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Background
Non-homogeneous dynamic Bayesian networks have become a popular tool for learning 
the structures of cellular regulatory networks from gene expression and protein concen-
tration data. The traditional (homogeneous) dynamic Bayesian network models assume 
the network parameters to stay constant across time. This can lead to biased results and 
wrong conclusions, as cellular regulatory processes can change in time. It was therefore 
proposed to combine dynamic Bayesian network models with Bayesian changepoint 
processes, see, e.g., [1–3]. Then a multiple changepoint process is used to divide the 
temporal data into disjoint segments, and the data within each segment are modelled 
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by linear regression models. For most cellular processes on a short time scale it is not 
realistic to assume that the network structure changes over time. The network structure 
is therefore usually assumed to stay unchanged and only the network parameters are 
assumed to time-varying. As a motivation for this assumption consider a gene regula-
tory network, in which an edge from gene Zi to gene Zj , Zi → Zj , typically would indicate 
that gene Zi codes for a transcription factor that can bind to the promoter of gene Zj , so 
that Zj ’s transcription is initiated. The ability to bind to the promoter (= the edge con-
nection) is unlikely to change within a short time period, whereas the extent of binding 
(= the network interaction parameter) can undergo quick temporal changes. Regarding 
our two real-life applications to S. cerevisiae (yeast) and A. thaliana (plant) gene expres-
sion data, the assumption of a fixed network structure therefore seems more faithful.

The uncoupled model, akin to the models proposed by Lèbre et al. [1] and Dondelinger 
et al. [3], learns the segment-specific network parameters for each segment separately. 
To allow for information-sharing with respect to the network parameters, models with 
globally [4] and sequentially [5] coupled network parameters were proposed. As sequen-
tial information-sharing seems more suitable for temporal time segments, we focus here 
on the sequential coupling. The underlying idea is that the network parameters of each 
segment should be enforced to stay similar to those of the previous segment. Grzegorc-
zyk and Husmeier [5] proposed a coupled model, in which the posterior expectations 
of the network parameters of segment h are used as prior expectations for the next seg-
ment h+ 1 . The strength of the coupling, i.e. the variance of the network parameter pri-
ors, is regulated by a coupling parameter. Although it was shown that this is very useful 
for applications where the network parameters stay similar over time, the fully coupled 
model has the drawback that it enforces coupling and does not feature any possibility for 
uncoupling. In this paper we therefore propose a partially segment-wise coupled model, 
which can be seen as a consensus model between the uncoupled and the fully coupled 
model. Discrete binary indicator variables δh indicate for each segment h whether it is 
coupled to the previous segment ( δh = 1 ) or uncoupled from it ( δh = 0 ). Along with the 
network structure and the data segmentation the values of those indicator variables are 
inferred from the data. The new partially coupled model reaches the original models in 
the limit: If it couples all segments ( δh = 1 for all h > 2 ), it becomes the fully coupled 
model. If it uncouples all segments ( δh = 0 for all h), it becomes the uncoupled model.

In our earlier work [6] we have proposed a new generalized fully coupled model. While 
the fully coupled model from [5] couples all neighbouring segments (h− 1, h) with the 
same coupling strength � ∈ R

+ , the generalised (fully) coupled model from [6] uses 
for each pair of neighbouring segments (h− 1, h) a segment-specific coupling strength 
parameter �h ∈ R

+ . This leads to a higher model flexibility, but like the coupled model 
the generalized coupled model still does not allow for uncoupling. In our comparative 
evaluation study, we will compare the new partially coupled model with the three com-
peting models: the uncoupled model, the (fully) coupled model, and the generalized 
(fully) coupled model.

In recent works alternative model refinements have been proposed [7, 8]. These 
models distinguish coupled from uncoupled network edges rather than distinguishing 
coupled from uncoupled time segments. The partially non-homogeneous model from 
Shafiee Kamalabad et al. [7] builds on the idea that only some network parameters (i.e 
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some edges) might be subject to changes, while other network parameters (i.e. edges) 
might stay constant. The model has been designed for analysing data that have been 
measured under different experimental conditions, so that it does not allow the segmen-
tation of a time series to be inferred. The non-homogeneous model from Shafiee Kama-
labad and Grzegorczyk [8] distinguishes between two groups of edges: (i) edges that are 
fully coupled among all segments and (ii) edges that are uncoupled among all segments. 
The new model that we propose here is conceptual related, but complementary in that it 
replaces the concept of partially coupled edges by the concept of partially coupled time 
segments.

We note that network reconstruction is a topical research field in the computational 
biology literature and that many different network reconstruction approaches have been 
proposed over the years. However, most of the proposed models do not focus on non-
homogeneous regulatory processes but rely on a homogeneity of the regulatory pro-
cesses. For some applications this assumption of homogeneity can be too restrictive; 
compare, e.g., our data applications. In response to one of the reviewers of our paper, 
we here briefly discuss a few recently proposed network reconstruction methods. Vignes 
et al. [9] investigated and compared a wide variety of methods, ranging from Bayesian 
networks to penalised linear regression based models and proposed a meta-analysis 
based on Fisher’s Inverse Chi-Square meta-test for combining different approaches. 
Huang et al. [10] proposed to apply Bayesian model averaging for linear regression meth-
ods. The method uses a closed form solution to compute the edge posterior probabili-
ties within a hybrid framework of Bayesian model averaging and linear regression. Xing 
et al. [11] proposed a Candidate Auto Selection algorithm based on the pairwise mutual 
information and breakpoint detection. With a greedy search algorithm it is searched for 
the best network topology. Unlike the above mentioned models, Fan et al. [12] propose 
to impose a prior on the topology information in their inference process. Incorporating 
this prior information can partially compensate for the lack of reliable data. They then 
developed a Bayesian group lasso with spike and slab prior approach based on non-par-
ametric models. Xu et al. [13] propose to employ a series of linear regression problems 
to model the relationship between the network nodes. They use an efficient variational 
Bayes method for optimization and inference of the unknown network parameters.

Methods
Learning dynamic networks with time‑varying parameters

Consider N random variables Z1, . . . ,ZN that are the nodes of a network. Let D denote 
an N-by-(T + 1) data matrix, whose N rows correspond to the variables and whose T + 1 
columns correspond to time points t = 1, . . . ,T + 1 . The element in the ith row and tth 
column, Di,t , is the value of Zi at time point t. For temporal data it is typically assumed 
that the regulatory interactions are subject to a lag of one time point. For example, an 
edge Zi → Zj indicates that Dj,t+1 ( Zj at t + 1 ) depends on Di,t ( Zi at t). The variable Zi is 
then called a parent (node) of Zj.

Because of the lag, there is no need for any acyclicity constraint, and for each node 
Zj ( j = 1, . . . ,N  ) the parent nodes can be learned separately. This has computational 
advantages, since the ‘network learning task’ can be separated into N independent 
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‘parent learning tasks’. Henceforth, when a computer cluster is available, the N parent 
sets can be learned in parallel, so that the inference algorithms scale-up well.

A popular method is to apply linear regression, where Y := Zj is the response and 
{Z1, . . . ,Zj−1,Zj+1, . . . ,ZN } =: {X1, . . . ,Xn} are potential covariates (with n := N − 1 ). 
Because of the lag, T + 1 time points yield T observations for the linear regression 
model. Each observation Dt (t ∈ {1, . . . ,T }) consists of a response value Y = Dj,t+1 and 
the shifted covariate values: X1 = D1,t , . . . ,Xj−1 = Dj−1,t ,Xj = Dj+1,t , . . . ,Xn = DN ,t , 
where n = N − 1.

Having inferred a covariate set π j for each Zj , a network is built by merging the covari-
ate sets: G := {π1, . . . ,πN } . There is the edge Zi → Zj in G if and only if Zi ∈ π j.

As the same linear regression approaches are used for each Zj , we describe the models 
using a general terminology: Let Y be the response and let X1, . . . ,Xn be the covariates of 
the linear regression model.

To allow for time-dependent regression coefficients, a piece-wise linear regression 
model can be used. Changepoints τ := {τ1, . . . , τH−1} with 1 ≤ τh < T  divide the obser-
vations D1, . . . ,DT into disjoint segments h = 1, . . . ,H containing T1, . . . ,TH consecu-
tive data points, so that: 

∑

Th = T  . Observation Dt ( 1 ≤ t ≤ T  ) belongs to segment h if 
τh−1 < t ≤ τh , where τ0 := 1 and τH := T  are two pseudo changepoints.

We assume all covariate sets π ⊂ {X1, . . . ,Xn} with up to F = 3 covariates to be 
equally likely a priori, p(π) = c , while parent sets with more than F  covariates get a 
zero prior probability (‘fan-in restriction’). Further we assume that the distance between 
changepoints is geometrically distributed with hyperparameter p ∈ (0, 1) , so that

With y = yτ := {y1, . . . , yH } being the set of segment-specific response vectors, implied 
by the changepoint set τ , the posterior distribution takes the form:

where θ = θ(π , τ ) denotes the set of all model parameters, including segment-specific 
parameters as well as parameters that are shared among segments.

In the following subsections we assume π ⊂ {X1, . . . ,Xn} and the segmentation 
y = {y1, . . . , yH } , induced by τ , to be fixed, and we do not make π and τ explicit any-
more. Without loss of generality, we assume that π contains the first k covariates: 
π := {X1, . . . ,Xk} . For fixed π and τ , Eq. (1) reduces to:

A generic Bayesian piece‑wise linear regression model

Consider a Bayesian linear regression model, where Y is the response and X1, . . . ,Xk are 
the covariates. We assume that T observations D1, . . . ,DT have been made at equidistant 
time points and that the data can be subdivided into disjoint segments h ∈ {1, . . . ,H} , 
where segment h contains Th data points and has a segment-specific regression coef-
ficient vector wh . Let yh be the response vector and Xh be the design matrix for segment 

p(τ ) = (1− p)τH−τH−1−1 ·

H−1
∏

h=1

p · (1− p)τh−τh−1−1 = (1− p)(T−1)−(H−1) · pH−1

(1)p
(

π , τ , θ |y
)

∝ p(π) · p(τ ) · p(θ |π , τ ) · p
(

y|π , τ , θ
)

p(θ |y) ∝ p(θ) · p(y|θ)
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h, where each Xh includes a first column of 1’s for the intercept. For each segment 
h = 1, . . . ,H we assume a Gaussian likelihood:

where I is the identity matrix, and σ 2 is a noise variance parameter that is shared among 
all segments. We impose an inverse Gamma prior on σ 2 , σ−2 ∼ GAM(ασ ,βσ ) , and we 
assume that the vectors wh have Gaussian priors:

where µh is a (k+1)-dimensional vector, and �h is a positive definite (k + 1)-by-(k + 1) 
matrix. Re-using the parameter σ 2 in Eq.  (3), yields a fully-conjugate prior in both wh 
and σ 2 (see, e.g., Sections 3.3 and 3.4 in Gelman [14]). Figure 1 shows a graphical model 
representation of this generic model. For notational convenience we define:

The full conditional distribution of wh is (cp. Section 3.3 in [15]):

and the segment-specific marginal likelihoods with wh integrated out are:

where Ch(θ) := I+ Xh�hX
T

h (cp. Section 3.3 in [15]). From Eq. (5) we get:

(2)yh|
(

wh, σ
2
)

∼ N
(

Xhwh, σ
2I
)

(3)wh|
(

µh,�h, σ
2
)

∼ N
(

µh, σ
2�h

)

θ :=
{

µ1, . . . ,µH ;�1, . . . ,�H

}

(4)

wh|
(

yh, σ
2, θ

)

∼ N

(

[

�−1
h + XT

hXh

]−1(

�−1
h µh + XT

hyh

)

, σ 2
(

�−1
h + XT

hXh

)−1
)

(5)yh|
(

σ 2, θ
)

∼ N
(

Xhµh, σ
2Ch(θ)

)

p
(

σ 2|y, θ
)

∝ p(σ 2) ·

H
∏

h=1

p
(

yh|σ
2, θ

)

=
(

σ−2
)aσ+

1
2 ·T−1

e
−σ−2

(

bσ+
1
2 ·�

2(θ)

)

Fig. 1 Graphical representation of the generic model. Parameters that have to be inferred are represented by 
white circles. The data and the fixed hyperparameters are represented by grey circles. Circles within the plate 
are specific for segment h 
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where y := {y1, . . . , yH } and �2(θ) :=
∑H

h=1(yh − Xhµh)
TCh(θ)

−1(yh − Xhµh) . The 
shape of p(σ 2|y, θ) implies:

For the marginal likelihood, with wh ( h = 1, . . . ,H ) and σ 2 integrated out, we apply the 
rule from Section 2.3.7 of Bishop [15]:

When all parameters in θ are fixed, the marginal likelihood of the piece-wise linear 
regression model can be computed in closed form. In typical models the (hyper-)hyper-
parameters in θ depend on hyperparameters with their own hyperprior distributions. 
From now on we will only include the free hyperparameters in θ . In the following sub-
sections we describe four possible model instantiations, namely: the uncoupled model 
(M1), the coupled model (M2), the newly proposed partially coupled model (M3), and 
the generalized coupled model (M4). In the forthcoming subsections we will introduce 

(6)σ−2|(y, θ) ∼ GAM

(

ασ +
1

2
· T ,βσ +

1

2
·�2(θ)

)

(7)
p(y|θ) =

Ŵ(T2 + aσ )

Ŵ(aσ )
·

π−T/2 · (2bσ )
aσ

(

H
∏

h=1

det(Ch(θ))

)1/2
·
(

2bσ +�2(θ)

)−
(

T
2 +aσ

)

Table 1 List of mathematical symbols

Symbol Description Prior distribution

N Total number of nodes (genes) –

n Number of potential parent nodes, here n = N − 1 –

h Data segment h –

H Total number of data segments –

k Number of covariates in covariate set –

t Data point t –

σ 2 Noise variance parameter σ−2 ∼ GAM(ασ ,βσ )

�c Coupling strength parameter, h > 1 �
−1
c ∼ GAM(αc ,βc)

�u SNR parameter, h = 1 �
−1
u ∼ GAM(αu ,βu)

�h hth coupling strength parameter (M4 model) �
−1
h ∼ GAM(αc ,βc)

δh hth coupling indicator variable (M3 model) δh ∼ BER( p) , p ∼ BETA(a, b)

T Total number of data points –

Th Number of data points in segment h –

Di ith data point –

Zi ith network node –

π i Parent (covariate) set of ith node, Zi p(|π | <= 3) = c , p(|π | > 3) = 0

τ Changepoint set p(τ ) = (1− p)(T−1)−(H−1) · pH−1

τh Changepoint h –

Xi ith covariate –

Xh Design matrix of segment h –

yh Response vector of segment h yh|(wh , σ
2) ∼ N (Xhwh , σ

2I)

wh Regression coefficient vector of segment h wh|(µh ,�h , σ
2) ∼ N (µh , σ

2�h)

˜wh−1 Posterior expectation of wh−1 –
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further mathematical symbols. For convenience, Table 1 lists the mathematical symbols 
that we will use in this paper.

Model M1: the uncoupled model

A standard approach, akin to the models of Lèbre et al. [1] and Dondelinger et al. [3], is 
to set µh = 0 and to assume that the matrices �h are diagonal matrices �h = �uI , where 
the parameter �u ∈ R+ is shared among segments and assumed to be inverse Gamma 
distributed, �−1

u ∼ GAM(αu,βu) . In the supplementary material we provide a graphical 
model representation of the uncoupled model (M1). Using the notation of the generic 
model, we have:

For the posterior distribution of the uncoupled model we have:

where w := {w1, . . . ,wH } . From Eq. (9) it follows for the full conditional distribution of 
�u:

and the shape of the latter density implies:

Since the full conditional distribution of �u depends on σ 2 and w , those parameters have 
to be sampled first. From Eq. (6) a value of σ 2 can be sampled via a collapsed Gibbs-sam-
pling step, with the wh ’s being integrated out. Subsequently, given σ 2 , Eq. (4) can be used 
to sample the vectors wh’s. Finally, for each �u sampled from Eq. (10) the marginal likeli-
hood, p(y|�u) , can be computed by plugging in the expressions from Eq. (8) into Eq. (7).

Model M2: the (fully) coupled model

The (fully) coupled model, proposed by Grzegorczyk and Husmeier [5], uses the poste-
rior expectation of wh−1 as prior expectation for wh . Only the first segment h = 1 has an 
uninformative prior:

where w̃h−1 is the posterior expectation of wh−1 (cp. Eq. (4)):

(8)θ = {�u}, Ch(�u) = I+ �uXhX
T

h , �2(�u) :=

H
∑

h=1

yThCh(�u)
−1yh

(9)p
(

w, σ 2, �u|y
)

∝ p
(

σ 2
)

· p(�u) ·

H
∏

h=1

p
(

wh|σ
2, �u

)

·

H
∏

h=1

p
(

yh|σ
2,wh

)

p
(

�u|y,w, σ
2
)

∝ p(�u) ·

H
∏

h=1

p
(

wh|σ
2, �u

)

∝
(

�
−1
u

)au+
H ·(k+1)

2
· exp

{

−�
−1
u

(

bu +
1

2
σ−2

H
∑

h=1

w
T

hwh

)}

(10)�
−1
u |

(

y,w, σ 2
)

∼ GAM

(

αu +
H · (k + 1)

2
,βu +

1

2
σ−2

H
∑

h=1

w
T

hwh

)

(11)wh ∼

{

N
(

0, σ 2
�uI

)

if h = 1

N
(

w̃h−1, σ
2
�cI

)

if h > 1
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The parameter �c has been called the ’coupling parameter’ and it has been assumed that 
it has an inverse Gamma prior distribution, �−1

c ∼ GAM(αc,βc) . Using the notation 
from the generic model (see Fig. 1), we note that Eq. (11) corresponds to:

with w̃0 := 0 , �−1
u ∼ GAM(αu,βu) and �−1

c ∼ GAM(αc,βc) . As w̃h−1 is treated like 
a fixed hyperparameter when used as input for segment h, we exclude the parameters 
w̃1, . . . , w̃H−1 from θ.

In the supplementary material we provide a graphical model representation of the 
coupled M2 model. For the posterior we have:

In analogy to the derivations in the previous subsection one can derive (cp. [5]):

where D2
u := w

T
1w1 and D2

c :=
∑H

h=2(wh − w̃h−1)
T(wh − w̃h−1).

For each θ = {�u, �c} the marginal likelihood, p(y|�u, �c) , can be computed by plugging 
the expressions Ch(θ) and �2(θ) into Eq. (7).

Model M3: the new partially segment‑wise coupled model

We propose a new ‘consensus’ model between the M1 and the M2 model. The new 
model (M3) allows each segment h > 1 either to coupled top or to uncouple from the 
preceding segment h− 1 . We use an uninformative prior for the first segment h = 1 , and 
for all segments h > 1 we introduce a binary variable δh which indicates whether seg-
ment h is coupled to ( δh = 1 ) or uncoupled from ( δh = 0 ) the preceding segment h− 1:

where w̃h−1 is the posterior expectation of wh−1 . The new priors from Eq. (15) yield for 
h ≥ 2 the following posterior expectations (cp. Eq. (4)):

w̃h−1 :=

{

[�−1
1 + XT

1X1]
−1

(

XT
1 y1

)

if h = 2
[

�−1
h−1 + XT

h−1Xh−1

]−1(
�
−1
c w̃h−2 + XT

h−1yh−1

)

if h > 2

µh =

{

0 if h = 1

w̃h−1 if h > 1
, �h =

{

�uI if h = 1

�cI if h > 1
,

Ch(θ) =

{

I+ �uXhX
T

h
if h = 1

I+ �cXhX
T

h
if h > 1

, θ = {�u, �c}, �2(θ) =

H
∑

h=1

(

yh − Xhw̃h−1

)T
Ch(θ)

−1
(

yh − Xhw̃h−1

)

(12)

p
(

w, σ 2, �u, �c|y
)

∝ p
(

σ 2
)

· p(�u) · p(�c) · p
(

w1|σ
2, �u

)

·

H
∏

h=2

p
(

wh|σ
2, �c

)

·

H
∏

h=1

p
(

yh|σ
2,wh

)

(13)�
−1
u |

(

y,w, σ 2, �c

)

∼ GAM

(

αu +
1 · (k + 1)

2
,βu +

1

2
σ−2D2

u

)

(14)�
−1
c |(y,w, σ 2, �u) ∼ GAM

(

αc +
(H − 1) · (k + 1)

2
,βc +

1

2
σ−2D2

c

)

(15)wh ∼

{

N
(

0, σ 2
�uI

)

if h = 1

N
(

δh · w̃h−1, σ
2
�
δh
c �

1−δh
u I

)

if h > 1
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with w̃0 := 0 , δ1 := 0 , we have in the generic model notation:

We assume the binary variables δ2, . . . , δH to have a Bernoulli prior distributions, 
δh ∼ BER( p) , with a joint hyperparameter p ∈ [0, 1] having a Beta hyperprior distribu-
tion, p ∼ BETA(a, b) . We note that

• δh = 0 ( h ≥ 2 ) gives model M1 with P(wh) = N (0, �uσ
2I) for all h

• δh = 1 ( h ≥ 2 ) gives model M2 with P(wh) = N (w̃h−1, �cσ
2I) for h ≥ 2.

• The new partially segment-wise coupled model infers the variables δh ( h ≥ 2 ) from 
the data. It searches for the best trade-off between the models M1 and M2.

A graphical model presentation of the partially coupled model is shown in Fig. 2. For 
δh ∼ BER( p) with p ∼ BETA(a, b) the joint marginal density of {δh}h≥2 is:

w̃h−1 =
(

�
−δh−1
c �

−(1−δh−1)
u I+ XT

h−1Xh−1

)−1(

δh−1�
−1
c w̃h−2 + XT

h−1yh−1

)

µh = δhw̃h−1, �h = �
δh
c �

1−δh
u I, θ =

{

�u, �c, {δh}h≥2

}

, Ch(θ) = I+ �
δh
c �

1−δh
u XhX

T

h

Fig. 2 Graphical representation of the new partially coupled model (M3). Parameters that have to be inferred 
are represented by white circles. The data and the fixed hyperparameters are represented by grey circles. 
The two rectangles indicate definitions, which depend on the parent nodes. Circles and definitions within 
the plate are segment-specific. For each segment the model infers if the prior for wh is coupled to ( δh = 1 ) or 
uncoupled from ( δh = 0 ) the preceding segment h− 1
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For the posterior distribution of the partially segment-wise coupled model we get:

For the full conditional distributions of �u and �c we have:

where δ1 := 0 fixed. And it follows from the shapes of the densities:

where Hc =
∑

h δh is the number of coupled segments, Hu =
∑

h(1− δh) is the number 
of uncoupled segments, so that Hc +Hu = H , and

For each parameter instantiation θ = {�u, �c, {δh}h≥2} the marginal likelihood, p(y|θ) , 
can be computed with Eq. (7), where Ch(θ) was defined above, and

We have for each binary variable δk ( k = 2, . . . ,H):

so that its full conditional distribution is:

(16)

p
(

{δh}h≥2

)

=

∫

p( p)

H
∏

h=2

p(δh|p) dp =
Ŵ(a+ b)

Ŵ(a)Ŵ(b)
·

Ŵ

(

a+
H
∑

h=2

δh

)

Ŵ

(

b+
H
∑

h=2

(1− δh)

)

Ŵ(a+ b+ (H − 1))

p
(

w, σ 2, �u, �c, {δh}h≥2|y
)

∝ p
(

σ 2
)

· p(�u) · p(�c) · p
(

{δh}h≥2

)

· p
(

w1|σ
2, �u

)

·

H
∏

h=2

p
(

wh|σ
2, �u, �c, δh

)

·

H
∏

h=1

p
(

yh|σ
2,wh

)

p
(

�u|y,w, σ
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)

∝ p(�u) ·
∏

h:δh=0

p
(

wh|σ
2, �u

)

p
(

�c|y,w, σ
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)

∝ p(�c) ·
∏
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p
(

wh|σ
2, �c

)

�
−1
u |(y,w, σ 2, �c, {δh}h≥2) ∼ GAM

(

αu +
Hu · (k + 1)

2
,βu +

1

2
σ−2D2

u

)

�
−1
c |(y,w, σ 2, �u, {δh}h≥2) ∼ GAM
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2
,βc +

1

2
σ−2D2

c
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∑
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w
T

hwh, D2
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(

wh − w̃h−1

)T(
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�2(θ) =
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I+ �
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u XhX

T
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)

p
(

δk = 1|�u, �c, {δh}h�=k , y
)

∝ p(y|�u, �c, {δh}h�=k , δk = 1) · p
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{δh}h�=k , δk = 1
)

δk |
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�u, �c, {δh}h�=k , y
�

∼ BER











p
�

y|�u, �c, {δh}h�=k , δk = 1
�

· p
�

{δh}h�=k , δk = 1
�

1
�

j=0

p
�

y|�u, �c, {δh}h�=k , δk = j
�

· p
�

{δh}h�=k , δk = j
�






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
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Each δk ( k > 1 ) can therefore be sampled with a collapsed Gibbs sampling step, where 
{wh} , σ 2 and p have been integrated out.

Model M4: the generalised (fully) coupled model

In [6] we proposed to generalise the (fully) coupled model (i.e. the M2 model) by intro-
ducing a segment-specific coupling parameter �h for each segment h > 2 . This yields:

where w̃h−1 is the posterior expectation of wh−1 . For the parameters �h we have assumed 
that they are inverse Gamma distributed, �−1

h ∼ GAM(αc,βc) , with hyperparameters αc 
and βc . In the supplementary material we provide a graphical model representation of 
the M4 model. Recalling the generic notation and setting w̃0 := 0 and �1 := �u , Eq. (17) 
gives:

For the posterior we have:

For k = 2, . . . ,H it follows:

where D2
u := w

T
1w1 and D2

k := (wk − w̃k−1)
T(wk − w̃k−1).

For each θ = {�u, {�h}h≥2} the marginal likelihood, p(y|{�u, {�h}h≥2}) , can be com-
puted with Eq. (7); using the expressions Ch(θ) and �2(θ) defined above.

Unlike the proposed partially coupled M3 model, the generalized coupled M4 model 
does not feature any mechanism to uncouple neighbouring segments. Like the fully cou-
pled M2 model, the M4 model has been designed such that it has to couple all neigh-
bouring segments. The only advantage over the M2 model is that the the M4 model 
introduces segment-specific coupling parameters, so that the coupling strength(s) can 
vary over time.
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)
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2
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)
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T
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Reversible jump Markov chain Monte Carlo inference

We use Reversible Jump Markov Chain Monte Carlo simulations to generate posterior 
samples {π (w), τ (w), θ (w)}w=1,...,W  . In each iteration we re-sample the parameters in θ 
from their full conditional distributions (Gibbs sampling), and we perform two Metrop-
olis-Hastings moves; one on the covariate set π and one on the changepoint set τ . For 
the four models (M1–M4) Eq. (1) takes the form:

All likelihood terms, p(y| . . .) , are marginalized over σ 2 and {wh} and for the new M3 
model also the Bernoulli parameter p has been integrated out.

For the models M1–M2 the dimension of θ does not depend on τ , while for the models 
M3–M4 the dimension of θ does depend on τ . The M3 model has a discrete parameter 
δh ∈ {0, 1} and the M4 model has a continuous parameter �h ∈ R

+ for each h > 1.
The model-specific full conditional distributions for the Gibbs sampling steps have 

been provided above. For sampling π we implement 3 moves: covariate ‘removal (R)’, 
‘addition (A)’, and ‘exchange (E)’. Each move proposes to replace π by a new covariate set 
π∗ having one covariate more (A) or less (R) or exchanged (E). When randomly select-
ing the move type and the involved covariate(s), we get for all models the acceptance 
probability:

For sampling τ we also implement 3 move types: changepoint ‘birth (R)’, ‘death (D)’, and 
‘re-allocation (R)’ moves. Each move proposes to replace τ by a new changepoint set τ ∗ 
having one changepoint added (B) or deleted (D) or re-allocated (R). When randomly 
selecting the move type, the involved changepoint and the new changepoint location, we 
get for M1 and M2:

For the models M3 (proposed here) and the model M4 from [6] the changepoint moves 
also affect the numbers of parameters in {δh}h≥2 and {�h}h≥2 , respectively. For all seg-
ments that stay identical we keep the parameters unchanged. For all new segments we 
re-sample the corresponding parameters. For the new model M3 we flip coins to get 
candidates for the involved δh’s. This yields:

p
�

π , τ , θ |y
�

∝


















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p(π)p(τ )p(�u) · p(�c) · p
�

y|π , τ , �u, �c
�

M2

p(π)p(τ )p(�u) · p(�c) · p
�

{δh}h≥2

�

· p
�

y|π , τ , �u, �c, {δh}h≥2

�

M3

p(π)p(τ )p(�u) ·
�

�H
h=2 p(�h)

�

· p
�

y|π , τ , �u, {�h}h≥2

�

M4

A
(

π → π∗
)

= min

{

1,
p
(

y|π∗, . . .
)

p
(

y|π , . . .
) ·

p(π∗)

p(π)
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with the Hastings Ratios: HRπ ,R =
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|τ |
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where cτ ,B = 2 for birth, cτ ,D = 1/2 for death, and cτ ,R = 1 for re-allocation moves. For 
the model M4 we follow [6] and re-sample the involved �h ’s from their priors p(�h) . We 
obtain:

Note that the additional factor cτ :=
p({�h})
p({�h}

∗)
 of the Hastings ratio has been canceled with 

the prior ratio p({�h}
∗)

p({�h})
.

Edge scores and areas under precision recall curves (AUC)

For a network with N variables Z1, . . . ,ZN we infer N separate regression models. For 
each Zi we get a sample {π (w)

i , τ
(w)
i , θ

(w)
i }w=1,...,W  from the ith posterior. From the covari-

ate sets we form a sample of graphs G(w) = {π
(w)
1 , . . . ,π

(w)
N }w=1,...,W  . For each edge 

Zi → Zj the edge posterior probability (edge score) is:

If the true network is known and has M edges, we can quantify the network reconstruc-
tion accuracy. For each threshold ξ ∈ [0, 1] we extract the nξ edges whose scores êi,j 
exceed ξ , and we count the number of true positives Tξ among them. Plotting the preci-
sions Pξ := Tξ /nξ against the recalls Rξ := Tξ /M , gives the precision-recall curve. We 
refer to the area under the curve as AUC value.

Hyperparameter settings and simulation details

The hyperparameters of the priors and hyperpriors of the four NH-DBN models (M1–
M4) have to be specified in advance, and we note that the hyperparameter setting can 
have an effect on the resulting posterior distributions and so on the network reconstruc-
tion results. Selecting appropriate hyperparameters is therefore a crucial task. In the 
absence of genuine prior knowledge (e.g. from experts or from the literature), we re-use 
the rather uninformative (and thus generic) parameter settings from earlier publications. 
Re-using those hyperparameters also has the advantage that our empirical results can be 
compared with earlier reported results. More specifically, we proceed as follows:

For the models M1, M2 and M4 we re-use the hyperparameters from the earlier works 
by Lèbre et al. [1], Grzegorczyk and Husmeier [5], and Shafiee Kamalabad and Grzegorc-
zyk [6]: σ−2 ∼ GAM(ασ = ν,βσ = ν) with ν = 0.005 , �−1

u ∼ GAM(αu = 2,βu = 0.2) , 
and �−1

c ∼ GAM(αc = 3,βc = 3) . For the new partially coupled model M3 we use the 
same setting with the extension: δh ∼ BER( p) with p ∼ BETA(a = 1, b = 1) , which 
seems to be a very natural choice. For the M3 model we also tested several alternative 
hyperparameter settings, but we did not observe significantly deviating results, indicat-
ing that the M3 model is rather robust with respect to the hyperparameter settings. For 
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=
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more thorough studies on how the hyperparameter setting affects the network recon-
struction results, we refer to the work by Grzegorczyk and Husmeier [5].

For all models M1–M4 we run each reversible jump Markov chain Monte Carlo simu-
lation for V = 100,000 iterations. Setting the burn-in phase to 0.5V (50%) and thinning 
out by the factor 10 during the sampling phase, yields W = 0.5V /10 = 5000 samples 

Fig. 3 Yeast networks. Left: the true yeast network with N = 5 nodes and M = 8 edges. Right: yeast network 
prediction obtained with model M3. The grey (dotted) edges correspond to false positives (negatives)

Fig. 4 RAF network. RAF pathway with N = 11 nodes and M = 20 edges
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from each posterior. To check for convergence, we compared the samples of independent 
simulations, using standard trace plot diagnostics as well as scatter plots of the estimated 
edge scores. For most of the data sets, analysed here, the diagnostics indicated almost 
perfect convergence already after V = 10,000 iterations; see Fig. 7a for an example.

Data
Synthetic network data

For model comparisons we generated various synthetic network data sets. We report 
here on two studies with realistic network topologies, shown in Figs. 3 and 4. In both 
studies we assumed the data segmentation to be known. Hence, we kept the change-
points in τ fixed at their right locations and did not perform reversible jump Markov 
chain Monte Carlo moves on τ.

Study 1 For the RAF pathway with N = 11 nodes and M = 20 edges, shown in Fig. 4 
and taken from Sachs et al. [16], we generated data with H = 4 segments having m = 10 
data points each. For each node Zi and its parent nodes in π i we sampled the regres-
sion coefficients for h = 1 from standard Gaussian distributions and collected them in a 
vector wi

1 which we normalised to Euclidean norm 1, wi
1 ← wi

1/|w
i
1| . For the segments 

h = 2, 3, 4 we use: wi
h = wi

h−1 ( δh = 1 , coupled) or wi
h = −wi

h−1 ( δh = 0 , uncoupled). 
The design matrices Xi

h contain a first column of 1’s for the intercept and the segment-
specific values of the parent nodes, shifted by one time point. To the segment-specific 
values of Zi : zih = Xi

hw
i
h we element-wise added Gaussian noise with standard deviation 

σ = 0.05 . For all coupling scenarios (δ2, δ3, δ4) ∈ {0, 1}3 , we generated 25 data sets having 
different regression coefficients.

Study 2 This study is similar to the first one with three changes: (i) We used the yeast 
network with N = 5 nodes and M = 8 edges, shown in the left panel of Fig. 3 and taken 
from Cantone et al. [17]. (ii) Again we generated data with H = 4 segments, but we var-
ied the number of time points per segment m ∈ {2, 3, . . . , 12} . (iii) We focused on one 
scenario: For each node Zi and its parent nodes in π i we generated two vectors wi

⋄ and 
wi
⋆ with standard Gaussian distributed entries. We re-normalised the first vector to 

Euclidean norm 1, wi
⋄ ← wi

⋄/|w
i
⋄| , and the 2nd vector to norm 0.5, wi

⋆ ← 0.5 · wi
⋆/|w

i
⋆| . 

We set wi
1 = wi

2 = wi
⋄ so that the segments h = 2 and h = 3 are coupled, and 

wi
3 = wi

4 = (wi
⋄ + wi

⋆)/(|w
i
⋄ + wi

⋆|) , so that the segments h = 3 and h = 4 are coupled, 
while the coupling between h = 3 and h = 2 is ‘moderate’. For each m we generated 25 
data matrices with different regression coefficients.

Yeast gene expression data

Cantone at al. [17] synthetically designed a network in S. cerevisiae (yeast) with N = 5 
genes, and measured gene expression data under galactose- and glucose-metabolism: 16 
measurements were taken in galactose and 21 measurements were taken in glucose, with 
20 minutes intervals in between measurements. Although the network is small, it is an 
ideal benchmark data set: The network structure is known, so that network reconstruc-
tion methods can be cross-compared on real wet-lab data. We follow Grzegorczyk and 
Husmeier and pre-process the data as described in [5]. The true network structure is 
shown in the left panel of Fig. 3. As an example, a network prediction obtained with the 
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partially coupled model (M3) is shown in the right panel. For the prediction we extracted 
the 8 edges with the highest scores.

Arabidopsis gene expression data

The circadian clock in Arabidopsis thaliana optimizes the gene regulatory processes 
with respect to the daily dark:light cycles (photo periods). In four experiments Arabi-
dopsis plants were entrained in different dark:light cycles, before gene expression data 
were measured under constant light condition over 24- and 48-h time intervals. We fol-
low Grzegorczyk and Husmeier [5] and merge the four time series to one single data set 

a

b
Fig. 5 Results for synthetic RAF pathway data. We distinguish 8 coupling scenarios (δ1 = 0, δ2, δ3, δ4) . a Each 
histogram has three bars for the average AUC differences between the partially coupled model (M3) and 
the other models: ‘M3 versus M2 [= Coupled]’ (white), ‘M3 versus M4 [= Generalised]’ (black), and ‘M3 versus 
M1 [= Uncoupled]’ (grey). The error bars indicate t-test confidence intervals. b Diagnostic for the partially 
coupled model (M3): The bars give the posterior probabilities p(δh = 1|D) that segment h is coupled to h− 1 
( h = 2, 3, 4)
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with T = 47 data points and focus our attention on the N = 9 core genes: LHY, TOC1, 
CCA1, ELF4, ELF3, GI, PRR9, PRR5, and PRR3.

Results
In this section we present the results of a comparative evaluation study, in which we 
compare the performance of the new partially coupled model (M3) with the competing 
models M1, M2 and M4. Throughout this section we use the new M3 model as reference 
model.

Results for synthetic network data

We start with the RAF-pathway for which we generated network data for 8 different 
coupling scenarios. Figure 5a compares the network reconstruction accuracies in terms 
of average AUC value differences. For 6 out of 8 scenarios the three AUC differences are 
clearly and significantly in favour of M3. Not surprisingly, for the two extreme scenarios, 
where all segments h ≥ 2 are either coupled (‘0111’) or uncoupled (‘0000’), M3 performs 
slightly worse than the fully coupled models (M2 and M4) or the uncoupled model 
(M1), respectively. But unlike the uncoupled model (M1) for coupled data (‘0111’), and 
unlike the coupled models (M2 and M4) for uncoupled data (‘0000’), the partially cou-
pled model (M3) never performs significantly worse than the respective ‘gold-standard’ 
model. For the partially coupled model, Fig.  5b shows the posterior probabilities that 
the segments h = 2, 3, 4 are coupled. The trends are in good agreement with the true 
coupling mechanism. Model M3 correctly infers whether the regression coefficients 
stay similar (identical) or change (substantially). The generalised coupled model (M4) 
can only adjust the segment-specific coupling strengths, but has no option to uncouple. 
Like the coupled model (M2), it fails when the parameters are subject to drastic changes. 
When comparing the coupled model (M2) with the generalised coupled model (M4), 
we see that M2 performs better when only one segment is coupled, while the new M4 
model is superior to M2 if two segments are coupled, see the scenarios ‘0011’, ‘0110’, and 
‘0101’.

For the yeast network we generated data corresponding to a ‘0101’ coupling scheme 
and the change of the parameters (from the 2nd to the 3rd segment) is less drastic than 
for the RAF pathway data. Figure 6 shows how the AUC differences vary with the num-
ber of time points T, where T = 4m and m is the number of data points per segment. For 
sufficiently many data points the effect of the prior diminishes and all models yield high 
AUC values (see bottom right panel). There are then no significant differences between 
the AUC values anymore. However, for the lower sample sizes again the new partially 
coupled model (M3) performs clearly best. For 12 ≤ m ≤ 28 model M3 is significantly 
superior to all other models and for 30 ≤ T ≤ 40 it still significantly outperforms the 
uncoupled (M1) and the coupled (M2) model. The performance of the generalised model 
(M4) is comparable to the performance of the uncoupled model. For moderate sample 
sizes ( 12 ≤ T ≤ 44 ) model M4 is significantly better than the fully coupled model (M2).

Results for yeast gene expression data

For the yeast gene expression data we assume the changepoint(s) to be unknown and we 
infer the segmentation from the data. Figure 7a shows convergence diagnostics for the 
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Fig. 6 Results for synthetic yeast data, generated under coupling scenario (0, 1, 1, 1). Five panels show 
the average AUC differences plotted against the numbers of data points T. The error bars indicate t test 
confidence intervals. The bottom right panel shows the model-specific average AUC values

a

b
Fig. 7 Analysis of the real yeast data. (a) For each run length, V ∈ {100, 1000, 10,000, 100,000} we performed 
15 RJMCMC simulations with the partially coupled model (M3). We used the hyperparameter p = 0.05 for the 
changepoint prior. For each V there is a scatter plot where the simulation-specific edge scores (vertical axis) 
are plotted against the average scores for that V (horizontal axis). (b) We implemented the models M1–M4 
with different hyperparameters p of the geometric distribution for the distance between changepoints. For 
each p the bars show the model-specific average AUC scores. The error bars indicate standard deviations
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partially coupled model (M3). It can be seen from the scatter plots that V = 10,000 RJM-
CMC iterations yield already almost perfect convergence. The edge scores of 15 inde-
pendent MCMC runs are almost identical to each other.

The average AUC scores of the models M1–M4 are shown in Fig. 7b. Since the number 
of inferred changepoints grows with the hyperparameter p of the geometric distribution 
on the distance between changepoints, we implemented the models with different p’s. 
The uncoupled model is superior to the coupled model for the lowest p ( p = 0.02 ) only, 
but becomes more and more inferior to the coupled model, as p increases. This result 
is consistent with the finding in Grzegorczyk and Husmeier [5] and can be explained as 
follows: As the hyperparameter of the changepoint prior p ∈ (0, 1) increases, the number 
of inferred data segments H grows so that the individual data segments h = 1, . . . ,H get 
shorter. The individual segments h then cover less data points and are thus less informa-
tive. The coupling scheme allows for information-sharing among segments. The infor-
mation content of large segments is sufficient for inference, so that coupling does not 
provide any noteworthy advantage. But for short (uninformative) segments information 
coupling improves the inference certainty, as coupling allows for the incorporation of 
information from the preceding segment(s). Therefore the potential improvement that 
can be gained by coupling grows with the hyperparameter p.

The new partially coupled model (M3) performs consistently better than the uncou-
pled and the coupled model (M1–M2). The only exemption occurs for p = 0.1 where 
the coupled model (M2) appears to perform slightly (but not significantly) better than 
M3. For p’s up to p = 0.05 the fully coupled (M2) and the generalised fully coupled 
model (M4) perform approximately equally well. However, for the three highest p’s the 
M4 model performs better than the coupled model (M2) and even outperforms the new 
partially coupled model (M3). While the performances of the models M1–M3 decrease 
with the number of changepoints, the performance of the model M4 stays rather robust.

Subsequently, we re-analysed the yeast data with K = 1, . . . , 5 fixed changepoints. 
Figure 8a, b shows the average AUC scores and the AUC score differences in favour of 
the partially coupled model (M3). Panel (a) reveals that the new partially coupled model 
(M3) reaches again the highest network reconstruction accuracy. Panel (b) shows that 
the superiority of M3 is significant, with only one exemption: For K = 1 the uncoupled 
model M1 does not perform worse than the partially coupled model (M3).

Subsequently, we also investigated the segment-specific coupling posterior probabili-
ties p(δh = 1|D) ( h = 2, . . . ,H = K + 1 ) for the new partially coupled model (M3) and 
the posterior distributions of the coupling parameters �u, �2, . . . , �K+1 for the general-
ised model (M4), but we could not find clear trends for any gene. As an example, we pro-
vide the results for gene ASH1 in Fig. 9a, b. Panel (a) shows that the coupling posterior 

Fig. 8 Results for real yeast data with fixed changepoints. We imposed K ∈ {1, . . . , 5} changepoints and 
kept them fixed. K changepoints yield H = K + 1 segments. For each K we used the first changepoint to 
separate the two parts of the time series (galactose vs. glucose metabolism). Successively we located the 
next changepoint in the middle of the longest segment to divide it into 2 segments, until K changepoints 
were set. a show the model-specific average total AUC scores with error bars indicating standard deviations. 
b shows the AUC score differences in favour of the partially coupled model (M3). Here the error bars indicate 
t-test confidence intervals

(See figure on next page.)
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probabilities of model M3 do not have a clear pattern. However, it becomes obvious that 
the partially coupled model makes use of segment-wise switches between the uncoupled 
and the coupled approach. Panel (b) shows that the distributions of the segment-specific 

a

b
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coupling parameters, �2, . . . , �K+1 , of model M4 stay rather similar among segments. 
This explains why the generalised coupled model (M4) is not superior to the fully cou-
pled model (M2).

Application to Arabidopsis gene expression data

For the Arabidopsis gene expression data we cannot objectively compare the network 
reconstruction accuracies of the four models, since the true circadian clock network is 
not known. We therefore only applied the new partially coupled model (M3), which we 
had found to be the best model in our earlier studies. Figure 10 shows the Arabidopsis 
network, which was reconstructed using the hyperparameter p = 0.1 for the geomet-
ric distribution on the distance between changepoints. To obtain a network prediction, 
we extracted the 20 edges with the highest edge scores. Although a proper evaluation 
of the network prediction is beyond the scope of this paper, we note that several fea-
tures of the network are consistent with the plant biology literature. E.g. the feedback 
loop between LHY and TOC1 is the most important key feature of the circadian clock 
network (see, e.g., the work by Locke et  al. [18]). Many of the other predicted edges 
have been reported in more recent works. E.g. the edges LHY → ELF3 , LHY → ELF4 , 
GI → TOC1 , ELF3 → PRR3 and ELF4 → PRR9 can all be found in the circadian clock 
network (hypothesis) of Herrero et al. [19].

a

b
Fig. 9 Results for real yeast data with fixed changepoints. We imposed K ∈ {1, . . . , 5} changepoints and kept 
them fixed. K changepoints yield H = K + 1 segments. For each K we used the first changepoint to separate 
the two parts of the time series (galactose vs. glucose metabolism). Successively we located the next 
changepoint in the middle of the longest segment to divide it into 2 segments, until K changepoints were 
set. a Diagnostic for the partially coupled model (M3): The bars give the posterior probabilities p(δh = 1|D) 
that segment h is coupled to h− 1 ( h = 2, . . . , K + 1 ) for target gene ASH1. b Diagnostic for the generalised 
coupled model (M4): In each panel there is a boxplot for each segment h = 2, . . . , K + 1 showing the 
distributions of the logarithmic coupling parameters �h for target gene ASH1
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Discussion and conclusions
We have proposed a new Bayesian piece-wise linear regression model for reconstructing 
regulatory networks from gene expression time series. The new partially coupled model 
(M3), whose graphical model representation is given in Fig.  2, is a consensus model 
between the uncoupled model (M1) and the fully coupled model (M2). In the uncoupled 
model (M1) the segment-specific regression coefficients have to be learned for each seg-
ment separately. In the fully coupled model (M2) each segment is compelled to be cou-
pled to the previous one. The new partially coupled model (M3) combines features of the 
uncoupled and the fully coupled model, and it can infer for each individual time segment 
whether it is coupled to (or uncoupled from) the preceding segment.

We have cross-compared the new model (M3) with the two established models (M1–
M2) as well as with the generalised coupled model (M4) that makes use of segment-spe-
cific coupling parameters [6]. In our data applications, the new partially coupled model 
(M3) reached significantly better network reconstruction accuracies than its competi-
tors (M1, M2, and M4).

In an earlier work [6], we found that the performances of the fully coupled model (M1) 
and of the generalised fully coupled model (M4) can be improved by imposing addi-
tional hyperpriors on the hyperparameters of the coupling strength parameter. In our 
future work we will therefore investigate whether either the use of hyperpriors or the 
use of segment specific continuous (coupling/SNR) parameters along the lines of the M4 
model can improve the new partially coupled model (M3). Moreover, in our future work 
we will also try to combine the concept of partially coupled time segments of the pro-
posed model (M3) with the recently proposed concept of partially coupled edges [8]. The 

Fig. 10 Prediction of the circadian clock network in Arabidopsis thaliana. The prediction was obtained with 
the proposed partially coupled model (M3), using the hyperparameter p = 0.1 for the geometric distribution 
on the distance between changepoints. The network shows the 20 edges with the highest edge scores. We 
have added the label ‘L’ to those edges that have already been reported in the biology literature. Fore more 
details see the main text
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combination of both concepts will yield a highly flexible novel NH-DBN model, in which 
each individual network edge is partially segment-wise coupled. We will empirically test 
whether this new hybrid model leads to improved network reconstruction results or 
whether it suffers from model over-flexibility.
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DBN: Dynamic Bayesian network; NH-DBN: Non-homogeneous dynamic Bayesian network; MCMC: Markov chain Monte 
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