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Background
Nanopore sequencing has seen a dramatic increase in read quality and throughput 
over the last few years, leading to increased adoption and novel applications. Recently, 
nanopore sequencing has been used for metagenomics in clinical, environmental and 
agricultural settings [1–4]. Many metagenomic read classifiers, originally designed for 
short (< 300 bp), high quality reads rely on k-mers for sequence classification [5]. Due to 
the high error rate of nanopore sequencing and the low likelihood of many consecutive 
error-free bases, k-mer methods are unlikely to be optimal for nanopore read classifica-
tion [1]. Additionally, popular k-mer methods such as Kraken2 discard information on 
the order of k-mers within a sequence, which is useful data for classifying long reads [6].
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Alternative methods have been explored: EPI2ME, a platform operated by Metrichor, 
uses Centrifuge as its classifier [7]. Centrifuge can start with short k-mer matches 
and extend them until the first nucleotide difference in alignment, enabling variable 
length matches. By default, Centrifuge starts this extension with 22 bp seeds, however 
this parameter can be set down to 16 bp for increased sensitivity. MetaMaps relies on 
approximate read alignment with minimizers and a probabilistic model to estimate 
sample composition [8]. Finally, CDKAM, a recently released tool, uses inexact k-mer 
matches to identify matches in a reference database [9].

These tools have previously been evaluated in benchmarks, and while they can pro-
vide taxonomic classifications, they each suffer from limitations [10]. Centrifuge and 
CDKAM are unable to provide accurate species-level classification, and report a large 
number of false positive read classifications [9, 10]. MetaMaps can provide more accu-
rate classifications but suffers from long processing times (over 10  h for just 74,000 
reads in a recent benchmark) [8]. All of these tools require large servers with more 
RAM than high-end consumer-grade computers [10]. These limitations are barriers 
to the widespread adoption of long read technology for metagenomic sequencing. For 
instance, even the identification of one read belonging to a pathogen can be significant 
in food, military or clinical samples, and these results must be available rapidly to enable 
action. We aim to overcome these limitations with a cloud-based, rapid, highly accurate 
metagenomic classifier for long reads.

Methods
Implementation

We combined a fast and accurate read mapper, Bayesian reassignment of reads based on 
mapping quality, a new lowest-common ancestor process, and an advanced visualization 
tool to build a better metagenomic classifier for nanopore reads. This pipeline, which we 
call BugSeq, has been packaged with Nextflow (v20.07.1) and made available as an online 
service (https:// bugseq. com/ free) for easy cloud analyses. An overview of the pipeline 
is presented in Fig. 1. In brief, reads are quality controlled with fastp (v0.20.1), using a 
minimum average read quality of Phred 7, a minimum read length of 100 bp, and the 
default low complexity filter [11]. Reads are then mapped with minimap2 (v2.17) to an 
index containing all microbes in RefSeq, the human genome, and a database of contami-
nants [12]. Specifically, this database contains all complete bacterial genomes; and all 
fungal, viral, protozoal and archaeal genomes found in RefSeq, regardless of comple-
tion status. Additionally, the human genome and a database of contaminants (Univec) 
are included. The database for evaluation was generated on February 23, 2020 but has 
since been updated monthly. For use with an alternative reference database, please get in 
touch with the corresponding author. Minimap2 was executed in “map-ont” mode with 
the “-a” flag to align reads into SAM format. A range of parameters was evaluated for 
minimap2, including varying the number of secondary alignments. Most variations of 
this parameter, from 5 to 25, produced little variation in the final results; 10 was selected 
based on a good trade-off between accuracy and speed, and was used for all subsequent 
analyses (data available at https:// gitlab. com/ bugseq/ metag enomi cclas sifie rsben chmar 
king/-/ tree/ master/ progr am_ outpu ts/ BugSeq/ param_ search). Next, alignments to the 
reference sequences are reassigned based on a Bayesian statistical framework using 

https://bugseq.com/free
https://gitlab.com/bugseq/metagenomicclassifiersbenchmarking/-/tree/master/program_outputs/BugSeq/param_search
https://gitlab.com/bugseq/metagenomicclassifiersbenchmarking/-/tree/master/program_outputs/BugSeq/param_search
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Pathoscope (version 2.0.7) and default parameters [13]. Finally, the lowest common 
ancestor of reassigned reads is calculated and inputted into Recentrifuge (v1.1.1), set-
ting the minimum required taxa to 1, and generic input mode for summarization and 
visualization [14]. Quality control results are summarized with MultiQC using a custom 
configuration which changes the report title and Phred thresholds for bad quality data to 
7 [15]. All dependencies are packaged in Docker images, and jobs are executed on Ama-
zon Web Services Batch in a secure, private environment.

Evaluation

We evaluate BugSeq and alternative long read metagenomic classifiers using simulated 
data, and sequencing data from mock microbial communities and real patient samples. 
We generate simulated data using the CAMISIM package and its included mini_con-
fig.ini configuration [16]. This simulator generates microbial communities using the 
included 24 genomes, sampling abundance using a lognormal distribution at default val-
ues (μ = 1 and σ = 2). The read simulator was switched to NanoSim to generate nanop-
ore sequencing reads, and one sample with 100 Mb of data was generated [17]. The E. 
coli simulation profile included with NanoSim was used for read simulation. Resulting 
simulated data, along with ground truth classifications, is available at: https:// doi. org/ 10. 
5281/ zenodo. 43826 59

We run the metagenomic classifiers included in our evaluation with the following 
commands:

CDKAM version 1.1: ‘./CDKAM.sh DB INPUT_FILE OUTPUT_FILE ---fastq nthread 
32’.

MetaMaps commit 98102e9e684efa6a9903d8abe93600132c101ad0: ‘metamaps map-
Directly -t 32 --all -r databases/miniSeq+H/DB.fa -q INPUT_FILE -o TEMP_FILE 
--maxmemory 196 && metamaps classify -t 32 --mappings TEMP_FILE --DB data-
bases/miniSeq+H’. Maximum memory was set to 70% of true maximum memory as rec-
ommended by the MetaMaps authors.

Centrifuge version 1.0.4-beta: ‘centrifuge -t -k 1 -p 32 -x DB -U INPUT_FILE -report-
file OUTPUT_REPORT -S OUTPUT’. We specify the ‘-k 1’ flag to collapse reads to 
their lowest common ancestor. Default databases and parameters were used for all tools 
unless otherwise specified. For default databases, we use the following:

Centrifuge: the “h+p+v+c” database (https:// doi. org/ 10. 5281/ zenodo. 37321 27)
MetaMaps: the original authors’ miniSeq+H database (https:// doi. org/ 10. 17605/ OSF. 

IO/ XY4VN).
CDKAM: the standard database generated on December 15, 2020.
All tools were evaluated using 32 threads and 280 Gb of RAM (our server capacity). 

All classifier outputs are available at https:// gitlab. com/ bugseq/ metag enomi cclas sifie 
rsben chmar king.

We use precision and recall to evaluate the classification accuracy of each tool. Preci-
sion (the positive predictive value) was defined by the number of correctly called reads 
divided by the total number of classified reads at the specified rank. Recall was defined 
as the number of correctly called reads divided by the total number of reads (unclassi-
fied and classified) at any rank. F1 score was calculated as 2 × (Precision × Recall)/(Preci-
sion + Recall). Recall, precision and F1-scores for the ZymoBIOMICS mock community 

https://doi.org/10.5281/zenodo.4382659
https://doi.org/10.5281/zenodo.4382659
https://doi.org/10.5281/zenodo.3732127
https://doi.org/10.17605/OSF.IO/XY4VN
https://doi.org/10.17605/OSF.IO/XY4VN
https://gitlab.com/bugseq/metagenomicclassifiersbenchmarking
https://gitlab.com/bugseq/metagenomicclassifiersbenchmarking
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evaluation were calculated by considering reads assigned to expected nodes as correct 
at that taxonomic rank and any rank above, otherwise the read was considered incor-
rect. A list of expected nodes is provided in supplementary Gitlab repo (https:// gitlab. 
com/ bugseq/ metag enomi cclas sifie rsben chmar king). Processing time and memory were 
calculated using the linux time utility, with the “verbose” option. Analysis of BugSeq run 
time by input size was performed with an AWS Batch worker instance warmed up to 
ensure comparable times across all input sizes. Reads were randomly samples from the 
ZymoBIOMICS LOG dataset with seqkit using the command “seqkit sample -j 32 -2 -n 
NREADS -o NREADS_reads.fastq -s 11 ERR3152364.fastq.gz” [18].

To evaluate abundance estimation, we calculate the root mean squared error (RMSE) 
as the square root of the averaged squared residuals. The lower the RMSE, the closer the 
forecast is to representing the actual data. Exact calculation is available in the Additional 
file 6: Gitlab repository. Identified abundance of each expected organism was calculated 
as the proportion of reads assigned to that species divided by the total number of reads 
assigned to any species in the sample.

We compare these proportions to the ZymoBIOMICS “Genome Copy”, which adjusts 
expected abundance for genome length [19].

For the evaluation of classifier performance on lower-respiratory tract infections, we 
download data from SRA accession PRJEB30781 [20]. We ensure comparability with 
the original authors of the data by only considering respiratory pathogens (defined in 
their Methods section) [20]. The following pathogens were considered significant and 
included in analysis: “E. aerogenes, E. cloacae complex, E. coli, H. influenzae, K. oxytoca, 
K. pneumoniae, M. catarrhalis, P. mirabilis, P. aeruginosa, S. marcescens, S. aureus, S. 
pneumoniae and S. pyogenes”. Sensitivity was calculated as the number of respiratory 
pathogens detected divided by the expected number detected, summed across all sam-
ples. Specificity was calculated as the number of respiratory pathogens called as not 
present in each sample (maximum 13), divided by the expected number called as not 
present, summed across all samples. The Charalampous et  al. specificity calculation 
method calculated the number of specimens called as normal respiratory flora (NRF) or 
no growth (NG), divided by the true number of NRF/NG specimens (n = 6).

Results
We assessed the performance of BugSeq and compared it with three competing tools: 
Centrifuge, MetaMaps and CDKAM [7–9]. We first assessed the performance of BugSeq 
on simulated data with known ground truth classifications. We generate a realistic com-
munity and nanopore metagenomic sequencing of it using the recently released CAMI-
SIM tool [16]. We evaluate each metagenomic classifier using their default database as 
specified in the Methods section. BugSeq outperforms all tools on this simulated data 
when examining the species-level F1-score. BugSeq obtains a species-level F1 of 0.964 
with 100% precision and 93.1% recall. In contrast, Centrifuge obtained a species-level 
F1 of 0.962 (precision: 99.0%, recall: 93.5%), MetaMaps 0.952 (precision: 99.8%, recall: 
91.1%) and CDKAM 0.938 (precision: 96.8%, recall: 91.0%).

We next evaluated BugSeq and alternative tools using real nanopore sequencing data 
from two microbial communities with known composition. The ZymoBIOMICS mock 
communities contain 8 bacteria and 2 yeasts in even (hereafter referred to as “Even”) 

https://gitlab.com/bugseq/metagenomicclassifiersbenchmarking
https://gitlab.com/bugseq/metagenomicclassifiersbenchmarking
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and logarithmic (hereafter referred to as “Log”) concentrations [21]. Sequencing data for 
both samples was independently generated on a GridION using the R9.4.1 chemistry 
and is publicly available (https:// github. com/ Loman Lab/ mockc ommun ity# data- avail 
abili ty). Full details regarding data generation and characteristics are available from the 
original publication [21]. All evaluations on the ZymoBIOMICS datasets used a refer-
ence database from RefSeq, as previous studies have demonstrated impact of the choice 
of reference database on classification performance (see “Methods” section for database 
details) [22].

At the species level, BugSeq attained the top precision and recall compared with Meta-
Maps, CDKAM and Centrifuge across both Even and Log datasets (F1-scoreEven: 0.95, 
F1-scoreLog: 0.95) (Table  1). On average, BugSeq had 6% better recall than MetaMaps 
while maintaining superior precision, and 2–5% better precision than Centrifuge while 
maintaining superior recall. Additionally, BugSeq had an average 2% better F1 than 
CDKAM. When analyzing the number of unique species identified by each tool (true 
count = 10), BugSeq found a total of 117 and 52 species in the Zymo Even and Log 
dataset, respectively. In comparison, MetaMaps identified 2144 (Log) and 1386 (Even) 
unique species using the “miniSeq + H” database and exceeded our RAM threshold with 
the RefSeq database (Table 1). Centrifuge identified 5380 and 5513, and CDKAM identi-
fied 3721 and 2956 species in the Even and Log datasets, respectively. Full results at each 
taxonomic rank can be found in Additional file 1: Table S1.

We next evaluated the ability of each tool to estimate taxonomic abundance. We 
use the Zymo Log dataset from above, as it contains organisms across a broad range 
 (10−2 to  108 cells) of abundance. For each organism in the sample, we compare the 
abundance calculated by the taxonomic classifier to the expected abundance of that 
organism. The absolute percentage error for each species and classifier combina-
tion, calculated as the difference between the expected and identified abundance, are 
presented in Fig.  2. We use the root mean square error to quantify the overall per-
formance of each tool. Again, BugSeq performs better than alternative tools, with a 
RMSE of 0.0076, followed by MetaMaps (0.0082), Centrifuge (0.011) and CDKAM 
(0.012). Of note, Centrifuge demonstrates its weakness with long read data here; with 
its built-in abundance calculation, it assigns all taxa in the sample an abundance of 
0, except for Hungateiclostridium saccincola, which had a total of 20 reads assigned 
(0.0006% of total) and is given an abundance of 1.

We next measured computational performance for all tools. BugSeq is an order of 
magnitude faster than MetaMaps, which took over 5  days using 32 cores and their 
“miniSeq + H” database. BugSeq took up to 4  h and 25  min to analyse the same 
amount of data. Notably, MetaMap’s miniSeq + H (26  GB) is significantly smaller 
than RefSeq (86 GB). BugSeq had longer run times than Centrifuge, which took 14 to 
19 min, and CDKAM, which took 8 to 9 min, for all analyses. All tools required more 
than 32 GB of RAM for execution, precluding their use on modern laptops. An analy-
sis of BugSeq’s run time by input size is provided in Additional file 1: Table S3.

To evaluate BugSeq on real clinical samples, we applied it to nanopore metagenomic 
sequencing of 41 lower respiratory tracts samples from patients with bacterial lower 
respiratory infections. Sample characteristics and data generation have been previ-
ously reported [20]. We used the original authors’ 1% abundance threshold to report 

https://github.com/LomanLab/mockcommunity#data-availability
https://github.com/LomanLab/mockcommunity#data-availability
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pathogenic microbes, ensuring comparability across methods. We also use the same 
list of clinically significant pathogens, defined in the Definition subsection of their 
Methods section, when reporting results to ensure direct comparability. The results 
of quality control and metagenomic classification are visualized in the Additional files 
4, 5. The overall sensitivity and specificity of BugSeq across all target pathogens, as 
compared to a composite of microbial culture and qPCR, was 100% and 99.6% respec-
tively. WIMP had a sensitivity of 100% and specificity of 98.7%. Using the specificity 
calculation of Charalampous et  al. (described in “Methods” section), the specificity 
of both tools was 83.3%, concordant with the original manuscript. BugSeq reached 
better concordance with traditional culture results, as compared with the origi-
nal “What’s In My Pot” (WIMP) analysis, in 3/41 (7.3%) samples (Additional file  1: 
Table S2). Specifically, samples S8, S15 and S21 each had S. pneumoniae detected by 
WIMP analysis but not by BugSeq or microbial culture. Pathogen-specific qPCR on 
these samples failed to detect S. pneumoniae, confirming these findings [20]. Addi-
tionally, BugSeq reached better concordance with qPCR, but not microbial culture, 
in 1/41 samples (sample S12), where WIMP detected a false-positive H. influenzae 
not detected by BugSeq or qPCR. All other samples were concordant between Bug-
Seq and WIMP. We note that several samples, such as S5 and S28, were incorrect by 
both BugSeq and WIMP: these samples either had closely related organisms detected 
(eg. Klebsiella oxytoca/Klebsiella pneumoniae in S5) or false positives detected by 
metagenomic sequencing (eg. S. pneumoniae in S28).

Discussion
Here we present BugSeq, an accurate and fast metagenomic classifier for nanopore 
reads. On simulated data and mock microbial communities, BugSeq was found to out-
perform MetaMaps, CDKAM and Centrifuge, sometimes by large margins (up to 21%), 
in terms of precision and recall. On large, 15 GB datasets, BugSeq was also faster than 
MetaMaps by an order of days, while suffering from a 4-h time trade-off with Centrifuge 
and CDKAM. BugSeq achieves better classification performance with its reliance on 
underlying performant tools. Preprocessing relies on fastp, which is optimized for speed 
by relying on C++ under the hood [11]. Minimap2, which performs BugSeq’s alignment 
step, is over 30 times faster than most long-read aligners and demonstrated the highest 
alignment accuracy at the time of its publication [12]. The use of Pathoscope further 
improves on the read alignments of minimap2, by reassigning reads to their most likely 
origin using information borrowed from other reads [13]. Finally, by taking the lowest-
common ancestor of read assignments, we overcome the classification uncertainty of the 
previous steps to yield a taxonomic classification that fits with all of the available data.

The results of our study are concordant with existing literature on long-read metagen-
omic classifiers [9, 10, 23]. We found a lower sensitivity for Centrifuge on the Zymo-
BIOMICS datasets, which could be attributed to cases in which Centrifuge returns 
multiple assignments for a single read and collapses these up the taxonomic tree via low-
est common ancestor [4]. Similarly, the original MetaMaps paper identified a RAM use 
of 262 GB and 209 CPU hours for a random sample of a third of the Zymo dataset [8]. 
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In our experience, MetaMaps mapped reads relatively quickly, in accordance with pub-
lished data on its MinHash-based aligner, but stalled on its “classification” step [24].

In addition to superior performance, part of BugSeq’s innovation lies in its deploy-
ment to the cloud for automatic metagenomic analysis from raw reads to report. BugSeq 
scales with the user’s data, and enables any microbiology laboratory to perform long-
read metagenomic classification. BugSeq’s user interface only requires a simple upload 
of FASTQ files to its website, and returns to the user intuitive HTML files for visualiza-
tion in their browser. We demonstrate the ease of use of BugSeq by uploading metagen-
omic data from 41 lower respiratory tract samples. Resulting data, including quality 
control and metagenomic classification, was packaged into two HTML files (Additional 
files 4, 5), and showed superior accuracy compared with the original WIMP analysis on 
the same data. We note, however, limitations in this analysis given the biased nature of 
culture and qPCR, which will only reveal pathogens of interest.

BugSeq’s main limitation is its execution time and processing requirements, which 
are greater than Centrifuge and CDKAM. The main reason for the greater processing 
requirements is that BugSeq performs full read alignments against all of RefSeq, whereas 
Centrifuge and CDKAM perform substring or k-mer matching against compressed data-
bases. These limitations can partly be overcome by further scaling BugSeq in the cloud. 
For example, this evaluation was limited to 32 threads for all computations; however, 
Amazon EC2 now contains instances with up to 448 CPUs. In our experience, minimap2 
scales well until at least 64 threads; future work will examine scaling computation to 
larger EC2 instances for faster analyses.

Conclusion
BugSeq is a rapid, scalable and accurate metagenomics classifier that outperforms alter-
natives such as MetaMaps and Centrifuge across a range of performance indicators. 
BugSeq is deployed to the cloud for easy metagenomic analyses.

Availability and requirements

Project name: BugSeq
Project home page: https:// bugseq. com/ free
Operating system(s): Platform independent
Programming language: Nextflow
Other requirements: Modern internet browser such as Firefox, Chrome, Safari or 
Edge
License: https:// docs. bugseq. com/ legal/ terms- of- use/
Any restrictions to use by non-academics: Licence required

Abbreviations
HTML: Hypertext markup language; qPCR: Quantitative polymerase chain reaction; WIMP: What’s In My Pot.

https://bugseq.com/free
https://docs.bugseq.com/legal/terms-of-use/
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Additional file 1. Supplementary methods, and supplementary tables 1-2.

Additional file 2. Krona plot from the BugSeq metagenomic classification of the ZymoBIOMICS mock microbial 
community with logarithmic organism abundance.

Additional file 3. Krona plot from the BugSeq metagenomic classification of the ZymoBIOMICS mock microbial 
community with even organism abundance.

Additional file 4. Aggregated quality control report generated by BugSeq on the nanopore metagenomic sequenc-
ing data from Charalampous et al. Forty-one lower-respiratory tract samples are included in the analysis.

Additional file 5. Krona plots for BugSeq metagenomic classification of the nanopore metagenomic sequencing 
data from Charalampous et al. Forty-one lower-respiratory tract samples are included in the analysis.

Additional file 6. A screenshot of the graphical user interface of BugSeq. Users may submit data on this screen by 
clicking “Select Files” or dragging their files into the box, followed by clicking the submit button.
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