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Background
Somatic variant callers find mutations in cancer samples by comparing sequencing data 
from matched tumor-normal sample pairs and they output lists of the differences they 
detect. These differences are a mixture of true somatic mutations and false positives. 
Confounding factors such as the purity of the samples, the sub-clonal heterogeneity 
of cancer samples, somatic copy number aberrations, artifacts introduced by sequenc-
ing chemistry, the alignment algorithm and the incomplete and repetitive nature of 
reference genomes all lead to somatic variant calls that are rich in false positives. Fur-
thermore, somatic variant callers are optimized to be fast, as in many cases they must 
traverse the entire genome and the sequencing data could potentially be thousands of 
reads deep.

Abstract 

Background:  Somatic variant callers are used to find mutations in sequencing data 
from cancer samples. They are very sensitive and have high recall, but also may pro-
duce low precision data with a large proportion of false positives. Further ad hoc filter-
ing is commonly performed after variant calling and before further analysis. Improving 
the filtering of somatic variants in a reproducible way represents an unmet need. We 
have developed Filters for Next Generation Sequencing (FiNGS), software written spe-
cifically to address these filtering issues.

Results:  Developed and tested using publicly available sequencing data sets, we 
demonstrate that FiNGS reliably improves upon the precision of default variant caller 
outputs and performs better than other tools designed for the same task.

Conclusions:  FiNGS provides researchers with a tool to reproducibly filter somatic 
variants that is simple to both deploy and use, with filters and thresholds that are fully 
configurable by the user. It ingests and emits standard variant call format (VCF) files 
and will slot into existing sequencing pipelines. It allows users to develop and imple-
ment their own filtering strategies and simple sharing of these with others.
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It is common practice for sequencing studies to attempt to ameliorate these effects 
using a variety of filtering techniques, including taking the intersect of results from mul-
tiple variant callers and employing some form of post-calling filtering.

This ad-hoc filtering varies greatly between laboratories, leading to issues in data 
handling practices and reproducibility. Even if the filtering heuristics used are fully and 
accurately reported in the methods, other laboratories must produce their own code to 
reproduce these filters.

Besides in-house scripts, there are limited options available for filtering variants, 
each with their own compromises. VCFtools [1] can only filter variants based on data 
encoded in the VCF file itself, which is by design a sparse summary of the data. FPfilter 
is a script developed as part of the VarScan2 variant caller [2], but is intended for use 
with that variant caller and only considers the tumor binary alignment map (BAM) file. 
As of the latest build (version 4) of the Genome Analysis Tool Kit (GATK) [3], the filter-
ing of MuTect calls is broken out into a separate step called FilterMutectCalls. While this 
does output a standard VCF file, it only works with VCFs produced using the MuTect 
variant caller and requires users to fully commit to the GATK software ecosystem.

Attempts have been made to standardize filtering methodology between laboratories, 
with recommendations produced by the International Cancer Genome Consortium 
(ICGC) [4]. Despite this, there has not yet been a filtering tool released that implements 
this methodology. Therefore, we have developed Filters for Next Generation Sequencing 
(FiNGS), software written specifically to address these issues and also provide an imple-
mentation of the ICGC filtering standards.

FiNGS is robust, easy to both use and integrate into existing software pipelines. Fur-
ther, it is flexible, so that users may pick and choose the filters and thresholds that best 
suit their application. For example, the required base quality could be lowered for highly 
degraded samples, or the minimum variant allele frequency (VAF) lowered for very 
deeply sequenced samples. These settings can easily be reported (or supplied as a con-
figuration file) in published work that uses FiNGS, thus ensuring reproducible results 
without the need of custom scripts.

Implementation

FiNGS is implemented in Python 3 and easy to install with a myriad of options for different 
computational environments. It is available via Bioconda [5], PyPI, directly from GitHub as 
source code, or as a Docker image which is also compatible with Singularity [6].

The FiNGS workflow is shown in Fig. 1. The required inputs are a standard VCF file 
from any somatic variant caller along with the tumor and normal BAM files of sequenc-
ing data used to generate it. FiNGS is optimized for use with Illumina paired-end 
sequencing data. Although this represents the majority of sequencing data available, 
there are other sequencing platforms and users must choose filters and parameters 
appropriate to their own data, as there may be patterns of errors unique to them which 
we have not considered.

An optional additional input is a text configuration file specifying the filters and 
thresholds to use, although two default configuration files are supplied with the soft-
ware, one with filters and thresholds we have selected and one that replicates the 
ICGC filtering recommendations. FiNGS operates a two-stage procedure. First, it 
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calculates a wide range of metrics for every potential variant listed in the VCF using 
the Pysam package to access the BAM files and stores the metrics in gzipped com-
pressed text files. These metrics are not otherwise available in the source VCF or 
BAM files. Second, these metrics are used to apply the filters specified by the user, 
resulting in a standard filtered VCF with headers detailing the filters and thresholds, 
along with a log file, a text file containing filter results for every variant and plots 
summarizing the pass and fail counts for each filter.

The metric-gathering process is the most expensive in terms of computation and 
time. However, we have taken the following steps to ameliorate this. First, we have used 
the joblib package to implement parallelization. Second, FiNGS will identify if previ-
ously calculated metrics are available to avoid recalculation in the event of changing fil-
ter thresholds. This makes it fast and simple for a user to filter a data set using multiple 
different filters and thresholds, while also offering protection against user-input error.

Default filters were designed based on features suggested by ICGC recommenda-
tions [4] and heuristics such as depth of coverage and variant allele frequency (VAF). 
All filters and the rationale for each are described in detail in the documentation with 
suggested thresholds (Additional file 1: Table 1). At runtime a tab-delimited text file 
specifying the desired filters and thresholds is supplied by the user and only these 
filters will be applied. FiNGS comes with a default set of filters and thresholds. How-
ever, the exact ICGC standards can be invoked using the “–ICGC" flag. Further, users 
can share their filtering methodologies simply by providing the tab-delimited configu-
ration text file that lists filters and thresholds.

Training data was composed of three separate sets of samples and was used to 
optimize parameters for each filter, attempting to maximize both recall and pre-
cision. Two synthetic data sets from a previous study [7], representing a targeted 
panel sequenced to 520 × depth and whole exome sequencing (WES) sequenced to 

Fig. 1  The FiNGS workflow. A user supplies the BAM files from a pair of matched normal and tumor samples, 
along with a standard VCF file listing somatic mutations and a text file detailing the filters and thresholds to 
be used. FiNGS outputs a filtered VCF file, along with a number of additional files that the user may find useful
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70 × depth, both using Illumina reads with normal contamination ranging from 0 to 
90%.

The third data set was whole genome sequencing (WGS) sourced from the Genome 
In A Bottle (GIAB) consortium, sequenced from a physical mixture of two extremely 
well-characterized human genomes. A mixture of 30% NA12878 (“tumor”) and 70% 
NA24385 (“normal”) was sequenced to 90 × depth, with a 30 × depth sample of 100% 
NA24385 acting a matched normal sample.

Validation was performed using the same tumor-normal pair of deeply sequenced 
whole genomes from a medulloblastoma patient used by the ICGC to produce their rec-
ommendations on variant filtering [4].

All data were aligned using BWA version 0.7.12 [8], followed by sorting and dedu-
plication using Picard version 2.13 [9]. Training data was aligned to reference genome 
GRCh37 and validation data aligned to reference genome GRCh38. Variants were called 
using default parameters with both MuTect version 1.1.7 [10] and Strelka2 version 2.8.3 
[11].

Software performance was tested by calculating the precision, recall and F1 score for 
each condition using detection of known true positive mutations. Recall is a measure 
of the proportion of true positives recovered after filtering, precision is a measure of 
the proportion of filtered results that are true positives and the F1 score is the harmonic 
mean of recall and precision; all range between 0 and 1, with values closer to 1 being bet-
ter. Recall, precision and F1 score are defined as:

Results
The ICGC validation data contained 1262 true positive SNVs which were used to calcu-
late the recall, precision and F1 scores for raw variant calls from MuTect and Strelka2, 
and after filtering by FPfilter and FiNGS using both the default settings and ICGC set-
tings. Results are summarized in Fig. 2. With no further filtering, MuTect (Fig. 2A) and 
Strelka2 (Fig. 2B) had excellent recall (0.93 and 0.95), calling most of the true positives. 
However, they also had poor precision (0.66 and 0.53), clearly illustrating the need for 
post-call filtering, as nearly half the results were false positives, resulting in moderate F1 
scores (0.77 and 0.68).

FPfilter was effective at increasing overall precision in MuTect (0.87) and Strelka2 
(0.75), albeit with lower recall, resulting in improved F1 scores (0.85 and 0.79). FiNGS 
achieved superior results, regardless of the variant caller used, both with the default fil-
ters and ICGC filters. The FiNGS default filters performed similarly with both MuTect 
and Strelka2 calls, with a large increase in precision at the cost of a reduction in recall 

Recall =
TP

TP + FN

Precision =
TP

TP + FP

F1 =
2TP

2TP + FP + FN
= 2 ·

precision · recall

precision+ recall
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(recall, precision and F1 scores were 0.85, 0.98 and 0.91 in both). Results with the 
ICGC filters applied using FiNGS were more variable, giving the best observed results 
in MuTect and lower precision but higher recall than the default FiNGS filters with 
Strelka2. The default settings of FiNGS were developed using BWA-aligned data. Using 
other aligners may therefore require alternative settings when filtering based on param-
eters that are generated by aligners, such as alignment quality score. Despite the large 
number of filters available, we find that excluding variants with low VAF tends to have 
the most pronounced effect.

Conclusions
These data demonstrate the value in further filtering variant calls beyond what is initially 
emitted by somatic variant callers. The type and stringency of filtering is a careful bal-
ance between the reduction of false positives (increased precision) and excluding true 
positives (decreased recall). We have developed FiNGS, which substantially increases 
the precision of results, providing high quality variants for further analysis. The filters 
and thresholds to be applied are fully configurable by the user, allowing simple, consist-
ent, flexible and reproducible filtering of somatic variants, along with an easy method of 
sharing filtering strategies between users. We encourage users to think critically about 
their filtered results, including examining the plots produced so that they have confi-
dence that they are not over or under-filtering.

Availability and requirements

•	 Project name: FiNGS (Filters for Next Generation Sequencing)
•	 Project home page: https​://githu​b.com/cpwar​dell/FiNGS​
•	 Operating system(s): Platform independent
•	 Programming language: Python 3
•	 Other requirements: e.g. Python 3.5 or higher
•	 License: Apache 2.0
•	 Any restrictions to use by non-academics: None

ba

Fig. 2  Recall versus precision plots for validation data sets. Filtering results for MuTect (a) and Strelka2 
(b). Contour lines demarcating thresholds for F1 scores are marked and labelled in gray. FPfilter and FiNGS 
increased the precision of the results, for a small cost to recall. Overall, the default and ICGC modes of FiNGS 
produced the best results

https://github.com/cpwardell/FiNGS
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Supplementary Information
The online version contains supplementary material available at https​://doi.org/10.1186/s1285​9-021-03995​-y.

Additional file 1 Supplementary Table 1: Filters included in FiNGS, with descriptions and rationales for each of them.  
Also includes default values in FiNGS, ICGC recommendations and FPfilter values.  Using a subset of the validation data, 
we calculated the recall, precision and F1 scores for each set of parameters in each filter and report the parameter with 
the highest F1 score.
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BAM: binary alignment map; FN: false negative; FP: false positive; GATK: genome analysis tool kit; ICGC​: international cancer 
genome consortium; SNV: single nucleotide variant; TP: true positive; VCF: variant call format.
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