processing of the PCA 
outputs is performed, including subspace analysis, kernel PCA, construction of Free 
Energy Landscapes, visualization of the ED through individual modes or the superposi-
tion of modes. The schematic of the JEDi toolset is illustrated in Fig. 1.

Statistics

Statistical moments up to 4th order are calculated for each position coordinate, and vis-
ualized in high-quality PNG output files for quick access. Examples of these statistics are 
shown in Fig. 3. Each graph provides a distinct line for x, y, and z components and are 
plotted against atom number. These moments inform the user about how to select sub-
sets of atoms to analyze. The user can specify distinct thresholds for variance, skew, and 
kurtosis to construct atom subsets in which only the atoms that meet or exceed those 
thresholds are included.

Fig. 3  a–d show the first four moments as JEDi outputs for immediate inspection when running the 
analysis driver over a trajectory. These can be used to evaluate the general statistical behavior of atoms and 
select subsets of residues for further analysis. In e the MSA for each atom is shown which is also output for 
inspection during analysis run. Finally f shows RMSF, a common metric for evaluating MD Simulation behavior
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Outlier and inlier filtering is provided to investigate the effects of rare events. Statis-
tical models are built by either including only inliers or only outliers. PCA analyses is 
performed on the statistical models, which will be different between inliers and outliers. 
These differences can be quantified by subspace comparison. An example of this proce-
dure is shown in Fig. 4. The TEM-1 MD Simulation trajectory was analyzed using outlier 
processing to asses the quality of the simulation. The outlier analysis indicated the pres-
ence of rare events at the very beginning of the trajectory, which is likely tracking relaxa-
tion in the simulation. For a successful outlier processing, z-score or MAD thresholds 
should be chosen judiciously to ensure proper sampling in both the inlier and outlier 
sets. Conservatively, a z-score range of [0.675, 1.96] is recommended.

Multiple resolution analyses

Multiple resolution analyses are illustrated by pooling the trajectories of TEM-1 and 
TEM-52 beta-lactamase via the Pooling Driver. To examine the effect of multiple levels 
of descriptions of molecular dynamics, a subset of 5 residues that comprise the mecha-
nistic site is considered. This subset is specified by passing a residue list to JEDi contain-
ing only the desired residue numbers. The selected residues are SER70, LYS73, SER130, 

Fig. 4  The differences in the essential dynamics of TEM-1 is visualized using a no outlier correction, b outlier 
removal, and c outlier selection. Outlier processing was done using a z-score cutoff of 1.96. Projections are 
colored by time series, with red being the beginning of the trajectory and blue being the end. Figure d 
shows the RMSIP between the essential subspaces of the outlier removal and selection modes with the no 
correction modes. We see that the essential subspace is very similar ( > 0.9 identity) for no correction and 
outlier removal indicating that the outlier do not appreciably impact the essential dynamics of the protein. 
The RMSIP between the no-correction and outlier selection space is much lower and in the projections 
we see that the first PC mode is dominated by a relaxation motion of the molecule at the beginning of the 
simulation
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GLU166, and LYS234 [29]. cPCA on Q was performed on this subset of the trajectory 
using alpha carbon, backbone, heavy atom and all-atom resolutions.

Projections of subregion motions onto the top two PC modes are shown in Fig. 5a-d 
for the four resolution levels. As the level of atomic resolution increases there is a cor-
responding increase of resolution in the projection space. Notably, there is a large dif-
ference between the alpha carbon and backbone subsets (Figs. 5a, b) in comparison to 
the heavy atom and all-atom subsets (Figs. 5c, d). At higher resolution, multiple clusters 
appear in the projections of each molecule’s trajectory, indicating dynamic transitions 
between meta-stable conformation states. These basins are not discernible at low resolu-
tion. The ability to probe small regions at high resolution helps reveal basins that govern 
molecular function. Interestingly, the overall differentiation in TEM-1 versus TEM-52 
dynamics is maintained at all resolution levels.

Next consider multiple resolution analysis using PCA when determining large-scale 
motions of a protein. Figure 5e–h shows the same resolution funnel for the ICS residues 
within the entire protein. There is no appreciable gain in resolution at the global scale 
from an all-atom analysis. This result occurs because large conformational motions of 
the entire protein eclipses the small amplitude motions observed at high resolution. As 
expected, the alpha carbon or backbone PCA is useful for global analysis, while a tar-
geted heavy atom or all-atom analysis is useful on a small subset of residues to extract 
mechanistic information.

Sparsification

Sparsification of the R and P normalized statistical matrices allows for clarification of 
atomic motion in the top square modes. When sparsification thresholds are chosen that 
maintain moderate RMSIP scores but remove many minimally correlated interactions, it 
becomes possible to see exactly which atoms are contributing to key collective motions 
that may indicate molecular function.

The effect of sparsification on the motions of the mechanistic residues of TEM-1 is 
shown in Fig. 6. Figures 6a, b show the top two squared modes and the RMSF over the 

Fig. 5  The projections of the mechanistic site conformations onto the top 2 principal components for a 
alpha carbon b backbone c heavy atom and d all atom levels. With increasing resolution of atomic detail 
there is an accompanying increase in projection detail for this small subset. In contrast e–h shows the same 
funnel for the ICS set which does not
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top 10 modes from PCA using the normal (not sparsified) correlation matrix. The top 
squared mode indicates that the atoms in the second residue, LYS73, play an important 
role in the correlated motions but the essential dynamics are spread across many of the 
atoms in the subset. This is indicated in the broad distribution of RMSF.

Figure  6c, d and  e, f show the same information, but the PCA was performed on a 
sparsified correlation matrix with thresholds of 0.5 and 0.7 respectively. With increas-
ing sparsification the background noise in the squared modes decreases. Interestingly, it 
visually becomes apparent the atoms participating in the most highly correlated motions 
occur in residues LYS73 and LYS234. The RMSF plots over 10 modes indicate that the 
total information contained in the essential subspace is approximately conserved inde-
pendent of the sparsification threshold. This is quantifiable through RMSIP between 
PC modes with sparsification and normal PC modes, as shown in Fig.  6g. For higher 
thresholds the overlap for the individual modes are small but as the subspace dimension 
increases the RMSIP increases again. The sparsified essential dynamics are also visual-
ized directly on the molecule via pymol scripts generated by JEDi’s visualization driver. 
Movies of the motions discussed in this section are provided in Additional File 2.

Fig. 6  Correlation analysis shown with increasing sparsification threshold. a, c, and e shows the top two 
squared modes from each analysis with thresholds of 0.0, 0.5, 0.7 respectively showing how the information 
encoded in each mode becomes more localized with increasing sparsification. b, d, and f show the total root 
mean square fluctuations (RMSF) of the subset captured by the top ten modes from PCA. These indicate that 
while modes become more localized, the total information in the essential subspace is roughly conserved. 
Finally, g) shows the RMSIP for the sparsified analyses compared to the un-sparsified analysis
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Hierarchical PCA

To illustrate the equivalency and advantages of hierarchical PCA (HPCA), an explicit 
all-atom PCA and all-atom HPCA using 1, 2, and 3 eigenresidues for the entire pro-
tein were done and then compared. A subspace analysis was performed to evaluate 
the similarity of the results. Figure 7a shows that with an increasing number of eigen-
residues used in the HPCA computation, the total variance of the essential subspace 
approaches the true variance as computed with a brute force all atom PCA.

The RMSIP from the subspace comparison between the explicit all-atom and all-
atom HPCA is shown in Fig. 7b. The high ( > 0.8 ) RMSIP between the two subspaces 
indicates that even a single eigenresidue is able to capture the global motions of the 
protein. Accuracy increases as the number of eigenresidues increases. For the same 
computational cost of an alpha carbon analysis, using three eigenresidues yields 
a very high ( > 0.95 ) RMSIP to the explicit all atom approach. This example clearly 
shows that HPCA is an excellent approximation for a brute force all atom PCA while 
significantly reducing compute times.

Fig. 7  a For the entire TEM-1 protein, the scree plot for explicit all atom PCA is compared to HPCA using 1, 2, 
3 eigenresidues to show that the captured variance approaches that of the exact variance. b Iterated RMSIP 
for HPCA is shown for 1, 2, and 3 eigenresidues compared to the eigenvectors found by explicit all atom PCA 
analysis. Using only a single eigenresidue per amino acid already reconstructs the explicit analysis up to 80% 
and including more degrees of freedom improves this to 95%

Fig. 8  Residue pair interaction scores for the active site residues of: a TEM-1 and b TEM-52. The interaction 
score for a residue pair can range from 0-100, where 0 means no interaction and 100 means maximum 
interaction. c shows the difference in the two interaction networks (TEM-52 minus TEM-1) in order to 
highlight the differences in interaction networks
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Residue pair coupling

Calculating residue-residue couplings as a heat map is illustrated in Fig. 8a, b for the 
active site residues of TEM-1 and TEM-52 respectively. Many of the residues have 
high interaction scores with each other indicating their pairwise motions are corre-
lated. In Fig. 8c the difference in the interaction matrices for the two enzymes (TEM-
52 minus TEM-1) are shown. The resulting change in residue pair couplings is sparse, 
indicating that most of the residue pair interaction network for both enzymes is simi-
lar. However, there is a drop in residue-residue coupling when one of the residues is 
either LYS73 or LYS234. The drop in residue pair coupling indicates the motions are 
less coupled in TEM-52. This result is consistent with the TEM-52 binding site being 
less specific than that of TEM-1.

Subspace analysis

The subspace analysis function computes RMSIP iteratively as the subspace dimension 
increases, and estimates the significance of each RMSIP score by comparing to z-scores 
obtained from multiple random comparisons of an equivalent vector space and sub-
space dimensions. Additional analysis is run for the entire essential subspace to obtain 
multiple metrics. When multiple PCA models are being analyzed for the same subset 
of atoms (including sparsification results), or if explicit PCA and HPCA are selected for 
the same subset (and resolution), then a subspace analysis will be automatically done for 
comparison, and the output is directed to labeled sub-directories.

Visualization of molecular motion

JEDi includes a program which takes eigenvectors from a Cartesian PCA and generates a 
high quality movie of the dynamics described by each mode and the essential subspace. 
Details on how the modes are animated are given in the original JED paper [13]. This 
driver program has been refactored with new capability and now produces updated 
PyMol scripts for viewing atomistic details. Examples of whole molecule and subset 
motions are provided in Additional file 1. Several improvements and extensions for visu-
alization has been made that was absent in JED. Examples of these movies can be found 
in Additional file 2.

Kernel PCA

JEDi includes a set of programs which take the output of the PCA analyses and pipes 
them into user selected kernels for KPCA analysis. The PCA preprocessing ensures that 
the input to the kernels contains the most critical elements of the original data while 
providing substantial reduction in compute times. JEDi offers more than a dozen dif-
ferent kernels to investigate the presence of non-linear features in the data. The user 
can turn on this feature and select which kernels to apply. Examples of these kernels are 
shown in Fig. 9a–l as high quality PNG images for immediate inspection.
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Free energy landscapes

JEDi includes a program which takes the top two PCs or DVPs and computes a free 
energy surface. The plots are rendered as 3-D scatterplots from two distinct perspec-
tives. This feature can be turned on and will produce graphical output for every PCA 
analysis. An example of this output can be seen in Fig. 10a, b where high quality PNG 
images give two distinct perspectives to help identify the geometry of the landscape.

Conclusions
We developed an essential dynamics analysis toolkit written in Java that performs many 
tasks that implement best practices for multivariate statistics. The JEDi toolkit offers 
much more functionality than currently available tools. Analysis methods are inte-
grated, and due to multi-threading, processed largely in parallel. Unique aspects include: 

Fig. 9  a–i display some of the kernels computed by JEDi when the KPCA routine is called. In each figure, JEDi 
colors the conformations by time series, splitting into the trajectory into four segments denoted by red then 
blue then green then yellow

Fig. 10  Sample free energy surface output from JEDi. a Shows the left side view and b shows the right side 
view
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subregion and resolution selection, threshold-based processing of rare events into two 
sets, outliers and inliers, with complete PCA analysis and subspace comparisons; spar-
sification of R and P matrices with complete PCA analysis, subspace comparisons, and 
activator and suppressor variable detection; hierarchical PCA using distributed DOF for 
all atom and heavy atom sets of any size; residue pair interaction analysis; distance pair 
PCA; atom list PCA; convenient comparative analysis of subspaces using iterated RMSIP 
scores and principal angles; visualization of essential motions and individual PCA 
modes; the inclusion of 3 PCA models - covariance, correlation, and partial correlation. 
A detailed user manual (as a PDF) is made available with the download of the JEDi soft-
ware package (Additional File 1). The program can be run from compiled source or from 
executable jar files. Additional resources include example test cases with all JEDi results.

Availability and system requirements

•	 Project name: Java Essential Dynamics Inspector
•	 Project home page: https://github.com/charlesdavid/JEDi
•	 Operating system: Platform independent
•	 Programming language: Java
•	 Other requirements: JRE version 1.8 or higher
•	 License: GNU GPL 3
•	 No restrictions to use: For reproduction and development, cite the license
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