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Background
Genome-wide Association Studies (GWASs) have helped reveal about 10,000 associa-
tions between genetic variants in the human genome and diseases [1]. With the suc-
cess of GWASs involving analysis of single data sets, a natural follow-up is to investigate 
multiple data sets [2], which we refer to as joint analysis. A joint analysis may uncover 
genetic mechanisms that cannot be discovered in a single analysis [3]. For exam-
ple, recent studies have revealed overlapping genetic factors that influence multiple 
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psychiatric disorders [4], genetic correlations between schizophrenia, ADHD, depres-
sion, and cannabis use [5], as well as an association between schizophrenia and illicit 
drug use [6]. Also, co-occurrences of substance use disorders (SUDs) and psychopathol-
ogy have been observed in national epidemiologic surveys [7, 8], which suggests a fur-
ther joint analysis should be conducted to uncover potential common genetic factors 
underlying both SUDs and diseases involving cognitive dysfunction.

However, a joint genetic analysis using two independently collected data sets can be 
very challenging. In addition to the issues commonly expected from single data sets such 
as population stratification [9], a straightforward application of computational methods 
proposed for single data sets for the joint analysis could result in false discoveries caused 
by confounding factors such as the batch effects due to different data collection proce-
dures. Moreover, two independently collected data sets do not often share the pheno-
types of interest. To help better understand these challenges, we illustrate them in detail 
in Fig. 1. For the two data sets 1 and 2 originally collected for independent studies of the 
red and blue phenotype, respectively, a joint analysis aims to discover common genetic 
variants associated with both of these phenotypes. However, in order to perform such 
analysis, as shown in Fig. 1, all the information that is enclosed in the boxes with dashed 
lines needs to be inferred which could pose major challenges for these analyses; ques-
tions need to be answered involve, e.g., what is the blue phenotype of the samples in data 
set 1 since the blue phenotype may not be collected when the data set 1 is generated? 
How to deal with different confounding factors present in different data sets, includ-
ing population stratification, family structures, cryptic relatedness, and data collection 
confounders?

Existing methods for joint analysis on genetic data are mostly built on summary statis-
tics e.g., [10–20]. More recently, [21] introduced multi-trait analysis of GWAS (MTAG) 
that can perform joint analysis using the summary statistics calculated from cohorts 
with overlapping samples. [22] proposed a regularized Gaussian mixture model called 
iMAP to infer the association between SNPs to correlated phenotypes. [23] presented a 
heritability-informed power optimization method that finds an optimal linear combina-
tions of association coefficients.

Fig. 1 Illustration of the existing challenges when conducting a joint analysis on two independently 
collected data sets with two different phenotypes
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While summary statistics can help uncover common genetic factors from joint analy-
sis, individual-level data nonetheless contains more information that allows the analyst 
to adjust for patient-level covariates, repeated measures, etc. [24]. Recently, [25] pro-
posed a method for joint analysis which integrates individual-level data together with 
summary-level data. [26] directly used individual-level data for the joint analysis of traits 
that are collected separately from different cohorts. However, none of these methods 
took advantage of the rich information of the distribution of SNPs in the individual-level 
data, which allows the analyst to infer and correct the sample population structure or 
other potential confounding factors. In this work, we introduce a computational method 
for joint genetic analysis using individual-level data with correction of potential con-
founding factors.

Here, we propose a method, namely Coupled Mixed Model (CMM), for a joint asso-
ciation analysis that directly operates on two GWAS sequence data sets. CMM aims to 
address all the challenges above and to provide a reliable joint analysis of the data sets 
by inferring the missing information as illustrated in Fig. 1. In particular, CMM infers 
the missing phenotypes and various confounding factors with the maximum likelihood 
estimation. It is also noteworthy that our method is different from the approaches for 
missing phenotype imputation such as [27, 28] in that our method aims to address the 
challenges when there are no empirical data which allows the correlation between differ-
ent phenotypes to be measured—a common situation for independently collected data 
sets which are not originally generated for joint analysis purposes. We first verify the 
performance of our methods with simulation experiments, and then apply our method 
to real GWAS data sets previously generated for investigating genetic variants associ-
ated with substance use disorders (SUDs) and Alzheimer’s disease (AD), respectively, for 
joint analysis.

Results
Simulation experiments

We compare CMM to several approaches using simulated data sets.

• HG(W): Joint analysis conducted with the hypergeometric tests [10] when the two 
independent problems are each solved by the standard univariate Wald testing with 
the Benjamini-Hochberg (BH) procedure [29]. This is the most popular approach in 
GWAS for a single data set.

• HG(L): Joint analysis conducted with the hypergeometric tests [10] when the two 
independent problems are each solved by a standard linear mixed model with the 
Benjamini-Hochberg (BH) procedure [29].

• CD: Combining data-set approach. CD merges two data sets X1 and X2 into one 
X = [X1;X2] and create a pseudo phenotype y ∈ {0, 1}n1+n2 where y(i) = 1 if the ith 
sample has either one of the two diseases.

• iMAP: integrative MApping of Pleiotropic association, which is a method for joint 
analysis that models summary statistics from GWAS results by integrating SNP 
annotations in the model [22]. For a fair comparison of the methods, we do not use 
the SNP annotations with this method.
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• MTAG: multi-trait analysis of GWAS [21], which is also a method for joint analysis 
of GWAS data sets using summary statistics, which accounts for potential confound-
ers due to population stratification or cryptic relatedness.

• LR: ℓ1-regularized logistic regression, which can be directly applied to the two inde-
pendent data sets for joint analysis. We select the intersection of the identified SNPs 
associated with each of the phenotypes as the SNPs jointly associated with both phe-
notypes.

• AL: Adaptive Lasso, which is an extension of the Lasso that weighs the regulariza-
tion term [30] (enabled by the method introduced in [31] for high-dimensional data). 
AL is applied to the independent data sets in the same manner as LR. We use the 
logistic-regression version of the method if the phenotypes are binary.

• PL: Precision Lasso, a novel variant of the Lasso, that is developed for analyzing data 
with correlated and linearly dependent features, commonly seen in genomic studies 
[32]. PL is applied to the independent data sets in the same manner as LR.

• JL: Joint Lasso, which is a method we implement in this study for a fair comparison 
of our proposed CMM method. JL solves the lasso problems jointly with the con-
straint β(1) = β(2) with ADMM. This approach can be seen as a CMM method with-
out consideration of the confounding factors in the data.

• CMM: Coupled Mixed Model. Our proposed method.

We simulate two independent data sets with binary phenotypes, whose SNPs are gener-
ated via SimuPop [33] with population structures. We also introduce the influences from 
confounding factors, resulting in a roughly 0.25 signal-to-noise ratio for effect sizes. We 
mainly experiment with two different settings: the number of the associated SNPs and 
the fraction of these SNPs that are jointly associated with both phenotypes. We repeat 
the experiments with 10 different random seeds. Details of simulation are in Additional 
file 1: Section S5.1.

We first evaluate these methods with the focus on finding the SNPs associated with 
both phenotypes, and compare the performance of the competing methods with ROC 
curves. For the univariate testing methods (HG, CD, MTAG), the curves are plotted by 
varying the null-hypothesis-rejecting threshold of p-values, while for multivariate regu-
larized regression methods, the curves are plotted by varying the regularizing hyperpa-
rameter (200 different choices evenly distributed in logspace from 10−5 to 105 ), except 
the Precision Lasso which is tested with only 20 choices because of its limitation in 
scalability.

Figure 2 shows the ROC curves of the compared methods in terms of their abilities 
to find the SNPs associated with both phenotypes. Overall, the results favor our CMM 
method significantly. In comparison with the other methods, the superiority of the pro-
posed CMM is more evident when there are fewer associated SNPs in each data set, and 
also when there are fewer SNPs associated with both phenotypes. For example, as shown 
in Fig. 2, when only 0.1% of the SNPs are associated with a phenotype (first row), the 
advantage of CMM can be clearly seen; however, when 1% of SNPs are associated with a 
phenotype (last row), CMM barely outperforms HG(L) methods.

By comparing the performances of the compared methods in different columns in 
Fig. 2, we can see how the common SNPs (i.e., those associated with both phenotypes) 
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affect the results: as the percentage of the common SNPs increases, in general, the per-
formances of all the compared methods increase. Also, we notice that the performance 
of CMM does not vary significantly as the number of the common SNPs varies, This 
observation indicates that the Constraint (3) in our optimization problem does not nec-
essarily deteriorate the method’s performance even when the two phenotypes are less 
related.

With the clear advantage of CMM, we now proceed to discuss more about the other 
competing methods. We notice that multivariate methods (LR, AL, JL) tend to perform 
well when there are less associated SNPs as well as less common SNPs, while univari-
ate methods (HG(W), HG(L), CD) favor the opposite scenarios with more associated 
SNPs and more common SNPs. For instance, JL, which can be considered as a multi-
variate version of CD, barely outperforms CD. As the number of the common SNPs 
increases, the performance of CD improves clearly, while that of JL does not. This result 
can be explained as follows: CD only aims to recover the common SNPs, while JL bal-
ances between minimizing the two logistic regression cost functions and minimizing the 
differentiation between coefficients which may not result in a more effective recovery 
of the common SNPs. Unfortunately, summary statistics-based methods (iMAP and 
MTAG) do not perform well in our simulation experiment settings, most likely due to 
the presence of the multiple sources of confounding factors in the simulated data. Also, 
iMAP is introduced as a method which leverages the power of SNP annotations for joint 
analysis, but we do not include the annotation information in the experiments for fair 
comparisons.

We also notice that LMM performs surprisingly well when there are many associ-
ated SNPs. For example, when there are 1% of the associated SNPs (last row of Fig. 2), 
LMM performs as the second best method. However, LMM does not perform well with 
fewer associated SNPs, as shown in the first two rows of Fig. 2. Furthermore, we plot the 
results of the ROC curves of the compared methods regarding their abilities in uncov-
ering the associated SNPs separately for each data set, which are shown in Additional 

Fig. 2 The ROC curves of the compared methods in terms of identifying the SNPs that are jointly associated 
with both phenotypes
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file 1: Section S4.2. Together, these simulation results demonstrate that CMM outper-
forms the other methods in terms of finding common SNPs associated with both pheno-
types, as well as finding associated SNPs with individual phenotype.

We also tested our CMM method for predicting the phenotypes across data sets in 
comparison to the other competing regression-based methods. The results are presented 
in Additionalfile 1: Section S5.2 and S5.3.

Real data analysis: joint genetic analysis for Alzheimer’s disease and substance use 

disorder

Application of CMM to two GWAS data sets for AD and SUDs

In the real data analysis, we apply our proposed CMM method to two GWAS data sets 
independently generated previously to investigate genetic association for AD and SUDs, 
respectively. The AD data set was collected from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI)1 and the SUD data set was collected by the CEDAR Center at the 
University of Pittsburgh2. For the AD data set, we only used the data generated from the 
individuals diagnosed with either AD or normal controls. There are 477 individuals in 
the final AD data set with 188 case samples and 289 control samples. For the SUD data 
set, we consider the subjects with drug abuse history as the case group and the sub-
jects with neither drug abuse nor alcohol abuse behavior as the control group, exclud-
ing the subjects with only alcohol abuse behavior (but not drug abuse history), because 
alcoholism is usually believed to be related to drug abuse. There are 359 patients in the 
final SUD data set with 153 case samples and 206 control samples. We also exclude 
the SNPs on X-chromosome following suggestions of previous studies [34]. There are 
257361 SNPs in these two data sets left to be examined. Even though the sample sizes 
of the AD and the SUD data sets are small, which unfortunately is a common situation 
for genetic studies of complex human diseases, particularly for SUDs, our results sug-
gest that our CMM method can help identify promising genetic variants that are worth 
further investigation.

Due to the statistical limitation of selecting hyperparameters using cross-validation 
and information criteria in high dimensional data [32], we tune the hyperparameters 
according to the number of SNPs we aim to select, following previous work [32, 35, 
36] and the hyperparameters of our model will be tuned automatically through binary 
search for the set of parameters according to the number of SNPs we inquire. This 
hyperparameter selection procedure has been shown to generate less false positives in 
general than cross-validation, even when the queried number of SNPs is (reasonably) 
misspecified [32]. To mitigate the computation load, the algorithm will terminate the 
hyperparameter search when the number of the reported SNPs lies within 50–200% of 
the number we inquire.

We inquire for 30 SNPs selected in each data set, and CMM identified five SNPs that 
are associated with both SUD and AD, which is reported in Table  1. CMM reported 
15 additional SNPs and 35 additional SNPs for SUD and AD respectively, which are 
reported in Tables S1 and S2 (Additional file  1: Section S7). Notably, we do not find 

1 http://adni.loni.usc.edu/.
2 http://www.pitt.edu/~cedar /.

http://adni.loni.usc.edu/
http://www.pitt.edu/%7ecedar/


Page 7 of 14Wang et al. BMC Bioinformatics           (2021) 22:50  

much overlap between our findings and those from the previous studies in the GWAS 
Catalog [37], and we believe this is because our method explicitly favors to identify the 
SNPs that are jointly associated with both of the disease phenotypes. Nevertheless, we 
find many pieces of evidence supporting our findings. The following discussion focuses 
on the validation of these five identified SNPs.

Validation of the identified common SNPs associated with both AD and SUDs

Statistical validation In order to validate the five identified common SNPs, we first 
compared the distribution differences of SNPs between the case and control samples in 
each of the diseases. We notice that in most cases, the allele frequencies are different 
between the case and the control samples (shown in Table 2). Also, we examine the sta-
tistical significance of independence between the SNPs in the control group vs. the case 
group with the student’s t test. Seven out of the ten tests report a statistically significant 
sign of independence (shown in Table 2).

Literature support Due to the lack of direct information on the SNPs and the disease 
phenotypes, we also verify our findings via literature search based on the relationship 
between the genes where the identified SNPs reside and the phenotypes.

Our results show that rs224534 identified by CMM to be associated with both AD 
and SUD resides in TRPV1 which encodes transient receptor potential cation chan-
nel subfamily V member 1. Previous evidence showed that positive modulation of 
the TRPV1 channels could be a potential target for mitigation of AD [38], suggesting 
an important involvement of TRPV1 in AD. In addition, [39] have also shown that 

Table 1 The SNPs that the CMM method identifies from both the SUD and the AD data sets

The SNPs are ranked by the absolute values of their estimated effect sizes, and showed in the “SUD rank” and “AD rank” 
columns. The information of whether a SNP is located within a region of a gene is taken from the Database for Single 
Nucleotide Polymorphisms (dbSNP) [60], and listed in the “Gene” column

SNP SUD rank AD rank Chr. Chr. position Gene

rs2131691 1 1 11 26574855 ANO3

rs1709317 5 8 2 23536638 KLHL29

rs4713797 6 10 6 34490756 PACSIN1

rs224534 12 3 17 3583408 TRPV1

rs1057744 16 11 14 105150705 JAG2

Table 2 The minor allel frequencies (MAFs) of  the  five identified SNPs in  the  case (“AD” 
column) and  the  control (“C” column) samples. The overall MAFs (in “all” column are 
reported for reference

The p values of the student’s t tests are also reported. The statistically significant p values which are below the threshold of 
0.05 are shown in bold

AD SUD

All C AD p value All C SUD p value

rs2131691 0.47 0.41 0.44 4.78E05 0.47 0.46 0.48 4.64E-01

rs1709317 0.36 0.31 0.45 6.82E−06 0.27 0.30 0.22 2.28E−02
rs4713797 0.48 0.47 0.41 6.04E−04 0.41 0.45 0.37 5.32E−02

rs224534 0.33 0.28 0.43 1.41E−06 0.25 0.26 0.25 7.91E−01

rs1057744 0.49 0.45 0.42 4.81E−04 0.39 0.42 0.35 3.71E−02
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TRPV1 plays a key role in morphine addiction. Blednov and Harris [40] showed that 
the deletion of TRPV1 in mice altered behavioral effects of ethanol which indicates a 
connection between TRPV1 and alcoholism.

Moreover, TRPV1 mediates long-term synaptic depression in the hippocampus [41], 
which is key to reward-related learning and addiction [42]. Further, we notice that 
in the “Inflammatory mediator regulation of TRP channels” pathway of the KEGG 
database [43], TRPV1 serves as a Ca2+ channel. Ca2+ binding to calmodulin (CaM) 
activates Ca2+/CaM-dependent protein kinase II (CAMKII). CaMKII is involved in 
many signaling cascades and is an important mediator of learning and memory [44], 
which plays an important role in neuropsychiatric disorders including drug addiction, 
schizophrenia, depression and multiple neurodevelopmental disorders [45, 46].

Additional evidence using an independent approach In addition to the statisti-
cal and literature support, we also validate TRPV1 as a SUD-related protein using an 
independent study of the drug-target interaction analysis.

In this drug-target interaction analysis, we identified the known ligands of the cor-
responding proteins of each gene through drug/ligand-target interactions compiled 
in DrugBank [47] and STITCH [48] databases. In addition, predicted ligands with 
high confidence were obtained by applying a probabilistic matrix factorization (PMF) 
model [49] on known drug/ligand-target interactions in DrugBank and STITCH. The 
data and the method are accessible on our online server (http://quart ata.csb.pitt.edu). 
Among the identified known and predicted ligands, we focused on the drugs that are 
associated with either SUD or AD. The results show that 4 SUD-related drugs are 
known to interact with TRPV1 and 5 SUD-related drugs are predicted to interact with 
TRPV1, which supports the association between TRPV1 and SUD.

In particular, as illustrated in Fig. 3, our analysis shows that TRPV1 is the known 
target of medical cannabis (plant use of marijuana), as well as three cannabinoids 

Fig. 3 The interactions between TRPV1 and 9 SUD-related drugs. Violet ellipses represent drugs of abuse; 
black solid edges represent known interactions in DrugBank; and red dashed edges represent predicted 
interactions using the PMF model

http://quartata.csb.pitt.edu
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(nabiximols, cannabidivarin, and cannabidiol) in cannabis, according to the annota-
tions in DrugBank. In the PMF prediction model, TRPV1 is the predicted target of 
two cannabinoids (tetrahydrocannabivarin, cannabichromene) extracted from can-
nabis, two synthetic cannabinoids (dronabinol and nabilone) of �9-THC (another 
cannabinoid from cannabis), as well as a central nervous system (CNS) depressant 
(flunitrazepam). These drugs are commonly known as drugs of abuse, and thus these 
results help verify the association between TRPV1 and SUD.

Together, these results suggest that our findings, although explorative, may reveal 
novel genetic connections between SUD and AD. More discussions on the SNPs shown 
in Table  1 are presented in Additional file  1: Section S6. For other SNPs identified by 
CMM which are associated with either AD or SUD, we discuss them in detail in Addi-
tional file 1: Section S7.

Conclusion
Following previous successes in joint genetic analysis using summary statistics-based 
approaches, we propose a novel method, Coupled Mixed Model (CMM), that operates 
on individual-level SNP data and aims to address challenges illustrated in Fig. 1. We fur-
ther present an algorithm that allows an efficient parameter estimation of the objective 
function derived from our model.

With extensive simulation experiments, we showed the superior performance of the 
CMM method in comparison with several competing approaches. In the real data analy-
sis, we applied our method to identify the common SNPs associated with both AD and 
SUD. CMM identified five SNPs associated with both of the disease phenotypes. Notably, 
one of the identified SNPs reside in the gene TRPV1, which has been linked to both AD 
and SUD by multiple pieces of evidence, including statistical tests showing differences 
in the allele frequencies between the case and the control samples, previous evidence in 
the literature, as well as results from an independent study of the drug-target interaction 
analysis. Together, we show that our proposed CMM method is able to uncover promis-
ing genetic variants that are associated with different disease phenotypes using individu-
ally collected GWAS data sets and reveal novel connections between diseases.

Methods
Coupled mixed model

The following are the notations we use in this work: The subscript denotes the identifier 
of data set, and the superscript in parentheses denotes the identifier of phenotypes. Geno-
types and phenotypes are denoted as X and y , respectively. Also, n denotes the sample 
size, and p denotes the number of SNPs. Specifically, consider a scenario as illustrated 
in Fig. 1, X1 and X2 represent the genotypes of the samples in data sets 1 and 2 with the 
dimension of n1 × p and n2 × p , respectively. y(1)1  and y(2)1  denote the vectors of pheno-
types 1 and 2, respectively, of the dimension n1 × 1 for the samples in data set 1. Note 
that y(2)1  is not observed. Similarly, y(1)2  and y(2)2  denote the vectors of phenotypes 1 and 
2, respectively, of the dimension n2 × 1 for the samples in data set 2. y(1)2  is not observed.

Our method does not require n1 = n2 . However, for the convenience of the discussion, 
we will assume n1 = n2 = n . The case of n1  = n2 can be easily generalized by weighing 
the corresponding cost function components with 1/n1 and 1/n2 , respectively. Following 
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the similar logic, we introduce our method with the simplest linear models, but our 
method can be extended to the case of generalized linear models; for example, for case-
control data, one can directly apply our method to binary trait data, as done by many 
previous examples [22, 50–53]. Also, one can use our method with the residual pheno-
type after regressing other additional covariates (e.g, age or sex).

Straightforwardly, for the scenario shown in Fig. 1, we have:

where u(j)i  accounts for the confounding effects due to population stratification, family 
structures and cryptic relatedness in data set i with phenotype j; and vi accounts for the 
confounding effects due to data collection (e.g., batch effects) in data set i; ǫ(j)i  stands 
for residual noises for data set i with phenotype j, and ǫ(j)i ∼ N (0, Iσ 2

ǫ ) , where I is an 
identity matrix with the shape of n× n . Notice that we will drop the unidentifiable term 
ǫ
(j)
i  later during parameter estimation, otherwise these terms will turn the entire model 

unidentifiable.
We have u(j)i ∼ N (0,Kiσ

2
u(j)

) for data set i with phenotype j. As observed by [9], pop-
ulation stratification can cause false discoveries because there exist real associations 
between a phenotype and untyped SNPs that have similar allele frequencies with some 
typed SNPs that are not actually associated with the phenotype, which, as a result, can 
lead to false associations between the phenotype and the typed SNPs. Since these false 
associations due to confounders from population stratification are phenotype specific, 
we model σ 2

u(j)
 as phenotype-specific. Hence, although we have four different variance 

terms (i.e., u(1)1  , u(2)1  , u(1)2  , and u(2)2  ) accounting for population confounders, they are 
only parameterized by two scalars, σ 2

u(1)
 and σ 2

u(2)
 . Ki = XiX

T
i  is the kinship matrix, con-

structed following the genetics convention [54]. A more sophisticated construction of 
the kinship matrix may be used to improve detection of the signals, but these details are 
beyond the scope of this paper. One can refer to examples in [55–57] for more details.

To model the confounders due to data collection, we have vi ∼ N (0, Iσ 2
vi
) for data set 

i. Because these confounders are only related to the data collection procedure, we model 
σ 2
vi

 as data set-specific.
For the independently collected data sets, we only observe 〈X1, y

(1)
1 〉 and 〈X2, y

(2)
2 〉 . 

Since we are interested in estimating β(1) and β(2) , we also need to estimate y(2)1  , y(1)2  , σ 2
u1

 , 
σ 2
u2

 , σ 2
v1

 , and σ 2
v2

 in Eq. 1. As noted earlier, we drop the ǫ(j)i  . to avoid the model to become 
unidentifiable.

In order to estimate β(1) and β(2) , we minimize the joint negative log-likelihood func-
tion. Because there are only a subset of SNPs that contribute to the phenotype, we intro-
duce the standard ℓ1 regularization by setting the prior distribution of β(1) and β(2) as a 
Laplace distribution. Additionally, to encourage our method to find common SNPs asso-
ciated with both phenotypes, we use a simple constraint, as shown in Constraint (3). 
Taken together, the optimization problem for solving our model in Eq. 1 can be repre-
sented as follows:

(1)

y
(1)
1 = X1β

(1) + u
(1)
1 + v1 + ǫ

(1)
1

y
(2)
1 = X1β

(2) + u
(2)
1 + v1 + ǫ

(2)
1

y
(1)
2 = X2β

(1) + u
(1)
2 + v2 + ǫ

(1)
2

y
(2)
2 = X2β

(2) + u
(2)
2 + v2 + ǫ

(2)
2
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where

where � is the covariance matrix defined as:

and we have:

and ξ denotes a small number. The detailed derivation is described in Additional file 1: 
Section S1. The key steps involve replacing y(2)1  with X1β

(2) , and replacing y(1)2  with 
X2β

(1) , and then writing out the joint likelihood function of Eq. 1.
To solve the optimization Function (2), we propose a strategy as follows. We first esti-

mate the parameters {σ 2
u(1)

, σ 2
u(2)

, σ 2
v1
, σ 2

v2
} following the P3D set-up [58]. Then we propose 

an iterative updating algorithm that decouples the dependency between {β(1),β(2)} and 
t in the optimization function 2 and solves for {β(1),β(2)} and t with ADMM [59], which 
naturally uses the Constraint 3. We also offer a proof to show that our iterative updat-
ing algorithm will converge. The details of the algorithm and the convergence proof are 
presented in the Additional file  1: Section S2 and S3, respectively. While the method 
presented above works reasonably well (as we will show below), we hope to remind the 
readers that an alternative approach is to marginalize y(2)1  and y(1)2  instead of replacing 
them with the MLE estimation. However, this approach is not the focus of this paper and 
we will leave it for future study.

Implementation

The implementation of the CMM method is available as a python software. Without instal-
lation, one can run the software with a single command line. It takes standard Plink format 
as input. If there are mismatched SNPs between the data sets, CMM will use the intersec-
tion of these SNPs. We recommend the users to query CMM to identify a specific num-
ber of SNPs for each data set and CMM can tune the hyperparameters accordingly [32]. 

(2)
arg min
β(1),β(2),t

σ̂22

2t
||y

(1)
1 − X1β

(1)||22 +
σ̂11

2t
||y

(2)
2 − X2β

(2)||22

+
1

2
log t + �1||β

(1)||11 + �2||β
(2)||11

(3)s.t. ||β(1) − β(2)|| < ξ

(4)

σ̂11 = (y
(1)
1 )T (y

(1)
1 )+ (β(1))T (X2)

T (X2)(β
(1))

+ 2tr(K1σ
2
u(1)

)+ σ 2
v1
+ σ 2

v2

σ̂22 = (y
(2)
2 )T (y

(2)
2 )+ (β(2))T (X1)

T (X1)(β
(2))

+ 2tr(K2σ
2
u(2)

)+ σ 2
v1
+ σ 2

v2

t = |�|

� =

[
σ̂11 σ̂12
σ̂21 σ̂22

]

σ̂12 = σ̂21 = (y
(1)
1 )TX1β

(2) + (β(1))TX2y
(2)
2

+ tr(K1σ
2
u(1)

)+ tr(K2σ
2
u(2)

)+ σ 2
v1
+ σ 2

v2
,
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However, users can also choose to specify the regularization parameters. If none of the 
above information is specified, CMM will automatically conduct five-fold cross-validation 
to tune parameters. ξ does not need to be specified or tuned, because it can be dropped due 
to ADMM. The implementation is available as a standalone software (https ://githu b.com/
Haoha nWang /CMM). More detailed instructions of how to use the software are presented 
in Additional file 1: Section S4.

In theory, the computational complexity of the first step of the algorithm is O(n3) , and 
complexity of the second step is O(np). In practice, as we observe on two data sets with 
hundreds of samples and 200k SNPs, it takes CMM around a minute to converge given a set 
of hyperparameters on a modern server (2.30 GHz CPU and 128G RAM, Linux OS), and 
up to an hour to finish the entire hyperparameter tuning process.

Supplementary Information
The online version supplementary material available at https ://doi.org/10.1186/s1285 9-021-03959 -2.

Additional file 1. Supporting information including mathematical details of the derivations, software instructions 
and additional experimental results.
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