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Abstract 

Background:  Significant efforts have been made in building large-scale kinetic 
models of cellular metabolism in the past two decades. However, most kinetic models 
published to date, remain focused around central carbon pathways or are built around 
ad hoc reduced models without clear justification on their derivation and usage. 
Systematic algorithms exist for reducing genome-scale metabolic reconstructions to 
build thermodynamically feasible and consistently reduced stoichiometric models. 
However, it is important to study how network complexity affects conclusions derived 
from large-scale kinetic models built around consistently reduced models before we 
can apply them to study biological systems.

Results:  We reduced the iJO1366 Escherichia Coli genome-scale metabolic reconstruc-
tion systematically to build three stoichiometric models of different size. Since the 
reduced models are expansions around the core subsystems for which the reduction 
was performed, the models are nested. We present a method for scaling up the flux 
profile and the concentration vector reference steady-states from the smallest model 
to the larger ones, whilst preserving maximum equivalency. Populations of kinetic 
models, preserving similarity in kinetic parameters, were built around the reference 
steady-states and their metabolic sensitivity coefficients (MSCs) were computed. The 
MSCs were sensitive to the model complexity. We proposed a metric for measuring the 
sensitivity of MSCs to these structural changes.

Conclusions:  We proposed for the first time a workflow for scaling up the size of 
kinetic models while preserving equivalency between the kinetic models. Using this 
workflow, we demonstrate that model complexity in terms of networks size has signifi-
cant impact on sensitivity characteristics of kinetic models. Therefore, it is essential to 
account for the effects of network complexity when constructing kinetic models. The 
presented metric for measuring MSC sensitivity to structural changes can guide model-
ers and experimentalists in improving model quality and guide synthetic biology and 
metabolic engineering. Our proposed workflow enables the testing of the suitability 
of a kinetic model for answering certain study-specific questions. We argue that the 
model-based metabolic design targets that are common across models of different 
size are of higher confidence, while those that are different could be the objective of 
investigations for model improvement.
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Background
Kinetic models of cellular metabolism can provide comprehensive understanding on 
the dynamics of the cell and its response to environmental changes and perturbations. 
In depth understanding of cellular metabolism can allow metabolic engineers to tailor 
cells according to sought specifications and objectives. This could enable the design of 
cell factories where flux is directed towards the production of biofuels, pharmaceuticals 
or other specialty chemicals. To be useful though, a kinetic model should represent the 
dynamics of the cell accurately enough to provide the required study-specific knowledge 
[1]. To date, important strides towards building large- and genome-scale kinetic mod-
els of metabolism have been made [2–5]. Despite the emergence of methodologies for 
building kinetic models, the research community knows that several challenges remain 
to be confronted.

With larger and better quality kinetic models, the mathematical representations 
become increasingly complex. Furthermore, the parameter sensitivities of systems biol-
ogy models are in general “sloppy” [6]. We have noticed that metabolic models are often 
built around certain central carbon pathways or, ad hoc reduced models of genome-
scale metabolic network models (GEMs) [7]. Such models do not account for the full 
information contained in the GEMs and, the ad hoc reduced models do not come with 
explicit explanations and justifications on how the model was reduced. Several studies 
have built kinetic models around ad hoc reduced models and computed Metabolic Sen-
sitivity Coefficients (MSCs) for the system [1, 2, 8–10]. MSCs are desirable outputs of 
the kinetic models as they give insight into control patterns of the cell, assuming that the 
model is correct and accurate. However, Palsson and Lee showed with small-scale mod-
els that network complexity significantly affected the numerical values and the interpre-
tation of MSCs [11]. Their study showed that three different red cell metabolic models 
produced MSCs that have opposite signs. This suggested that the analysis of incomplete 
metabolic models could lead to misleading and inaccurate information.

It is important to preserve certain level of detail in a metabolic model in order for its 
predictions to be realistic. The model needs to include important carbon fluxes from the 
central carbon up to the biomass building blocks, which also includes the synthetic path-
way of interest that we would like to engineer. The fact that energy and redox are used by 
the synthetic pathway of interest makes it important that we account for “all” the reac-
tions and subsystems that carry significant energy and redox fluxes, such as a detailed 
tricarboxylic acid (TCA) cycle and electron transport chains (ETCs). Keeping such level 
of detail is essential in order to avoid making false conclusions from kinetic models.

However, nowadays algorithms for reducing GEMs in a more systematic and complete 
manner are starting to emerge [7, 12–15]. DRUM [14] and MinNW [15] are algorithms 
that allow the reduction of GEMs but, they do not conserve the feasible flux ranges of 
the model being reduced. The NetworkReducer algorithm aims to reduce the network 
around certain “protected” metabolites and reactions by iteratively removing reactions 
that do not obstruct their activity [13]. Nevertheless, the NetworkReducer does not con-
sider alternative subnetworks that could characterize the GEM being reduced. Ataman 
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et al. developed the redGEM and lumpGEM algorithms which allow reduction of GEMs 
around selected subsystems by retaining linkages and the information captured in GEMs 
[7, 12]. The algorithm performs consistency checks with the GEM to ensure that the 
reduced model is consistent in terms of flux profiles, essential genes and reactions, 
thermodynamic feasible ranges of metabolite concentrations and ranges of Gibbs free 
energy of reactions. The redGEM and lumpGEM algorithms can be used to build ther-
modynamically feasible models with different levels of complexity consistent with the 
GEM for the same chosen subsystems, whilst considering alternative subnetworks that 
could be feasible. These algorithms open up the possibility to investigate how MSCs are 
affected by model complexity for consistently reduced models by building kinetic mod-
els around them. For further discussions about available model reduction algorithms, we 
refer the reader to a recent review [16].

This study investigates the effect of kinetic model complexity – in terms of reac-
tion network size – and its effect on metabolic engineering conclusions derived from 
MSCs. The elements of complexity that are introduced in the models here are based on 
the choice of reactions and pathways that are brought into the system before reduction. 
We used the redGEM and lumpGEM algorithms to reduce the E. coli iJO1366 GEM to 
three different models, namely D1, D2 and D3, encompassing 271, 307 and 327 enzy-
matic reactions and 160, 188 and 197 metabolites, respectively. The thermodynamic 
formulation of the stoichiometric models allowed integration of fluxomics and metabo-
lomics data for aerobically grown E. coli (see Additional file  1) [17]. Due to the topo-
logical differences between the three models, we proposed a technique for scaling up 
the flux profile and concentration vector reference steady-states from D1 into the larger 
models D2 and D3. This scale-up procedure ensures physiological equivalency of the 
models by assuring that their steady-states are numerically similar. All the three models 
satisfy thermodynamic constraints and are consistent with the GEM. We used the Opti-
mization and Risk Analysis of Complex Living Entities (ORACLE) workflow to construct 
populations of kinetic models for D1, D2 and D3 around their scaled reference steady-
states. Due to the uncertainty in the kinetic parameters, their largely unknown ranges 
and the high-dimensionality nature of the system, there are multiple possible parame-
terizations of the kinetic models. Hence, we consider populations of kinetic models in 
order to account for the multiple possible scenarios arising from uncertainty in param-
eterization, hereby reducing bias. We fixed kinetic parameters from the smaller model 
into the larger one to further ensure equivalency of the models and hence a fair com-
parison. As integral part of the ORACLE workflow, we compute the MSCs for the stable 
kinetic models. The nested nature [18, 19] of the reduced models allows us to methodi-
cally compare the MSCs across the three models. We demonstrate that, even when the 
model preserve certain minimum assumptions of the real world biological system, MSCs 
are sensitive to model complexity.

The methodology presented in this manuscript allowed us to study the sensitivity 
of systematically reduced models of aerobically grown E. coli. The models were spe-
cifically designed to be equivalent variants representing the central carbon metabo-
lism, with only incremental changes in the model size that come along as we extend 
the level connectivity of the involved subsystems. However, this approach could be 
applied to models reduced in an ad hoc fashion, as well as other physiologies and 



Page 4 of 25Hameri et al. BMC Bioinformatics          (2021) 22:134 

organisms. The metrics presented can be used to assess the adequacy of a network 
for metabolic engineering based on MSCs. If the conclusions derived from MSCs—
relevant for strain design of a given biological system—are very sensitive to model 
complexity, the modeler can decide to improve/reassess the model. Hence, this pipe-
line can serve as a tool to test and ameliorate model quality for metabolic engineer-
ing applications.

Results
Reduced E. coli models

We applied redGEM and lumpGEM algorithms [7, 12] to systematically derive nested, 
reduced, E. coli stoichiometric models (Methods) from the iJO1366 GEM [20]. We 
selected glycolysis, pentose phosphate pathway (PPP), tricarboxylic acid (TCA) cycle, 
glyoxylate cycle, pyruvate metabolism and electron transport chain (ETC) as the sub-
systems (as defined in the iJO1366 GEM [20]) around which reduction was performed 
to different degrees of connection D, similarly to Ataman et al. [7]. D corresponds to the 
distance between pairs of selected subsystems. The selected subsystems contain the 12 
essential biomass precursors defined by Neidhart et al. [21] and capture the central car-
bon metabolism of E. coli. Reduced stoichiometric models D1, D2 and D3 inter-connect 
the pairs of subsystems with up to one, two and three reactions, respectively (Fig.  1). 
Hence, the reactions added by the expansions are entirely based on graph-search. The 
D1, D2 and D3 cores were connected to biomass production via lumped reactions, gen-
erated by the lumpGEM, to characterize the rest of the GEM (further discussion on 
lumped reactions around Fig. 2 later in this section).

The additional reactions in D2 include xylose isomerase (XYLI2), hexokinase d-fruc-
tose (HEX7) and d-fructose 6-phosphate phosphatase (F6PP), that connect d-glucose 
with d-fructose 6-phosphate via d-fructose. D2 also includes the maltodextrin system 
which connects the d-glucose to d-glucose 1-phophate via the maltodextrin phosphor-
ylase and maltodextrin glucosidase reactions. In D2, dihydroxyacetone phosphate can 
react to methyglyoxal, which in turn can react to d-Lactate, providing increased con-
nectivity between glycolysis and the pyruvate node. Additionally, pyruvate can react 
to 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate, which can react 
to form 2-oxoglutarate, thus connecting the TCA cycle with the pyruvate metabolism. 
D2 also includes three different ways to connect with two reactions from fumarate to 
l-aspartate, which—via argininosuccinate, adenylsuccinate and adenylosuccinate—fur-
ther link the TCA cycle with the ETC. The adenylate kinase (ADK3), nucleoside-diphos-
phate kinase (NDPK1) and nucleoside-triphosphatase (NTP3) enzymes provide D2 
model with additional flexibility in the system’s energy metabolism.

D3 has additional reactions enabling the transformation of methylglyoxal into d-lac-
tate and l-lactate. Methylglyoxal is a hub metabolite that provides connectivity between 
upper glycolysis to the pyruvate node. The pyruvate and phosphoenolpyruvate nodes are 
connected to the TCA cycle via chorismate. Fruthermore, the glutamine and glutamate 
synthases provide additional flexibility in allowing conversion between l-glutamate 
and l-glutamine. In D3 the presence of AMP nucleosidase (AMPN) provides an addi-
tional connection between the PPP and the ETC. However, the expansion from D1 to D2 
resulted in more central carbon metabolites that change in connectivity (Fig. 2A) than 
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the expansion from D2 to D3 (Fig. 2B). Several hub metabolites like methylglyoxal, iso-
chorismate, pyruvate, d-lactate and 2-oxoglutarate change in connectivity between the 
three models.

Fig. 1  D1, D2 and D3 E. coli network diagram illustrating differences in their topologies. D1, D2 and 
D3 models are constituted of 271, 307 and 327 enzymatic reactions and 160, 188 and 197 metabolites, 
respectively. The reactions (edges) and metabolites (nodes) are coloured according to their pertinence to D1 
(blue), D2 (red) and D3 (green). Reaction labels indicate if a reaction is unidirectional (black) or, bidirectional 
in D1 (blue), D2 (red) and D3 (green). The reactions that are bidirectional in a smaller model were also 
bidirectional in the larger models. Diagram does not include all the reactions of the systems. Full details of 
the reactions and metabolites in the models are provided in Additional file 3. yEd Version 3.20.1 was used to 
generate the network diagram
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Thermodynamic‑based variability analysis

Within the thermodynamic formulation [22] of the stoichiometric models D1, D2 and 
D3, we integrated fluxomics and metabolomics data for aerobically grown E. coli (see 
Additional file 2). Several assumptions were made on reaction directionalities, based 
on literature [17, 23–26], to further constrain the models (Methods). We performed a 
thermodynamic-based variability analysis (TVA) [27] on D1, D2 and D3 and we found 
they had 9, 17 and 18 bi-directional reactions, respectively (see Additional file 3). We 
noticed that allowable TVA ranges for fluxes and concentrations appeared to dif-
fer more between D1 and D2, than between D2 and D3. These differences generally 
occurred around regions where the network expansion added new branching points. 
For further discussions on this topic, we refer the reader to our supporting documen-
tation (see Additional file 4).

a c

d e

b

Fig. 2  Illustration and analysis of D1, D2 and D3 network topologies. The redGEM algorithm was used to 
generate D1 (blue), D2 (red) and D3 (green) core enzymatic reaction networks composed of 271, 307 and 327 
reactions, respectively. Core network metabolites that change in connectivity (a) between D1 and D2, and 
(b) between D2 and D3 are highlighted. These additional connections/reactions result in increased flexibility 
of the network. The schematic representation (c) of the studied metabolic networks shows the reactions 
(edges) and metabolites (nodes), and how they are connected via lumped reactions (dashed line) to biomass 
building blocks (brown ellipsoid). There are 102 biomass building blocks (listed in Additional file 3) in the E. 
coli iJO1366 that are preserved across reduced models. Reactions from D1 (blue) and D2 (red) correspond 
to the core of the metabolic models. The lumped reactions can be unique to D1 (blue) or D2 (red), or be 
common between both (black). Fluxomics data (black solid arrows) were integrated for optimally grown 
E. coli [17]. Each lumped reaction is composed of multiple reactions lumped together, also referred to as a 
subnetwork. Venn diagrams highlight differences in the lumped reactions of D1, D2 and D3 in terms of (d) 
subnetworks and in terms of (e) reactions composing them
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Model equivalency

Despite the inclusion of omics data for aerobically grown E. coli, D1, D2 and D3 
remained underdetermined systems, resulting in the existence of multiple alterna-
tive steady-states that can characterize the studied E. coli physiology. A representative 
steady-state is required for the flux profile and for the metabolite concentration vec-
tor, to build a kinetic model around the selected steady-state. Furthermore, in light of 
benchmarking the outputs of kinetic models, the models are required to themselves 
be as equivalent to each other as possible to allow for an unbiased comparison. Hence, 
their representative steady-states were kept similar so that the models describe the same 
operational state of the cell.

Scaling up steady‑states

We sampled the flux and the concentration solution spaces for D1 and we used PCA to 
select representative steady-states (Methods). To preserve equivalency across the kinetic 
models, it was desirable that the flux profile and the concentration vector steady-states 
in D2 and D3 resemble the ones selected in D1. The nested nature of the core models 
generated with redGEM eased the transferability of steady-states across models, allow-
ing us to preserve similar values for fluxes and concentrations for the overlapping reac-
tions of the three models.

We connected the core models to the biomass building blocks (BBBs), as defined by 
Neidhart et  al. [21], via lumped reactions generated with the lumpGEM algorithm by 
applying approaches developed by Ataman and Hatzimanikatis [12]. A lumped reaction 
is a reaction that collapses a subnetwork of reactions into one mass-balanced reaction. 
D1–3 had 247, 189 and 196 lumped reactions, respectively. The models’ lumped reac-
tions are indeed not the same across D1–3. Consequently, lumped reactions impose 
certain stoichiometric constraints that can require flux to pass through alternative meta-
bolic routes within the models. For instance, a BBB can be produced by a completely 
different lumped reaction (Fig. 2C), as we can generate it via a different subnetwork of 
reactions in the systems with larger cores. Thus, having distinct lumped reactions results 
in the redistribution of the flux profiles across models. An example of this is the hub 
metabolite methylglyoxal that provides new alternatives for lumped reactions in D2 and 
D3, thus contributing to differences in flux distribution across the models.

We studied the lumped reactions in D1–3 and observed that 103 were common 
between the models (Fig.  2D). D1, D2 and D3 have 126, 57 and 66 lumped reactions 
that are unique to themselves. D1 requires considerably more lumped reactions in order 
to produce the BBBs from the core subsystems. If we consider the lumped reactions as 
subnetworks of reactions, 474, 453 and 458 reactions are used to build the lumped reac-
tions of D1–3, respectively (Fig. 2E). Interestingly, 446 reactions are common between 
the pools of reactions that constitute the lumped reactions of D1–3. It may appear unex-
pected that D3 had more lumped reactions than D2. However, this can occur when more 
“shorter” lumped reactions—that are composed of lesser reactions—are required to pro-
duce a given BBB.

In order to ensure equivalency between D1–3, we proposed a procedure that uses 
a Mixed Integer Linear Programming (MILP) formulation that imposes similarity 
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between the representative steady-states of the models (Methods). The D2 fluxes of 
central carbon reactions are within below one percent deviation from the reference 
flux of D1 (see Additional file 5), except for the exporter of d-Alanine (DALAtex) that 
deviates by 8% (Table 1). The only central carbon fluxes in D3 that deviate from D2 
reference flux with more than one percentage are transaldolase (TALA) and xylose 
isomerase (XYLI2) with 4.5% and 33.2% respectively (Table  1). Other larger devia-
tions occur in transport (periplasm to cytoplasm and extracellular to periplasm) reac-
tions that carry a considerably lower flux such as transporters of l-serine, succinate, 
l-tryptophan, l-tyrosine, l-valine and zinc (Table 1).

The concentration profile of D2 is within one percent of D1 reference steady-state, 
except for ADP, CoA, S-dihydroorotate and l-glutamine with 16%, 45%, 303% and 
94% deviations from D1 (Table  2). On the other hand, the D3 metabolite concen-
tration steady-state is within one percentage from the D2 metabolite concentration 
vector. The nested nature and the consistency of redGEM and lumpGEM algorithms 
in GEM reduction allowed the steady-states to be transferred and communicated 
between models efficiently.

Table 1  Deviations in metabolic fluxes between pairs of models

Comparison: model A/
model B

Reaction Absolute % 
deviation

Flux [mmol/gDW/h]

Model A Model B

D1/D2 DALAtex 8.2  − 1.32E−02  − 1.43E−02

D2/D3 SEPHCHCS 295.6 7.76E−04 3.07E−03

D2/D3 SERt2rpp 2747.2  − 3.59E−04  − 1.02E−02

D2/D3 SERtex 2747.2  − 3.59E−04  − 1.02E−02

D2/D3 SHCHCS3 295.6 7.76E−04 3.07E−03

D2/D3 SO4t2pp 22.6 2.71E−01 3.32E−01

D2/D3 SO4tex 1.0 3.56E−01 3.53E−01

D2/D3 SPMDt3pp 1.2 3.66E−04 3.62E−04

D2/D3 SPMDtex 1.2  − 3.66E−04  − 3.62E−04

D2/D3 SUCCt2_2pp 75.3 4.01E−01 9.90E−02

D2/D3 SUCCt2_3pp 396.8 7.64E−02 3.80E−01

D2/D3 SUCCtex 464.1  − 5.08E−05  − 2.87E−04

D2/D3 SULabcpp 76.4 8.48E−02 2.00E−02

D2/D3 TALA 4.5 2.08E−01 2.17E−01

D2/D3 THD2pp 3.6 6.41E−01 6.64E−01

D2/D3 TRPt2rpp 77.6  − 2.40E−03  − 5.39E−04

D2/D3 TRPtex 77.6  − 2.40E−03  − 5.39E−04

D2/D3 TYRt2rpp 620.7  − 5.69E−04  − 4.10E−03

D2/D3 TYRtex 620.7  − 5.69E−04  − 4.10E−03

D2/D3 VALt2rpp 331.3  − 6.20E−04  − 2.67E−03

D2/D3 VALtex 331.3  − 6.20E−04  − 2.67E−03

D2/D3 XYLI2 33.2 9.19E−03 1.22E−02

D2/D3 ZN2tpp 4.8 1.89E−04 1.80E−04

D2/D3 ZNabcpp 478.5 1.91E−06 1.11E−05
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Equivalence in kinetic parameters

We constructed kinetic models around the selected reference steady-states of D1–3 
using the ORACLE workflow [3, 28–30]. Uniform Monte Carlo sampling of the degrees 
of saturation of the enzyme active sites allowed us to study the kinetic parameter space, 
as proposed by Wang et al. [28]. The local stability of the models generated was tested 
by verifying that the eigenvalues are not positive. We first sampled 50,000 stable kinetic 
models for D1. To ensure equivalency at kinetic parameter level between D1–3, we 
adapted the ORACLE workflow to allow fixing the sampled saturation states from one 
model to another (Methods). From the 50,000 stable D1 kinetic models, we found 96.1% 
(48,080) to be stable in D2, of which 98.4% (47,299) were stable in D3. We then com-
puted the MSCs for these stable models in order to compare how MCA-based decisions 
are affected by metabolic network size.

Consistency in MCA across models

Ranking enzymes for flux control

Some fundamental cellular tasks for a given physiology include metabolite excretion, 
substrate uptake and cellular growth, μ. As we studied the physiology of optimally 
grown E. coli, we considered control over μ across models to assess the consistency in 
conclusions based on MSCs. The flux control coefficients (FCCs) of μ were ranked for 
D1–3 based on their absolute means across stable models. The models were compared 
pairwise in increasing order of size (i.e. D1 versus D2, and D2 versus D3) to assess the 
impact of systematic network expansion on MSCs (Fig. 3).

The cellular growth FCCs with respect to glucose-6-phosphate isomerase (PGI), phos-
phofructokinase (PFK) and ATP maintenance (ATPM) are the most consistent in terms 
of sign and magnitude when comparing D1 with D2 (Fig. 3A). Pyruvate kinase (PYK), 
fructose biphosphate aldolase (FBA) and 2-oxogluterate dehydrogenase (AKGDH) are 
also in agreement in terms of sign but magnitude can differ significantly. Some enzymes 
have control in D1 but no control in D2, such as ribulose 5-phosphate 3-epimerase 
(RPE) and phosphoglycerate mutase (PGM). Others, vice versa, have control in D2 
but no control in D1 such as phosphoglycerate kinase (PGK) and glucose 6-phosphate 
dehydrogenase (G6PDH2r). Ribose-5-phosphate isomerase (RPI), on the other hand, 
has opposing control on cellular growth in the two models. Differences in FCCs of cel-
lular growth between D1 and D2 suggest that the expansion of D1 to D2 significantly 
affects the control scheme. When we compare FCC values pairwise between D1 and 
D2, we note that numerical values can be relatively dissimilar (see Additional file 4 for 

Table 2  Deviations in metabolite concentrations between pairs of models

Comparison: model A/
model B

Metabolite Absolute % deviation Concentration [log(mM)]

Model A Model B

D1/D2 ADP 16.1  − 10.00  − 8.39

D1/D2 Coenzyme A 45.2  − 8.21  − 11.93

D1/D2 (S)-Dihydroorotate 303.2  − 3.41  − 13.75

D1/D2 l-Glutamine 94.1  − 6.72  − 13.04
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supporting information). Hence, differences can still be observed after preserving model 
equivalency.

We then compared top cellular growth FCCs in D2 and D3, which are in great sign 
and magnitude agreement (Fig.  3B). PGI, PFK and PYK are the top three enzymes in 
terms of cellular growth control according to both D2 and D3. The consistency between 
these FCCs suggests that the expansion of D2 to D3 does not affect the control pattern 
as significantly as the network expansion from D1 to D2. An analogous analysis was car-
ried out for the flux control of glucose uptake and, the excretions of acetate and for-
mate (see Additional file 4 for supporting information), and we observed a similar trend. 
The differences in control patterns appear to be more significant when expanding from 
D1 to D2, but of lesser importance when expanding from D2 to D3. This finding could 
suggest that entire genome-scale kinetic models are not necessary to capture the essen-
tial physiological features of a cell as long as the model reduction is done systematically 
around carefully selected subsystems that are pertinent to the study. However, this could 
also mean that D1 is possibly missing on some information for performing MCA around 
growth. It is difficult to draw more conclusions as we can only compare what is topologi-
cally shared between two models. Clearly, a study-specific resolution criterion in terms 
of model size/complexity that has to be met needs to be established before a model is 
used for further analysis.

MCA consistency across reduced models

As the study above revealed, certain flux control patterns can change significantly 
between models due to network complexity. We tried to locate, analyze and understand 
the differences and the similarities in MSCs that occur due to the topological alterations 
in kinetic model complexity. According to MCA theory, the FCCs conform with the 
summation theory [31, 32]. We proposed a deviation index (DI) that provides a quan-
titative measure on how much a reaction’s FCCs differ between two models, postulated 

a b

Fig. 3  Top enzymes controlling cellular growth (μ) across models. The top 9 enzymes based on absolute 
mean control over cellular growth were computed for D1 (blue), D2 (red) and D3 (green). We then selected 
the pairwise union of these enzymes for the comparisons of a D1 versus D2, and b D2 versus D3. The 
whiskers give the upper and lower quartiles of the FCC populations and the bars give the means
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from the summation theory (Methods). The DI served as a metric to classify reactions 
with respect to their consistency in FCCs across the reduced models.

We estimated the DI of 271 common enzymatic reactions when expanding from 
D1 to D2 to predict deviations in FCCs for the system. Reactions with the lowest DI 

D2 Expansion

Fig. 4  E. coli network diagram illustrating the logarithm of the deviation index (DI) of enzymatic reactions 
when scaling up from D1 to D2. Network of core reactions (edges) and metabolites (nodes) for D1 and D2 
models. The DI is an indicator of difference in the control over a reaction with respect to all the enzymatic 
reactions of the network due to the network expansion (Methods). Reactions added by the redGEM 
expansion from D1 to D2 (red), and ones in common between D1 and D2 for low (0–25 percentile) DI (light 
gray), medium (25–75 percentile) DI (dark gray) and high (75–100 percentile) DI (black) are shown. The blue 
metabolites are common between D1 and D2, and red ones indicate metabolites resulting from the D2 
expansion. Diagram does not include all the reactions of the systems. yEd Version 3.20.1 was used to generate 
the network diagram
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(0–25 percentile) were mostly from the central carbon metabolism (Fig. 4). The reac-
tions with the highest DI (75–100 percentile) were mostly located in the ETC. The 
only central carbon metabolism reactions having a high DI were TALA, acetyl-CoA 
synthase (ACS), phosphoenolpyruvate synthase (PPS) and NAD malic enzyme (ME1). 
TALA produces d-fructose 6-phosphate and, PPS and ME1 involve transformation of 
pyruvate. d-Fructose 6-phosphate and pyruvate are both central carbon metabolites 
around which the expansion adds reactions (Figs. 2, 4). ACS is only one reaction away 
topologically from pyruvate, around which the expansion adds a reaction (Figs. 2 and 
4).

We repeated the above analysis for D2 and D3, where we analogously compute the DIs 
for the 307 common enzymatic reactions (Methods). Similar observations were made 
for the reactions having low DIs (0–25 percentile) as most were located in central car-
bon metabolism, within the subsystems around which reduction was performed (Fig. 5). 
The reactions with higher DIs (75–100 percentile) are predominantly located around 
the ETC, with the exception of several reactions pertaining to central carbon metabo-
lism. As with the previous analysis of D1 versus D2, ME1 and ACS had high DIs. The D3 
expansion adds reactions around pyruvate (Figs. 2, 5), which could explain this obser-
vation. Aspartate transaminase (ASPTA), phosphoenolpyruvate carboxykinase (PPCK) 
and succinate dehydrogenase (SUCDi) from the central carbon metabolism exhibited 
high DIs (Fig. 5). ASPTA is directly connected via 2-oxoglutarate with NADPH gluta-
mate synthase (GLUSy), which is a newly added reaction by the D3 expansion. PPCK 
is connected via polyenolpyruvate to 3-phosphoshikimate 1-carboxyvinyltransferase 
(PSCVT), another add by the D3 expansion. Furthermore, SUCDi is topologically con-
nected with the added reaction ubiquinone l-Lactate dehydrogenase (l-LACD2), as 
cofactors ubiquinone-8 and ubiquinol-8 partake in both reactions. Interestingly, peri-
plasmic glucose dehydrogen (GLCDpp), where ubiquinone-8 and ubiquinol-8 also 
participate, has a high DI as well. GLCDpp possibly causes its neighbouring reactions 
gluconokinase (GNK) and d-gluconate transport (GLCNt2rpp) to have high DIs too, 
due to stoichiometric coupling. These observations suggest that alterations in flux split 
ratios around important branching points—caused by network expansion—could result 
into higher DIs in reactions at their vicinities.

Importance of flux splitting nodes

Overall, lower DIs were observed for reactions having a higher flux, pertaining to the 
core central carbon metabolism around which the models D1–3 were reduced (Figs. 4, 
5). Since the cores of the reduced models contain the 12 precursor metabolites for bio-
mass, their control patterns were expected to be similar. Stephanopoulos and Vallino 
point out that metabolic pathways of organisms have evolved over time to resist flux 
alterations at branching points [33]. The control architecture of an organism is built such 
that it preserves the flux splitting ratios of essential metabolic nodes. However, if two 
models have differences in the number of reactions and/or in the flux splitting ratios 
around an important branching point, the control architecture of the two systems can 
differ considerably.

Since we studied optimally grown E. coli, it was expected that the D1 to D2 expan-
sion with the addition of XYLI2, F6PP and HEX7 would have influence on control 
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patterns: the flux splitting ratios around the essential biomass precursor d-fruc-
tose 6-phosphate is altered. d-Fructose 6-phosphate is a critical metabolic node for 
producing cell wall biomass building blocks and is located relatively upstream in 
the process of glucose catabolism. Altering flux splitting ratios around d-fructose 

D3 Expansion

Fig. 5  E. coli network diagram illustrating the logarithm of the deviation index (DI) of enzymatic reactions 
when scaling up from D2 to D3. Network of core reactions (edges) and metabolites (nodes) for D2 and D3 
models. The DI is an indicator of difference in the control over a reaction with respect to all the enzymatic 
reactions of the network due to the network expansion (Methods). Reactions added by the redGEM 
expansion from D2 to D3 (green), and ones in common between D2 and D3 for low (0–25 percentile) DI 
(light gray), medium (25–75 percentile) DI (dark gray) and high (75–100 percentile) DI (black) are shown. The 
blue, red and green nodes correspond to metabolites common between D1 and D2, ones added by the D2 
expansion and ones added by the D3 expansion, respectively. Diagram does not include all the reactions of 
the systems. yEd Version 3.20.1 was used to generate the network diagram
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6-phosphate will have direct implications on the fate of the carbon flow across the 
whole network, particularly due to its upstream location.

The expansion from D2 to D3 results in different flux splitting ratios around three 
biomass precursors: pyruvate, polyenolpyruvate and 2-oxoglutarate. Again, we can 
expect flux control patterns across the models to differ as the proportion of carbon flow 
directed towards certain biomass building blocks is affected. However, within the central 
carbon metabolism, these precursors are located relatively downstream to the glucose 
uptake, compared to for instance d-fructose 6-phosphate. Consequently, we can expect 
that these flux splitting ratios have less impact on the growth control of the system than 
d-fructose 6-phosphate. If we were discussing the production of certain amino acids of 
interest, rather than just cellular growth, these ratios could be of higher importance to 
the analysis. The significance of a metabolic node is strongly subject to the scope of the 
study. Hence, it is difficult to imagine a “one-size-fits-all” model due to the complexity of 
the problems encountered in metabolic engineering.

Indeed, the importance of a metabolic branching point is very study-specific as objec-
tives can vary significantly. Had we, for instance, been interested in the study of d-lactate 
production, it would have been essential to include the metabolism of methylglyoxal, 
d-lactate and l-lactate into the subsystems around which model reduction is performed. 
However, as we are not interested in the production of d-lactate, we are not that con-
cerned about the high DI of d-lactate transporter (d-LACt2pp) when comparing D2 
and D3 (Fig.  5). Furthermore, if we were interested to produce d-lactate, it would be 
essential to consider implication of attempting to deviate flux towards the metabolism of 
d-lactate. If the redirection of flux towards d-lactate imposes important changes in the 
flux splitting ratios of significant metabolic nodes of wild-type E. coli, it may be worth 
considering other organisms that cause fewer modifications in flux distribution [33, 34].

a b

Fig. 6  Comparison of flux and absolute deviations in FCCs for glycolytic reactions for a D1 versus D2, and 
b D2 versus D3. The absolute deviations computed subsystem-wise (stacked bar) correspond to the sum of 
the absolute deviations in FCCs of reaction i with respect to all enzymes of the subsystem j. The reactions 
contained in a subsystem are as defined in the original GEM that was reduced [20]. The flux values (blue bar) 
did not deviate by more than 1% between pairs of models
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Study of uncertainty in MCA

The MSCs of D1–3 were further studied by comparing their absolute deviations in the 
FCCs. We considered with respect to the central carbon subsystems to find which cen-
tral carbon enzymes contributed in most uncertainty across the networks. The FCCs of 
reactions in the glycolysis (Fig. 6A, B) appear to have most absolute deviation stemming 
from enzymes in the glycolysis and in the PPP. In both comparisons (Fig. 6A, B), gly-
colysis contributes the most to this deviation. However, in the expansion from D2 to 
D3 (Fig. 6B), this contribution to the deviation is of a considerably smaller magnitude 
than in the expansion from D1 to D2 (Fig. 6A). Again, the additional connections around 
d-fructose 6-phosphate (Figs.  1 and 2) when expanding from D1 to D2 could explain 
this. Differences in flux splitting ratio around d-fructose 6-phosphate affect the redis-
tribution of the flux in the network and hence the control pattern. Generally, reactions 
with a larger flux exhibit less absolute deviations in their FCCs. This parallels the obser-
vation that central carbon reactions carrying higher flux are perhaps more rigid in con-
trol patterns.

We perform a parallel analysis on FCCs of PPP reactions and similar observations 
were made. In the expansions from D1 to D2 (Fig. 7A) and D2 to D3 (Fig. 7B), glycolysis 
contributed the most to the absolute deviation of the FCCs of PPP reactions. However, 
the contribution of the glycolysis enzymes was considerably smaller in magnitude in the 
expansion from D2 to D3 (Fig. 7B) than in the one from D1 to D2 (Fig. 7B). Again, reac-
tions carrying higher flux have less absolute deviation in their FCCs between the pairs 
of models. We analyzed FCCs individually in terms of absolute deviation (see Addi-
tional file 6), for both pairs D1 and D2 as well as, D2 and D3. PGI, TPI and PFK were 
the top three central carbon enzymes that resulted in the most absolute difference in 
flux control across the network. From the PPP enzymes, RPI resulted in the most abso-
lute deviation in flux control. We also recall that RPI had sign-wise opposing control on 
cellular growth in the comparison of D1 and D2 (Fig. 3A). Due to the highly non-linear 
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Fig. 7  Comparison of flux and absolute deviations in FCCs for PPP reactions for (a) D1 versus D2, and (b) 
D2 versus D3. The absolute deviations computed subsystem-wise (stacked bar) correspond to the sum of 
the absolute deviations in FCCs of reaction i with respect to all enzymes of the subsystem j. The reactions 
contained in a subsystem are as defined in the original GEM that was reduced [20]. The flux values (blue bar) 
did not deviate by more than 1% between pairs of models
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nature of the studied systems, it is difficult to make direct conclusions on the causal-
ity of the observed deviations in control patterns of the networks. Most of the devia-
tions were observed amongst peripheral transport reactions, rather than central carbon 
metabolism (see Additional file 6). Nevertheless, we could still find metabolic engineer-
ing decisions relevant to our study, independent of the complexity based on MCA out-
puts (Fig. 3).

Discussion
Using a kinetic model that is lacking adequate complexity level can result in modelers 
making false prediction. However, systematic assessment of the impact of model com-
plexity on the conclusions derived from a kinetic model of metabolism has not been 
carried out in literature to date. Many degrees of freedom exist as the exact metabolic 
flux distribution, metabolite concentration levels, kinetic mechanisms and the required 
kinetic mechanism parameters are not fully characterized for biological systems. This 
multiplicity in sources of uncertainty makes it difficult to study the impact of model 
complexity on kinetic model conclusion. Hence, model equivalence has to be preserved 
in order to study the effects of network size on these conclusions. Additionally, certain 
minimum level of model complexity, such as network parts carrying important carbon 
flux and redox potential, is required in order for the model predictions to be realistic. 
We hereby address these issues by demonstrating the effect of network size on conclu-
sions derived from systematically reduced kinetic models, whilst conserving maximum 
model equivalence.

In this work we study the impact of model complexity on the metabolic engineering 
decisions derived from MSCs. The redGEM and the lumpGEM algorithms were used 
to consistently reduce the E. coli iJO1366 GEM. Omics data for the physiology of opti-
mally grown E. coli was integrated into the reduced stoichiometric models. The nested 
nature of the reduced models assisted us in the development of a workflow allowing 
to preserve maximum equivalence between the flux profile and metabolite concentra-
tion steady-states. The ORACLE framework was used to generate populations of stable 
kinetic models around these reduced stoichiometric models. Our workflow ensured that 
we preserve equivalency amongst the populations of the kinetic parameters for the sta-
ble kinetic models. The MSCs were computed within the ORACLE framework for the 
populations of stable kinetic models. Analysis of the MSCs, revealed that we can derive 
context-specific metabolic engineering conclusions that are independent of the model’s 
complexity, as long as the reduction is performed consistently.

The “usefulness” of a kinetic model is highly dependent on the objectives of the study 
being undertaken. We selected the subsystems for the GEM reduction such that we: (1) 
cover the essential biomass precursor metabolites according to Neidhart as we focused 
primarily on cellular growth control and, (2) that we capture the ETC essential to 
account for redox potentials.

To isolate and study the effect of model size on MSCs we sought to generate models 
that share the same backbone in terms of subsystems that carry significant fluxes and 
are central to carbon energy and redox metabolism but differ in the degree of connectiv-
ity of these subsystems. The motivation behind this selection for this study lays in our 
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general approach for the systematic generation of context specific models: at first we 
include all the subsystems that are relevant to the study at hand, and then we investigate 
to what extent additional levels of connectivity impact the model sensitivity character-
istics. The addition of reactions around d-fructose 6-phosphate when expanding from 
D1 to D2 appeared to significantly affect growth control patterns (Fig.  3A). However, 
the expansion from D2 to D3 had considerably less impact as top cellular growth FCCs 
are consistent (Fig. 3B), which suggests that D2 could be a reasonable model choice in 
terms of complexity for predicting growth control patterns. As d-fructose 6-phosphate 
is an essential precursor for cell wall fabrication, a network expansion affecting flux dis-
tribution around it can be expected to have significant impact on cellular growth control 
structure. Hence, it is essential to consider the importance of certain metabolic nodes 
with respect to the study goals in order to ensure no information is lost in the reduc-
tion. Again, importance of a metabolic node is strongly influenced by the nature and the 
objectives of the analysis.

The MCA summation theorem was used to postulate a deviation index (DI) that 
gave a numerical indication on the consistency of the FCCs with respect to a reaction. 
Most of the reactions around central carbon metabolism, carrying a higher carbon flux, 
appeared to have lower DIs. Flux control for reactions with larger fluxes were more 
robust, particularly if the number of connecting reactions did not change between mod-
els for the metabolites participating in the reaction. The larger DIs were noted in the 
ETC and peripheral reactions. Nevertheless, the consistency in the control patterns of 
network regions that carry larger carbon flux was consistent across the reduced models 
when the DI was low, suggesting that their MSC-based predictions are independent of 
the network complexity. Thus, the DI can be used to study the structural robustness of a 
kinetic model.

We could argue that the larger the kinetic model is, the more confident and robust the 
metabolic engineering decisions derived from the model are. However, using our meth-
odology, a modeler can use the DI as an indicator of structural robustness of the system 
to assess the confidence and quality of the model’s metabolic engineering predictions. 
In this context we suggest that the experimental design should first target the steps that 
are consistently better targets across different sized models. Next, we should focus on 
identifying to what reactions the model predictions are more sensitive to in the larger 
models, allowing the identification of changes that are responsible for the redistribution 
of control across the system. Such investigation will serve as a focused analysis for mod-
eling and experiments – understanding which new reactions and pathways, when added 
during size increase, impact the control distribution in the reference pathways can pro-
vide a great insight on how structural changes in a biological network change its func-
tion, beyond single enzyme over/down-regulation.

Conclusions
Failing to preserve certain level of model complexity when constructing kinetic models 
can result in erroneous conclusions. Model reduction – whether ad hoc or systematic – 
is a necessary step when constructing kinetic models and could result in false predictions 
if not done appropriately. To our knowledge, we propose for the first time a workflow for 
systematically constructing large-scale kinetic models and tailor their size to match the 
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requirements of the studied biological system. We suggested the deviation index as a 
metric that highlights differences across model MSCs and serves as an indicator in test-
ing kinetic model size adequacy. The nested nature of the reduced models enabled the 
maintenance of maximum equivalence between the steady-states and kinetic parameters 
of the populations of kinetic models. This allowed us to assess the impact of model size 
on the MSC-based conclusions. We showed that despite consistent model reduction and 
preserving model equivalency, control coefficients can be significantly affected by net-
work size. However, our method can be used to study and assess the adequacy of models 
based on control coefficients. As systematic model reduction algorithms gain momen-
tum in the field, we hope to pave a path towards building more robust and transferable 
kinetic models for the community. Classical statistical model assessment tools could be 
additional avenues to explore when studying structural robustness of models.

Methods
We developed a workflow for building consistently reduced kinetic models from a 
genome-scale metabolic model (Fig.  8). We used the redGEM algorithm to construct 
core models of increasing network size from the E. coli iJO1366 genome-scale model. 

Fig. 8  Diagram illustrating the steps carried out in this study. The key steps (red) of the workflow for scaling 
up and constructing populations of kinetic models with the required inputs (purple). Necessary tasks (green) 
are completed for each step (red). In the process, outputs (blue) are generated as we move from one key step 
to the next. Further details about these steps can be found in the below Methods subsections
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The lumpGEM algorithm was used to generate lumped reactions for the biosynthesis of 
biomass building blocks (BBBs) for these models. We used thermodynamic-based vari-
ability analysis (TVA) [27] to study the flexibility of the models. We proposed a proce-
dure for scaling up the flux and concentration steady-states from one model to another 
one using the MILP formulation. The ORACLE framework was enhanced, allowing us 
to keep parametric equivalency between the populations of kinetic models around the 
steady-states of the reduced models. These steps are further detailed below.

Model reduction

The stoichiometry of the core networks was defined with the redGEM algorithm, which 
reduces systematically genome-scale model reconstructions of metabolism [7]. The E. 
coli iJO1366 genome-scale model was reduced, with aerobic minimal media, glucose 
as the sole carbon source, and the selected starting subsystems corresponding to cen-
tral carbon metabolism (glycolysis/gluconeogenesis, citric acid cycle, pentose phos-
phate pathway, pyruvate metabolism, and glyoxylate metabolism). We incorporated all 
the reactions that use metabolites of the quinone/quinol pools (ubiquinone, ubiquinol, 
menaquinone, menaquinol, 2-dimethyl menaquinone and 2-dimethyl menaquinol) as 
the electron transport chain subsystem in order to account for the energy metabolism 
of the system. redGEM allows the user to define a degree of connection, D, to define the 
level of connectivity of the core. D is an input parameter of the redGEM and lumpGEM. 
D corresponds to the number of reaction required to connect the pairs of metabolites 
between starting subsystems, as defined in [7]. For the purpose of this study we sought 
to generate nested models that all share the same topology of the central carbon metab-
olism, but differ only in terms of the reactions that connect the abovementioned sub-
systems. We generated core networks with a D of 1, 2 and 3, which gave rise to models 
D1, D2 and D3 respectively. The lumpGEM algorithm [12] was used to generate lumped 
reactions for the biosynthesis of the BBBs for these core networks. Lumped reactions 
are sub-networks of reactions composed of non-core reactions that can be used to pro-
duce a BBB. Alternative lumped reactions were kept for each of the BBBs. Reactions that 
could not carry flux were considered as blocked and were removed.

For some of intracellular metabolites, a corresponding transport reaction has not 
been biochemically characterized and does not appear in the E. coli iJO1366 and in our 
reduced model. However, these metabolites, unless they are highly polar or very large, 
are subject to passive diffusive transport through the cell membrane. Therefore, we 
explicitly added transport reactions for these metabolites that operate at least at basal 
level (10−6 mmol/(gDW*h)).

redGEM and lumpGEM algorithms [7, 12] have been made available under the follow-
ing GitHub repository: https://​github.​com/​EPFL-​LCSB/​redgem.

Flux directionality assumptions

As we model the same aerobically grown E. coli physiology as in our previous study [35], 
we make these same directionality assumptions for several bi-directional reactions:

•	 FBA in mid-lower glycolysis operates towards catabolism [23].

https://github.com/EPFL-LCSB/redgem
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•	 Magnesium and phosphate transporters are both set towards uptake [24, 25].
•	 Acetate kinase (ACKr) and phospho-transacetylase (PTAr) operate towards acetate 

production, as acetate is a by-products [17].
•	 Succinyl-CoA synthetase (SUCOAS) operates towards producing succinate [17].
•	 Polyphosphate kinases (PPK2r, and PPKr) are set towards the polyphosphate polym-

erization [26].

These directionality assumptions were made in agreement with the modeled physiol-
ogy. Nevertheless, our workflow could be applied to other physiologies and under other 
directionality assumptions.

Thermodynamic analysis

The available fluxomics and metabolomics data for the optimal growth of E. coli under 
aerobic conditions and minimal media was integrated in our models. The MILP formu-
lation of the thermodynamics-based flux analysis was used to implement these data into 
D1, D2 and D3. Since the models were used to build kinetic models, it was undesirable 
for reactions to be at thermodynamic equilibrium, which would result in them having 
equal backward and forward fluxes. We imposed MILP constraints to ensure that the 
thermodynamic displacement, Γ [28, 31, 36], is not at equilibrium. For reactions near 
equilibrium Γ ≈ 1. This constraint ensures that we do not have reactions that have net 
fluxes equal to zero in our system.

Software used for performing thermodynamic-based flux analysis and TVA has been 
published [22] and is available in MATLAB, and Python 3, on GitHub: respectively, 
https://​github.​com/​EPFL-​LCSB/​matTFA and https://​github.​com/​EPFL-​LCSB/​pytfa.

Maximum equivalency between steady‑states

We sampled the flux space of D1 in order to characterize the solution space without vio-
lating physiological, thermodynamic and directionality constraints. The convexity of the 
solution space enabled us to efficiently sample using the Artificial-Centering Hit-and-
Run sampler in the COBRA Toolbox [37, 38]. We sampled 10,000 flux vectors and used 
Principal Component Analysis (PCA) [39] to select a mean reference state. Nine compo-
nents covering most of the variance were retained from PCA to select a sample closest 
to the projected mean. Similarly, we applied this approach for the concentration solution 
space of this selected flux profile. We selected a unique steady-state for the metabolite 
concentrations and metabolic fluxes for the demonstration purpose of this study. How-
ever, other steady-states could have been used and, in metabolic engineering, alternative 
steady-states should be considered as they can significantly affect conclusions [35].

In order to make the comparison of the models equitable, we wanted to maintain most 
similar steady-states between the models. For instance, for D2 we would like the flux 
vector to be the equal possible to the one from D1. Topological differences in the models 
make it impossible to have numerically exactly the same flux distribution in larger model 
for the same reactions. Hence, we take the representative flux from D1 and apply it with 
percentage relaxation with upper and lower bounds, Fub

rxn,i and Flb
rxn,i respectively, into 

D2. Consequently, we use an MILP formulation to minimize the number of violations 

https://github.com/EPFL-LCSB/matTFA
https://github.com/EPFL-LCSB/pytfa
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of flux boundaries that we are trying to impose. For each intracellular reaction that is 
shared between the two models we create a binary variable zrxn, i so that when it is equal 
to 1, the constraints that we impose become inactive. We add for each of these reactions 
the following constraints:

where UB and LB are the upper and lower bounds of the net fluxes NF of the reactions. 
We minimize the sum of the binaries, zrxn, i, in order to have minimal violation of the flux 
constraints:

Minimize:

Subject to:

We implied a 1% relaxation to apply and test how many flux constraints we can impose 
without violation (minimal number of active binary variables zrxn, i). After applying the 
constraints that are not violating model boundaries of D2, we proceed to sampling the 
solution space. We selected a sample based on mean PCA as with the representative flux 
of D1. We then implied in a similar manner the concentration profile from D1 into D2 
with a 1% relaxation and sampled the concentration space for this flux profile. We repeat 
this procedure when scaling up the flux and concentration steady-states from D2 into 
D3.

Constructing kinetic models

Populations of kinetic models of metabolism can be constructed with any framework 
that allows the construction of ensembles of models, as discussed in a recent review [40]. 
We used the ORACLE framework [2, 3, 28–30, 36, 41–45] to build 50,000 kinetic mod-
els around the steady-states for D1, D2 and D3. Available kinetic properties of enzymes 
from the literature [46] and the databases [47, 48] were incorporated. Reversible Hill 
kinetics [49] and convenience kinetics [50] were used for reactions with unknown 
kinetic mechanism (see Additional file 4 for information about kinetic mechanisms and 
Additional file  7 for their usage across model reactions). Kinetic mechanisms with no 
or partial information about their parameter values were sampled within the space of 
kinetic parameters in the form of degree of saturation of enzyme [28]. We parameterized 
a population of kinetic models, performed consistency tests [28, 42, 51] and computed 
the MSCs [28, 52]. For further details on the ORACLE workflow the reader is referred to 
[2, 3, 28–30, 36, 41–45].

We preserved equivalency between populations of kinetic models for D1–3 by fixing 
the degree of saturation of enzymes from less complex models into the more complex 
models. We wanted to preserve model equality so that we can fairly compare MSCs of 
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the models. Within the ORACLE framework, we added a feature for fixing the degree of 
saturation of enzymes. For the parameters that were common between D1 and D2, we 
fixed the degrees of enzyme saturations from D1 models into D2 models and we sam-
pled the rest of the D2-specific parameters uniformly, until we found a stable model. 
Hence, we preserved equivalency of the kinetic parameters between D1 and D2. Analo-
gously, we repeated this procedure to imply the degrees of enzymes saturations from D2 
into D3. Our stratified sampling approach allows the systematic scaling up and sampling 
of the parameters that we introduce with each network expansion. Consequently, this 
stratified sampling approach ensures that we focus on uncertainty introduced by the net-
work expansion alone rather than the other common network parts. Ensuring numeri-
cal similarity between the parameters that are shared between two models permits this. 
Other methods such as a top-down approach of transferring parameters—from D3 to 
D2, and then from D2 to D1—could be used but this would introduce additional uncer-
tainty from the larger topologies into the smaller networks.

MSC deviation index

The FCC is a measure of response of a flux to a perturbation in level of enzyme. We 
compute a FCC, Cvi

pk , as follows:

where v is the flux across a reaction i and p is the concentration perturbation of an 
enzyme k.

In MCA the FCCs conform with the summation theorem defined in literature [31, 32]. 
The theorem implies that all the metabolic fluxes are systemic properties of the model 
and that their control is shared by all the reactions within the system. The summation 
theorem makes the assumptions that: (1) the parameters for which we compute flux 
control coefficients are of first order with respect to the flux, and that (2) the sum of a 
flux’s control coefficients with respect to all the parameters of the system is equal to one. 
Hence, the summation theory can be defined as follows [53, 54]:

where m corresponds to the number of enzymes of the system that can control a flux v.
We proposed a deviation index (DI) derived from the summation theorem to quantify 

the discrepancies in control patterns of a flux between two different models. We define 
DI as:

The value of DI will be zero due the summation theory of MCA if we sum over all 
m enzymes of our system. However, if we perform this computation of DI for all the 
enzymes m, except the enzymatic reactions added to the system by a model expansion, 
we can obtain a deviation from zero. This happens if these enzymatic reactions that 
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were added to the system by the expansion exhibit control over the flux v being studied. 
Hence, if the DI value is not zero for a model expansion, this could suggest that some of 
the added reactions are important in terms of control to the system.
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