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Abstract

Background: Apoptosis, also called programmed cell death, refers to the
spontaneous and orderly death of cells controlled by genes in order to maintain a
stable internal environment. Identifying the subcellular location of apoptosis proteins is
very helpful in understanding the mechanism of apoptosis and designing drugs.
Therefore, the subcellular localization of apoptosis proteins has attracted increased
attention in computational biology. Effective feature extraction methods play a critical
role in predicting the subcellular location of proteins.

Results: In this paper, we proposed two novel feature extraction methods based on
evolutionary information. One of the features obtained the evolutionary information
via the transition matrix of the consensus sequence (CTM). And the other utilized the
evolutionary information from PSSM based on absolute entropy correlation analysis
(AECA-PSSM). After fusing the two kinds of features, linear discriminant analysis (LDA)
was used to reduce the dimension of the proposed features. Finally, the support vector
machine (SVM) was adopted to predict the protein subcellular locations. The proposed
CTM-AECA-PSSM-LDA subcellular location prediction method was evaluated using the
CL317 dataset and ZW225 dataset. By jackknife test, the overall accuracy was 99.7%
(CL317) and 95.6% (ZW225) respectively.

Conclusions: The experimental results show that the proposed method which is
hopefully to be a complementary tool for the existing methods of subcellular
localization, can effectively extract more abundant features of protein sequence and is
feasible in predicting the subcellular location of apoptosis proteins.
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Background
Apoptosis, also known as programmed cell death, is a basic biological phenomenon that is
associated with the occurrence of a wide variety of diseases, such as a tumor, autoimmune
disease, Alzheimer’s disease and so on. It plays an important role in animal develop-
ment and homeostasis [1]. Studies have shown that apoptosis proteins are essential in
this process. The subcellular location of a protein is closely related to its function. And
only in the specific subcellular location, can the protein work [2]. Subcellular localiza-
tion information of apoptosis proteins contributes to exploring the internal mechanism
of programmed cell death and designing new drugs [3]. However, the number of apop-
tosis proteins with clear subcellular location markers is limited in the database, and it is
time-consuming and costly to label samples by traditional experimental methods. There-
fore, exploring feasible computational methods to predict the subcellular location of the
given protein has been a hotspot for nearly two decades.
Over the years, various computational methods have been proposed in apoptosis pro-

tein subcellular localization. In 2006, Zhang et al. [4] built an apoptosis protein dataset
with 225 proteins in total (ZW225). They proposed using a grouped weight of protein
sequence and support vector machine (SVM) to predict the subcellular location of apop-
tosis proteins (EBGW_SVM). The overall accuracy achieved 83.1% by jackknife test. Chen
et al. [5] constructed a different apoptosis protein dataset in 2007, which contains 317
proteins (CL317). By using the increment of diversity (ID), the highest jackknife predic-
tive result was 82.7%. In the same year, they proposed another method called ID_SVM
which combined ID with SVM to predict the subcellular location of apoptosis proteins
[6]. The ID_SVM algorithm achieved a higher prediction accuracy by jackknife test, on
CL317 dataset is 84.2% and ZW225 dataset is 85.8%. Zhang et al. [7] applied the concept
of distance frequency and SVM to obtain the highest overall accuracy of 88.0% and 84.0%
on CL317 dataset and ZW225 dataset, respectively. Liu et al. [8] extracted the evolution-
ary information embedded in the position-specific scoring matrix (PSSM) and combined
it with auto covariance transformation to establish a PSSM-AC model. The overall accu-
racy achieved 91.5% on CL317 dataset and 84.0% on ZW225 dataset. Nearly, a series of
advances have been achieved in the prediction of apoptosis protein subcellular location
[9, 10]. Liang et al. [11] fused two feature descriptors named the frequency of triplet
codons in the RNA sequence (FTC) and detrended forward moving-average cross-
correlation analysis (DFMCA) to predict the subcellular location of apoptosis proteins,
which reached the overall accuracy of 89.0% and 85.3% on CL317 dataset and ZW225
dataset, respectively. Li et al. [12] proposed two feature extraction methods namely gen-
eralized chaos game representation (GCGR) and novel statistics and information theory
(NSI), they also combined them with other features including PseAAC and dipeptide
composition. The jackknife prediction accuracy of CL317 dataset and ZW225 dataset was
92.7% and 87.1%, respectively by using SVM.
In summary, to identify the subcellular location of proteins, diverse methods have been

proposed which mainly focus on the following two aspects: feature extraction and clas-
sification techniques. Feature extraction methods of protein sequences are the key to the
prediction of subcellular location. Existing methods include protein amino acid composi-
tion (AAC) [13–15], pseudo-amino acid composition (PseAAC) [16, 17], physicochemical
properties [18, 19], position-specific scoring matrix (PSSM) [20], Gene Ontology (GO)
[21, 22] and so on. As for the classifier, numerous classifiers have been applied to solve
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the problem of protein subcellular localization, such as support vector machine (SVM)
[23, 24], KNN [25, 26] and neural network [15, 27]. Among them, SVM is used extensively
for its good classification performance and fast computing speed.
Some early studies used GO information as the feature to solve this problem and

achieved the most significant improvement. However, for new proteins, because of the
lack of GO information, it is hard to use the GO terms. Recently, evolutionary informa-
tion based features extracted from position-specific scoring matrix (PSSM) have shown
their effectiveness in subcellular localization [19]. Xie et al. [28] proposed a model named
LOCSVMPSI which utilized the PSSM and four-part amino acid compositions as the
feature vector. Huang et al. [29] formulated a protein sequence with the pseudo position-
specific scoring matrix (PsePSSM). Dehzangi et al. [30] proposed a feature extraction
method named PSSM-S to predict the subcellular location of Gram-positive and Gram-
negative proteins. Wan et al. [31] combined the profile-alignment features and PseAA
features to predict the localization of chloroplast proteins. Liang et al. [32] constructed
a PSSM-based model by using Geary autocorrelation function and DCCA coefficient
for apoptosis protein subcellular localization prediction. Xiang et al. [33] utilized the
proportion of the golden section to split PSSM and proposed segmented evolutionary
information to represent protein sequences. Wang et al. [34] proposed segmented amino
acid composition in PSSM (PSSM-SAA) to tackle the subcellular localization problem.
All these methods have shown that based on evolutionary information, discriminative
features can be extracted for classification. Therefore, using PSSM to extract effective
features to represent protein sequences is still an outstanding problem.
To solve the problem of insufficient information in a single feature set, researchers

have paid attention to fuse multiple features to formulate protein sequences in recent
years. Zhang et al. [35] fused Moran autocorrelation and cross correlation with PSSM
to get protein sequence information, then the principal component analysis was used to
reduce redundant and irrelevant information. Wan et al. [36] adopted a linear neighbor-
hood propagation (LNP) classifier ensemble scheme to incorporate both split amino-acid
composition (SAAC) features and profile-alignment (PA) features for predicting sub-
chloroplast localization. Qu et al. [37] presented a method to predict the subcellular
location of multi-site proteins by combining N-terminal signals, pseudo amino acid
composition, physicochemical property, stereo-chemical property and amino acid index
distribution. However, the fusion feature vectors usually established by splicing multi-
ple different features and the features integrated through this method often have a high
dimension [11, 38–40]. The high-dimensional features contain a good deal of redundant
information which may have a harmful influence on performing the classifier. Dimen-
sionality reduction algorithms can help to eliminate the redundant data from the original
feature space and are widely used in machine learning [41].
In this paper, we focus on extracting features based on evolutionary information

embedded in position-specific scoring matrix (PSSM). Two novel feature extraction
methods are therefore proposed to predict the subcellular locations of apoptosis proteins.
First, according to PSSM, we transform the protein primary sequence into the consen-
sus sequence, and propose a novel feature extraction method based on the consensus
sequence, which named consensus sequence-based transition matrix (CTM). The CTM
feature reflects distributions information of the amino acid transitions. For each protein
sequence, CTM method can obtain a 40-dimensional feature vector. Then we propose
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another feature extraction method calculated from PSSMmatrix directly. It can establish
a 190-dimensional feature named absolute entropy correlation analysis (AECA-PSSM).
AECA-PSSM derives from relative entropy or KL divergence, and it reflects the relation-
ship between each two columns of PSSM. Thus, for a given protein sequence, we can
generate a 230-dimensional fusion feature. Next linear discriminant analysis (LDA) is
used to eliminate the noise and reduce the dimension of the proposed features. Finally, the
feature vector after dimensionality reduction is fed into SVM to identify the subcellular
location. And the proposed CTM-AECA-PSSM-LDAmethod reaches a higher classifica-
tion performance in identifying subcellular locations of apoptosis proteins on CL317 and
ZW225 datasets.

Results
Performance of the two proposed feature extraction methods

In this paper, the protein samples are formulated with two evolutionary information
based feature extraction methods: consensus sequence-based transition matrix (CTM)
and absolute entropy correction analysis (AECA-PSSM). To investigate the effectiveness
of the proposed method, we first test the performance of the two novel feature extraction
methods.
In the consensus sequence-based transition matrix method, we utilize the consen-

sus sequence transformed from the protein primary sequence to integrate evolutionary
information embedded in PSSM. Then, for the consensus sequence enriched with evolu-
tionary information, we construct a transition matrix to extract features. Figure 1 shows
the comparison between features extracted from the transition matrix of protein primary
sequence (PTM) and the transition matrix of consensus sequence (CTM). On the whole,
the CTMmethod performs better than PTM method. That’s because compared with the
protein primary sequence, the consensus sequence obtained by PSSM contains the evo-
lutionary information of the protein. Therefore, the proposed consensus sequence-based
transition matrix method provides more discriminating information than the protein
primary sequence.

Fig. 1 Comparison between primary sequence-based transition matrix (PTM) feature and consensus
sequence-based transition matrix (CTM) feature for the two datasets
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Tables 1 and 2 show the classification results of CTM feature extraction method on
CL317 and ZW225, respectively. In Table 1, we find that on CL317 dataset, the over-
all accuracy is 89.91% and the sensitivity of secreted proteins is lower than other five
subcellular locations. As can be seen from Table 2, on ZW225 dataset, the overall accu-
racy obtained by CTM method achieves 85.78% and expect mitochondrion proteins, the
sensitivity of other subcellular locations is 84.29%-91.01%.
For the absolute entropy correlation analysis method, we use a novel analytical method

derived from KL divergence to measure the relationship between each two columns in
PSSM. Tables 3 and 4 show the classification results of AECA-PSSM feature extraction
method on CL317 dataset and ZW225 dataset, respectively. It can be seen from Table 3
that on CL317 dataset, except the secreted proteins, the sensitivity in other subcellular
locations is 84.62%-94.55% and the overall accuracy is 89.91%. From Table 4, we can find
that on ZW225 dataset, the sensitivity of mitochondrion proteins is lower than other
subcellular locations and the overall accuracy of the entire dataset reaches of 85.78%.
The sequence similarity has a significant influence for the prediction performance and

the lower the sequence similarity is, the more difficult the prediction is. According to the
above experimental results, we can find that the classification results of the two proposed
feature extraction methods are lower in ZW225 dataset. The possible reason is that the
ZW225 dataset has lower sequence similarity than the CL317 dataset, but the results
are acceptable. The secreted proteins in CL317 dataset and mitochondrion proteins in
ZW225 dataset have the lower sensitivity. The reason may be that the sample sizes of
these two subcellular locations in the datasets are small and the classifier tends to predict
samples as majority classes.

Effect of different feature extraction methods

One of the most important but also most difficult problems in computational biology
is to convert the protein sequence into an effective numerical representation, which is
known as feature extraction. In this paper, two novel evolutionary information based fea-
ture extraction methods are proposed to represent protein sequence information. After
getting the CTM feature and AECA-PSSM feature, we combined them to form a 230
dimensional fusion feature vector: CTM-AECA-PSSM. However, as more sequence infor-
mation is obtained by combining the two features, it also brings more noise, which has
a negative impact on the predictor. Then we project the 230-dimensional fusion feature
into a p = C − 1 dimensional feature space by LDA dimensionality reduction method.
Table 5 shows the contributions of different feature extraction methods on CL317 dataset
and ZW225 dataset.

Table 1 Classification results of CTM feature for the CL317 dataset

location
Jackknife test

Cy En Me Mi Nu Se

Sen(%) 91.96 93.62 90.91 88.24 86.54 76.47

Spe(%) 91.71 100 98.47 98.94 96.98 100

Acc(%) 91.80 99.05 97.16 97.79 95.27 98.74

MCC 0.82 0.96 0.90 0.88 0.83 0.87

F 0.89 0.97 0.92 0.90 0.86 0.87

OA(%) 89.91
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Table 2 Classification results of CTM feature for the ZW225 dataset

location
Jackknife test

Cy Me Mi Nu

Sen(%) 84.29 91.01 72.00 85.37

Spe(%) 92.90 92.65 99.00 95.11

Acc(%) 90.22 92.00 96.00 93.33

MCC 0.77 0.83 0.78 0.78

F 0.84 0.90 0.80 0.82

OA(%) 85.78

We listed in Table 5 the sensitivity of each subcellular location and the overall accuracy
of different feature extractionmethods in CL317 and ZW225 datasets. On CL317 dataset,
we can get a better prediction results which reach the overall accuracy of 90.22% by using
CTM-AECA-PSSMmethod. And on ZW225 dataset, the overall accuracy after fusing the
CTM algorithm and AECA-PSSM algorithm is 85.33%, which is 0.45% lower than using
the two algorithms alone. The reason may be that when the two features are fused by
generating a higher-dimensional feature vector, we can only get more information from
the protein sequence, but the noise caused by the redundant and irrelevant information
can not be eliminated which may make the performance of the classifier worse. When the
two features are fused, the role of them is not fully played. Therefore, the prediction accu-
racy of CTM-AECA-PSSM on ZW225 dataset decreased slightly. From Table 5, we can
also find that after dimensionality reduction using LDA, the prediction results are signif-
icantly improved on both CL317 dataset and ZW225 dataset. It indicates that LDA can
effectively eliminate the redundant and irrelevant information and improve the accuracy
of subcellular localization. To further assess the robustness of the model using different
feature extraction methods, Figs. 2 and 3 show the ROC curves using the four different
feature extraction algorithms on CL317 dataset and ZW225 dataset, respectively.

Prediction results of different classification algorithms

In this paper, we consider four different classification algorithms, including extreme
learning machine (ELM) [42], K-nearest neighbors (KNN) [34], logistic regression (LR)
[43] and support vector machine (SVM). The prediction results under the four classi-
fiers by jackknife test on the CL317 dataset and ZW225 dataset are shown in Table 6. It
can be seen from Table 6 that the four classifiers have ideal prediction results on the two
datasets which shows the effectiveness of our extracted features. On CL317 dataset, all of
these four classifiers achieve the overall accuracy more than 99%. SVM, ELM and LR all
achieve the highest overall accuracy of 99.68%. On ZW225 dataset, the overall accuracy

Table 3 Classification results of AECA-PSSM feature for the CL317 dataset

location
Jackknife test

Cy En Me Mi Nu Se

Sen(%) 91.07 91.49 94.55 91.18 84.62 76.47

Spe(%) 95.12 99.63 96.95 98.59 96.98 99.67

Acc(%) 93.69 98.42 96.53 97.79 94.95 98.42

MCC 0.86 0.94 0.88 0.89 0.82 0.83

F 0.91 0.95 0.90 0.90 0.85 0.84

OA(%) 89.91
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Table 4 Classification results of AECA-PSSM feature for the ZW225 dataset

location
Jackknife test

Cy Me Mi Nu

Sen(%) 87.14 94.38 68.00 75.61

Spe(%) 92.90 90.44 98.00 97.83

Acc(%) 91.11 92.00 94.67 93.78

MCC 0.79 0.84 0.71 0.78

F 0.86 0.90 0.74 0.82

OA(%) 85.78

achieved by the four classifiers are more than 93% and SVM achieves the highest over-
all accuracy 95.56%. Therefore, in this paper, we choose SVM as the final classification
prediction algorithm.

Classification results of the proposedmethod

Prediction of apoptosis protein subcellular localization is an important research content
in bioinformatics. In this work, we propose a method named CTM-AECA-PSSM-LDA
to identify the subcellular location of apoptosis proteins. First the two proposed fea-
ture extraction methods CTM and AECA-PSSM are employed to represent the protein
sequence. Then dimensionality reduction is performed by LDA. Finally, the sample data
after dimensionality reduction are classified by SVM. The results of jackknife test on
CL317 and ZW225 datasets are presented in Table 7. From Table 7, we can see that the
OA for CL317 dataset and ZW225 dataset by our method achieve 99.68% and 95.56%,
respectively. The experimental results indicate that the method can effectively predict the
subcellular location of apoptosis proteins.

Comparison with the other prediction methods

In this section, to further evaluate the effectiveness of the proposed method, we compare
it with some previous methods on the same apoptosis protein datasets. Tables 8 and 9
show the prediction results of different methods on CL317 dataset and ZW225 dataset,
respectively. All the results are obtained using jackknife test. The OA of the two datasets
and the sensitivity of each subcellular class are listed.
Based on CL317 dataset, the performance of the proposed CTM-AECA-PSSM-LDA

model is compared with ten previous predictors. The OA of these methods range from

Table 5 Classification results of different feature extraction methods

Dataset Feature extraction method

Jackknife test (%)

Sensitivity

Cy En Me Mi Nu Se OA

CL317

CTM 91.96 93.62 90.91 88.24 86.54 76.47 89.91

AECA-PSSM 91.07 91.49 94.55 91.18 84.62 76.47 89.91

CTM-AECA-PSSM 92.86 91.49 92.73 85.29 88.46 76.47 90.22

CTM-AECA-PSSM-LDA 99.11 100 100 100 100 100 99.68

ZW225

CTM 84.29 \ 90.01 72.00 85.37 \ 85.78

AECA-PSSM 87.14 \ 94.38 68.00 75.61 \ 85.78

CTM-AECA-PSSM 87.14 \ 88.76 76.00 80.49 \ 85.33

CTM-AECA-PSSM-LDA 97.14 \ 91.01 100 100 \ 95.56
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Fig. 2 The ROC curves of different feature extraction methods on CL317 dataset

82.7% to 99.7%, among which CTM-AECA-PSSM-LDA achieves the highest prediction
accuracy (99.7%). The sensitivity of endoplasm proteins, membrane proteins, mitochon-
drion proteins, nucleus proteins and secreted proteins achieve 100% in our method. And
for the cytoplasm proteins, the sensitivity reaches of 99.1% which is also the highest.
Similarly, based on ZW225 dataset, the proposed CTM-AECA-PSSM-LDA prediction

model is compared with nine other existing methods. The OA of our method (95.6%)
is higher than other predictors test in this study. The sensitivity of mitochondrion pro-
teins and nucleus proteins (both 100%) are the highest among all the methods which
shows the excellent ability of our method in identifying mitochondrion and nucleus pro-
teins. Moreover, the highest sensitivity of cytoplasm proteins (97.1%) also achieves by our
method.

Discussion
Apoptosis is a kind of elementary life phenomenon that exists widely in the biological
world and apoptosis proteins play a significant role in this process. The function of apop-
tosis proteins is strongly related to their subcellular localization information. Facing the
explosive growth of protein sequences in the post-genome era, to timely obtain useful

Fig. 3 The ROC curves of different feature extraction methods on ZW225 dataset
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Table 6 Prediction results of different classifiers

Dataset classifier

Jackknife test (%)

Sensitivity

Cy En Me Mi Nu Se OA

CL317

ELM 99.11 100 100 100 100 100 99.68

KNN 99.11 100 98.18 100 100 100 99.37

LR 99.11 100 100 100 100 100 99.68

SVM 99.11 100 100 100 100 100 99.68

ZW225

ELM 91.43 \ 92.13 92.00 100 \ 93.33

KNN 91.43 \ 91.01 100 100 \ 93.78

LR 92.86 \ 92.13 100 100 \ 94.67

SVM 97.14 \ 91.01 100 100 \ 95.56

information of sequences for drug design, it is an urgent need to develop computational
methods for predicting the subcellular location of apoptosis proteins.
In this work, we propose a novel method to predict the subcellular location of apop-

tosis proteins named CTM-AECA-PSSM-LDA. Two novel feature extraction methods
based on evolutionary information embedded in PSSM are designed. Firstly, the con-
sensus sequence-based transition matrix (CTM) feature is extracted to reflect the amino
acid transition information, and secondly, absolute entropy correlation analysis (AECA-
PSSM) is proposed to obtain the relationship between each two columns of PSSM. After
the two features mentioned above are fused together, LDA is adopted to reduce the
dimension of the feature vector and eliminate the redundant information. Finally, SVM
is regarded as a classifier to predict the subcellular location of apoptosis proteins. The
overall accuracy by jackknife test is 99.7% and 95.6% for CL317 dataset and ZW225
dataset, respectively. Compared with other existing methods test in this paper, the over-
all accuracy is 3.7%-17% and 3.4%-12.5% higher on CL317 dataset and ZW225 dataset,
respectively. The proposed CTM-AECA-PSSM-LDA method not only generates more
discriminative features but also obtains satisfactory predictive performance on CL317
and ZW225 datasets, showing its potential for predicting apoptosis protein subcellular
locations.
However, though our proposed CTM-AECA-PSSM-LDA method can effectively raise

the prediction accuracy in two widely used benchmark datasets ZW225 and CL317, there
are some disadvantages. Our method is trained on the two commonly used dataset and
mainly consider the situation of single-site proteins that are ubiquitous in the existing
apoptotic protein database. A series of recent publications [46–48] in demonstrating new

Table 7 Classification results of the proposed CTM-AECA-PSSM-LDA method

Locations

Jackknife test

CL317 ZW225

Sen (%) Spe (%) Acc (%) MCC F Sen (%) Spe (%) Acc (%) MCC F

Cy 99.11 100 99.68 0.99 1 97.14 94.84 95.56 0.90 0.93

En 100 100 100 1 1 \ \ \ \ \

Me 100 99.62 99.68 0.99 0.99 91.01 98.53 95.56 0.91 0.94

Mi 100 100 100 1 1 100 100 100 1 1

Nu 100 100 100 1 1 100 100 100 1 1

Se 100 100 100 1 1 \ \ \ \ \

OA (%) 99.68 95.56
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Table 8 Comparison from different methods on CL317 dataset by jackknife test

Methods

Jackknife test (%)

Sensitivity
OA

Cy En Me Mi Nu Se

ID [5] 81.3 83.0 81.8 85.3 82.7 88.2 82.7

ID_SVM [6] 91.1 87.2 89.1 79.4 73.1 58.8 84.2

DF_SVM [7] 92.9 86.5 85.5 76.5 93.6 76.5 88.0

PSSM-AC [8] 93.8 95.7 90.9 91.2 86.5 82.4 91.5

Liang et al. [32] 92.9 93.6 89.1 82.4 84.6 76.5 89.0

Zhang et al. [44] 96.1 100 95.7 93.9 95.5 98.0 96.0

FTC-DFMCA-PSSM [11] 92.9 93.6 89.1 82.4 86.5 93.6 89.0

MACC-PSSM [35] 96.4 93.6 94.5 82.4 80.8 76.5 90.5

Chen et al. [10] 95.5 94.1 93.6 96.4 94.2 94.1 94.8

ERT-ECT-PSSM-IS [45] 93.8 94.1 100 97.9 96.2 92.7 95.0

CTM-AECA-PSSM-LDA 99.1 100 100 100 100 100 99.7

findings or approaches pointed out that some proteins can simultaneously exist in or
move between multiple subcellular locations. And these multi-site proteins usually have
special functions and are of great search value. Given that it is difficult to collect a large
enough multi-site apoptosis protein benchmark dataset meaningfully in statistics, similar
to those of CL317 and ZW225 at present, which are the most widely used in previ-
ous studies, therefore, our method is still verified on those two datasets. In our future
research, we will consider proteins with both single- and multi-site.

Conclusion
The purpose of studying the subcellular location of apoptosis proteins is to further explore
the intrinsic mechanism of programmed cell death and better understand the nature
of life. Base on the evolutionary information, we propose two novel feature extraction
methods to generate sequence feature of proteins. Then linear discriminant analysis algo-
rithm is used to reduce the dimension of the extracted features. Finally SVM classifier
is employed to predict the subcellular location of proteins. By jackknife test, on the two
benchmark datasets CL317 and ZW225, the OA reach 99.7% and 95.6%, respectively.

Table 9 Comparison from different methods on ZW225 dataset by jackknife test

Methods

Jackknife test (%)

Sensitivity
OA

Cy Me Mi Nu

EBGW_SVM [4] 90.0 93.3 60.0 63.4 83.1

ID_SVM [6] 92.9 91.0 68.0 73.2 85.8

DF_SVM [7] 87.1 92.1 64.0 73.2 84.0

PSSM-AC [8] 82.9 92.1 68.0 78.0 84.0

Liang et al. [32] 87.1 89.1 68.0 75.6 84.4

Zhang et al. [44] 93.5 92.1 96.0 93.5 92.2

MACC-PSSM [35] 88.6 92.1 64.0 75.6 84.9

FTC-DFMCA-PSSM [11] 88.6 93.3 64.0 75.6 85.3

ERT-ECT-PSSM-IS [45] 80.0 91.0 92.0 87.8 87.1

CTM-AECA-PSSM-LDA 97.1 91.0 100 100 95.6



Du et al. BMC Bioinformatics          (2020) 21:212 Page 11 of 19

Experimental results show that the proposed method outperforms the previous predic-
tors listed in the literature for most subcellular classes and indicate that it is promising
for the recognition of subcellular locations. In general, our method is a relatively effective
way to predict the subcellular location of apoptosis proteins. We hope that our method
will be used as a complementary tool in the field of subcellular localization for proteins.
According to a series of recent publications [49, 50], user-friendly and publicly accessi-
ble web-servers make great importance in building predictive system. We will make great
efforts to provide a web-server for the proposed method in our future work.

Methods
Dataset

In this study, two benchmark datasets CL317 and ZW225 are applied to test the perfor-
mance of the proposed method whose purpose is to determine the subcellular location
of apoptosis proteins. The CL317 dataset was constructed in 2007 by Chen and Li [5]. It
contains 317 protein sequences which located in six different subcellular locations respec-
tively called cytoplasm (Cy), endoplasm (En), membrane (Me), mitochondrion (Mi),
nucleus (Nu) and secreted (Se). The ZW225 dataset was established in 2006 by Zhang
and Wang et al. [4]. It contains 225 protein sequences which located in four subcellular
locations called cytoplasm (Cy), membrane (Me), mitochondrion (Mi) and nucleus (Nu).
All of the two datasets are extracted from the SWISS-PROT database. Despite the small
size of the two datasets, they are commonly used in the previous investigations [45, 51].
The details of two datasets CL317 and ZW225 are shown in Table 10.

The proposed feature extraction method

Effective feature extraction methods play a critical role in the subcellular location of
proteins. In this paper, we propose two novel evolutionary information based feature
extraction methods to effectively elucidate protein sequences. One of the feature extrac-
tion methods gets evolutionary information via the transition matrix of the consensus
sequence (CTM). Another feature extraction method directly utilizes the evolutionary
information from PSSM based on absolute entropy correlation analysis (AECA-PSSM).
To obtain the PSSM, PSI-BLAST program [52] is used to deal with the protein primary

sequence from CL317 and ZW225 datasets. In our research, the non-redundant (NR)
database is utilized, in the meantime, the E-value and the iterations numbers are respec-
tively set to 0.001 and 3 [11]. The PSSM of a protein sequence with the length of L can be

Table 10 Details of the two datasets CL317 and ZW225

Dataset Order Subcellular localization Number of proteins

CL317

1 Cytoplasm 112

2 Endoplasm 47

3 Membrane 55

4 Mitochondrion 34

5 Nucleus 52

6 Secreted 17

ZW225

1 Cytoplasm 70

2 Membrane 89

3 Mitochondrion 25

4 Nucleus 41
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expressed by:

PSSM =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1→1 N1→2 · · · N1→20
N2→1 N2→2 · · · N2→20
...

...
...

...
Ni→1 Ni→2 · · · Ni→20
...

...
...

...
NL→1 NL→2 · · · NL→20

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

where L is the number of the amino acid residues in the protein sequence and Ni→j indi-
cates the relative probability describing how the ith amino acid position in the protein
sequence mutates into the j amino acid type during biological evolution processes. After
we obtain the PSSM for a given protein, elements Ni→j in PSSM can be normalized by
Eq. (2).

Pij = 1
1 + e−Ni→j

(2)

The proposed consensus sequence-based transitionmatrix (CTM) feature extractionmethod

Unlike many methods that extract features from the protein primary sequences, to inte-
grate the evolutionary information, we attempt to extract features from the consensus
sequences. After getting the PSSM of a given protein sequence S, the consensus sequence
Sc enriched with evolutionary information can be obtained using the following formula:

indexi = argmax(Pi,j : 1 ≤ j ≤ 20), 1 ≤ i ≤ L (3)

Through Eq. (3), we calculate the argument of the amino acid type corresponding to the
maximum substitution probability in each row of the PSSM. Then, we can replace the ith
amino acid residue located in the original protein sequence by the indexith amino acid
type to obtain the consensus sequence. Through this process, we transform the protein
primary sequence into a consensus sequence and integrate the evolutionary information.
In order to provide information about the distributions of the 20 amino acids transitions

in the protein consensus sequences, we propose a feature extraction method based on the
transition matrix of the consensus sequence.
For the consensus sequence Sc = {

Sc1, S
c
2, · · · , ScL

}
of a given protein sequence, we

represent it as a directed graph G = (V ,E). V = v1, v2, · · · , vn is the set of vertices corre-
sponding to the 20 types of amino acids, and E = e1, e2, · · · , em is the set of edges which
model the pairwise relationship between amino acids. Since there are 20 types of amino
acids that make up protein sequences, we can obtain 20 × 20 different combinations of
amino acid pairs, which means that there are m = 20 × 20 edges appear in graph G. In
this paper, we use the occurrence number of the amino acid pairs to describe the pairwise
relationship.
In Fig. 4, we take a short consensus sequence as an example to demonstrate

the construction of graph G. For a consensus sequence “CWWRCWWWLWWWR-
WQWWWWPWWCWDCWWWHCWWQ”, we only show the edges starting from
node W (amino acid W)in graph G. In the consensus sequence, the occurrence of amino
acid pairs “WW” is 12, so that the weight of the self-joining edge of node W is 12. And
amino acid pairs “WC” occurs once in the sequence, so the edge starting from W to C
weights 1.



Du et al. BMC Bioinformatics          (2020) 21:212 Page 13 of 19

Fig. 4 A sample example of the constructive process of graph G

The graph G can be represented as a transition matrix T(G) = Ti,j, (i ≤ 20, j ≤ 20)
which is denoted as:

T(G) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

T1,1 T1,2 · · · T1,20
...

...
...

...
Ti,1 Ti,2 · · · Ti,20
...

...
...

...
T20,1 T20,2 · · · T20,20

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

where Ti,j represents the nature of the weighted edges and we specify it as the occurrence
number of corresponding amino acid pairs in the consensus sequence. The detail of the
feature based on the transition matrix is as follows.
Firstly, we count the number of edges starting from each vertex so that we get the first

feature descriptor based on the transition matrix of the consensus sequence. It can be
obtained by:

CTM1
i =

20∑
j=1

Ti,j, (i = 1, · · · , 20) (5)

The normalized value of Ti,j can be calculated by pi,j = Ti,j∑20
r=1

∑20
c=1 Tr,c

. Then by applying
the Shannon entropy to the normalized value of Ti,j, we can obtain the second fea-
ture descriptor based on the transition matrix of consensus sequence. It reflects another
attribute of each vertex and is obtained as follows:

CTM2
i = −

20∑
j=1

pi,jlog(pi,j), (i = 1, · · · , 20) (6)

Finally, by using Eqs. (5) and (6), a 40-dimensional feature vector is established based on
the transition matrix of the consensus sequence. The consensus sequence-based transi-
tion matrix (CTM) feature extraction method gets the distributions of the 20 amino acids
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transitions, rather than just the amino acid composition, and it also incorporates the evo-
lutionary information from the amino acid sequence. Compared to the typical dipeptide
composition, the dimension of the proposed CTM feature is smaller significantly.

The proposed feature extractionmethod of absolute entropy correlation analysis based on

PSSM (AECA-PSSM)

The element Pij in PSSM indicates the related probability of the amino acid in the ith
position evolves into a particular amino acid type. Therefore, each column in a PSSM
can be regarded as a probability distribution. And for a PSSM, there are 20 columns in
total, so that we can obtain 20 probability distributions in a PSSM. To further extract pro-
tein sequence information from the position-specific scoring matrix (PSSM), the absolute
entropy correlation analysis method (AECA-PSSM) is proposed for the expression of pro-
teins. The AECA-PSSM is a method based on the relative entropy method, and it is used
to analyze the pairwise relationship between each two columns of PSSM.
Relative entropy [53], also known as Kullback-Leibler divergence (KL divergence or

KLD) or information divergence, is an asymmetric method which is used to measure
the difference between two probability distributions. So it is desirable to naturally ana-
lyze information in PSSM utilizing the relative entropy based methods. The relative
entropy (KL divergence) between two different probability distributions can be described
as follows:

DKL(P||Q) =
N∑
i=1

P(i)log
(

1
Q(i)

)
−

N∑
i=1

P(i)log
(

1
P(i)

)

=
N∑
i=1

P(i)log
(
P(i)
Q(i)

) (7)

According to Gibbs inequality, KL divergence is always non-negative. When it equals to
0, it means that the two distributions are the same. And it is obvious that DKL(P||Q) �=
DKL(Q||P), so the KL divergence doesn’t absolutely reflect the distance between two vari-
ables. If we directly use the KL divergence to analyze the information embedded in PSSM,
we need a 20×19 = 380 dimensional vector because of the asymmetry of KLD. In order to
make the relationship between two variables to satisfy the commutative law, the absolute
entropy is calculated by:

D(P,Q) = 1
2
(DKL(P||Q) + DKL(P||Q))

= 1
2

N∑
i=1

(P(i) − Q(i))log
(
P(i)
Q(i)

) (8)

The absolute entropy is also always non-negative and zero also represents that the two
distributions are the same ones. Through absolute entropy, the difference between two
signals can be uniquely determined.
For the PSSMwhich we have stated to consider as 20 probability distributions, the abso-

lute entropy correlation analysis is employed between each two probability distributions.
Finally, for a protein sequence, a 20×19/2 = 190 dimensional feature vector is established
through AECA-PSSM.
As the above, for each protein sequence, it can be described as a 230-dimensional fea-

ture vector by fusing the 40-dimensional consensus sequence-based transition matrix
(CTM) feature and 190-dimensional absolute entropy correlation analysis (AECA-PSSM)
feature.
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Linear discriminant analysis for dimensionality reduction of the proposed features

Though more information can be learned by combining multiple features, it also results
in more irrelevant and redundant information which imposes a burden on the classifier.
Dimensionality reduction is an effective way to resolve this problem. Hence, linear dis-
criminant analysis (LDA) [54], a supervised dimensionality reductionmethod is employed
to reduce the dimension of the proposed features and eliminate the noise.
LDA [55] is one of themost popular dimensionality reductionmethods. Given a data set

with n protein samples
{
xi, yi

}n
i=1, where xi ∈ Rd is the feature vector of the protein sample

and yi ∈ {1, 2, · · · ,C} is the corresponding class label of the sample. Let πc be the subset
corresponding to protein samples with label c and contain nc data points,

∑C
c=1 nc = n.

We write X = [x1, x2, . . . , xn]. The within-class scatter matrix S(ω) and the between-class
scatter matrix S(b) are separately defined as follows.

S(ω) =
C∑
c=1

∑
xi∈πc

(xi − mc)(xi − mc)
T (9)

S(b) =
C∑
c=1

nc(mc − m)(mc − m)T (10)

where mc = 1
nc

∑
xi∈πc xi is the class mean of πc, and m = 1

n
∑

(xi) is the global mean of
all samples. The optimization criteria of LDA is to seek a linear transformation that maps
the samples in the high dimensional space to a lower dimensional space, such that the
between-class scatter is maximized and the within-class scatter is minimized. Therefore,
the optimization objective of LDA is as follows:

W ∗ = argmax
W

[
tr

(
WTS(b)W
WTS(ω)W

)]
(11)

where W ∗ is the projection matrix. And the objective can be solved by generalized
eigenvalue problem S(b)W = λS(ω)W . And the optimal projection matrixW ∗ can be con-
structed by taking the eigenvectors of (S(ω))−1S(b) consistent with the p, (p < C) largest
eigenvalues.
The projection of LDA can be obtained through Eq. (12):

Q = (W ∗)TX (12)

Through LDA, the original high-dimensional feature is projected into a lower-
dimensional space and the complexity of the classifier is decreased.

Support vector machine (SVM)

Support vector machine (SVM) [56] is a well-known supervised algorithm proposed by
Vapnik. The core principle of SVM is to find a classification hyperplane to maximize the
distance between positive and negative samples. SVM is built on statistical learning the-
ory. More precisely, it is the approximate realization of minimum structural risk. When
faced with samples which are linearly inseparable in low-dimensional space, SVM utilizes
the kernel function to render them linearly separable in high-dimensional space. In this
work, we choose a radial basis function (RBF) to solve a nonlinear problem. The equation
of RBF is defined as:

K(x, xi) = exp
(−γ ||x − xi||2

)
, γ > 0 (13)
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LIBSVM toolbox [57] is used in this work to train the classification model. SVM is
originally designed for two-class classification problems, and when it comes to the multi-
class classification problem, such as the protein subcellular location, it is necessary for us
to build appropriate multi-class classifiers. LIBSVM toolbox uses one-versus-one (OVO)
strategy to solve multi-class classification problems. The specific method is to construct
an SVM classifier between any two kinds of samples, so that if there are k categories we
will get k(k − 1)/2 SVM classifiers. When categorizing a sample unlabeled, the category
that gets the most votes is the final class of the unknown sample.

Model validation and performance evaluation

In our experiment, the jackknife test is used to evaluate the effectiveness of the classifier
[4]. Jackknife test can get a unique result and it is deemed to be the most objective and
reasonable. For a given dataset, the jackknife test needs to test every sample in the dataset.
The principle of the jackknife test is to select one sample from the dataset as an indepen-
dent test sample, and use the remaining samples for training until all the samples in the
dataset have been tested. For example, as for the CL317 dataset which contains 317 apop-
toisis proteins, each protein sequence will be treated as a test sequence, and the remaining
316 sequences will be used to train the classification model. After all 317 sequences were
tested, the result is achieved.
Furthermore, to evaluate the performance of the model more comprehensively, six eval-

uation metrics including sensitivity (Sen), specificity (Spe), accuracy (Acc), Matthews
correlation coefficient (MCC), F-measure (F) and the overall accuracy (OA) are used in
this paper, which can be calculated as follows:

Recalli or Seni = TPi
TPi + FNi

(14)

Spei = TNi
TNi + FPi

(15)

MCCi

= TPi × TNi − FPi × FNi√
(TPi + FPi) (TPi + FNi) (TNi + FPi) (TNi + FNi)

(16)

Acci = TPi + TNi
TPi + TNi + FPi + FNi

(17)

Precisioni = TPi
TNi + FPi

(18)

Fi = 2 × Recalli × Precisioni
Recalli + Precisioni

(19)

OA =
∑c

i=1 TPi∑c
i=1(TPi + FNi)

(20)

where TPi, FNi, TNi, FPi represent the true positive rate, false negative rate, true negative
rate and false positive rate of category i respectively.
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Fig. 5 Pipeline of the proposed CTM-AECA-PSSM-LDA method for predicting apoptosis proteins subcellular
location

The detail of the CTM-AECA-PSSM-LDA subcellular location prediction method

The detail of the model which used to predict the subcellular location of apoptosis
proteins is as follows. The pipline of this proposed method is shown in Fig. 5. For
convenience, the proposed method is called CTM-AECA-PSSM-LDA.
Step 1: Input the protein samples in CL317 dataset and ZW225 dataset, respectively.

Using CTM a 40-dimensional feature vector is generated and a 190-dimensional feature
vector is extracted by AECA-PSSM. By combining these two different features, a 230-
dimensional feature vector is established.
Step 2: Using LDA dimensionality reduction method to reduce the redundancy of the

230-dimensional feature vector.
Step 3: Employing SVM to identify the subcellular locations of apoptosis proteins.
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