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Abstract

Background: As regulators of gene expression, microRNAs (miRNAs) are increasingly
recognized as critical biomarkers of human diseases. Till now, a series of computational
methods have been proposed to predict new miRNA-disease associations based on
similarity measurements. Different categories of features in miRNAs are applied in these
methods for miRNA-miRNA similarity calculation. Benchmarking tests on these miRNA
similarity measures are warranted to assess their effectiveness and robustness.

Results: In this study, 5 categories of features, i.e. miRNA sequences, miRNA expression
profiles in cell-lines, miRNA expression profiles in tissues, gene ontology (GO)
annotations of miRNA target genes and Medical Subject Heading (MeSH) terms of
miRNA-associated diseases, are collected and similarity values between miRNAs are
quantified based on these feature spaces, respectively. We systematically compare the 5
similarities from multi-statistical views.
Furthermore, we adopt a rule-based inference method to test their performance on
miRNA-disease association predictions with the similarity measurements.
Comprehensive comparison is made based on leave-one-out cross-validations and a
case study. Experimental results demonstrate that the similarity measurement using
MeSH terms performs best among the 5 measurements. It should be noted that the
other 4 measurements can also achieve reliable prediction performance. The best-
performed similarity measurement is used for new miRNA-disease association
predictions and the inferred results are released for further biomedical screening.

Conclusions: Our study suggests that all the 5 features, even though some are
restricted by data availability, are useful information for inferring novel miRNA-disease
associations. However, biased prediction results might be produced in GO- and MeSH-
based similarity measurements due to incomplete feature spaces. Similarity fusion may
help produce more reliable prediction results. We expect that future studies will
provide more detailed information into the 5 feature spaces and widen our
understanding about disease pathogenesis.

Keywords: miRNA-disease association, Similarity measurement, Performance evaluation

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless
otherwise stated in a credit line to the data.

Chen et al. BMC Bioinformatics          (2020) 21:176 
https://doi.org/10.1186/s12859-020-3515-9

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-3515-9&domain=pdf
http://orcid.org/0000-0002-5119-4517
mailto:chl_mail@csu.edu.cn
mailto:chl_mail@csu.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
miRNAs are a large family of endogenous non-coding RNA molecules with approxi-

mately 22 nucleotides in length. They regulate the expression of their targeted messen-

ger RNAs (mRNAs) through base pairing for cleavage or translational repression [1, 2].

To data, a great number of studies have identified that miRNAs are involved in various

crucial biological processes, such as tissue development, cell proliferation and cell

death. For example, Sabirzhanov et al. [3] found that a miRNA entitled miR-711 played

a role in neuronal cell death by directly targeting the mRNA Ang-1 and decreasing its

expression. Therefore, the dysfunctions of miRNAs would be associated with the patho-

genesis and progression of a spectrum of human complex diseases (e.g. leukemia and

cancers) [4]. In addition, as regulators of multiple genes, miRNAs harbor particular

therapeutic effects [5–7] and research efforts [8–10] have demonstrated that miRNAs

have the potential to become drug targets for disease treatments.

Given the importance of miRNAs in human health, several databases [4, 11, 12],

which record associations between miRNAs and diseases by text-mining the published

literature, have been launched as valuable resources for public use. In order to reduce

the cost of biomedical experiments, computational methods [13–36] have been con-

tinuously presented to predict novel miRNA-disease associations for further experi-

mental screening. The hypothesis behind these algorithms is that miRNAs with similar

functions would be associated with diseases with similar phenotypes, and vice versa

[37]. For instance, Chen et al. [13] adopted random walks on a miRNA-miRNA func-

tional similarity network [38] to prioritize potential miRNAs for diseases of interest.

Based on matched miRNA and mRNA expression profiles, Xu et al. [39] systematically

identified the most promising miRNAs for cancers through inferred similarity values

between miRNA target genes and known disease genes. To improve prediction accur-

acy, Liu et al. [22] integrated multiple data sources (e.g. miRNA-target gene associa-

tions and miRNA-lncRNA associations) for similarity calculation and implemented

random walks on miRNA-disease heterogeneous networks for novel miRNA-disease as-

sociation predictions. More recently, Yang et al. [40] computed similarity between miR-

NAs using a new GO semantic similarity metric based on miRNA target genes, and

proposed a modified correlation model to infer miRNA-disease associations.

These computational approaches constitute an essential alternative to experimental

assays. For these methods, it is no doubt similarity measurements are a key factor in

determining their prediction accuracy. As to miRNA-miRNA similarity calculation, di-

verse categories of features, including miRNA sequences, expression profiles of miR-

NAs and GO of miRNA target genes, have been employed in these methods. However,

as far as we know, there are few efforts made in comprehensively comparing the effects

of miRNA similarity values, obtained from different features, on inferring novel

miRNA-disease associations.

In this study, we first download 5 types of features from miRNAs and calculate their

pairwise similarity values based on these feature spaces. Statistical tests are made on

the datasets to compare properties of the similarity measurements. Then, we apply the

similarity measurements for miRNA-disease association predictions using a popular

rule-based inference method. Leave-one-out cross-validations and a case study are im-

plemented for performance assessment and comparison. The best-performed similarity

dataset is further used for new miRNA-disease association predictions. Finally, we
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comprehensively discuss the impacts of the 5 features on similarity calculation and

miRNA-disease association predictions from multiple viewpoints, which we expect

would provide a reference for biologists when investigating the functions of miRNAs.

Results
Overview of the 5 types of similarity measurements

In this study, we collect 5 types of features in miRNAs for pairwise similarity measure-

ments (see Methods). For fair comparison, we use the latest information in each type

for similarity calculation.

Table 1 provides a whole view of the information in the 5 datasets. Because of differ-

ence in feature availability, the numbers of miRNAs in the 5 datasets vary much with

the highest number 2656 in seqSim and the lowest 1044 in MeSHSim, of which 205

miRNAs are commonly-owned. The distributions of pairwise similarity values in the 5

datasets can be seen in Fig. 1. We further use a boxplot (Fig. 2) to represent the simi-

larity values in the 5 datasets. Four types of statistical results (mean value, standard de-

viation, skewness and kurtosis) of similarity values in the 5 datasets are calculated and

we list them in Table 2.

Similarly, we show the distributions of similarity values for the 205 common miRNAs in

the 5 datasets in Additional file 1. We also apply a boxplot (Additional file 2) to illustrate

similarity values for the 205 common miRNAs. Mean values, standard deviation, skewness

and kurtosis for the 205 miRNAs are available at Additional file 3. We discover from the

statistical analyses that for each dataset the distributions of similarity values of the whole

miRNAs can be well represented by those of the 205 common miRNAs.

Prediction performance evaluation of the whole miRNAs in each of the 5 datasets

To compare the prediction performance, we first conduct leave-one-out cross-

validations for the whole miRNAs in each of the 5 similarity measurements. As shown

in Table 3, MeSHSim receives the highest average values of ROC-AUC and PR-AUC

and performs best in the 5 datasets. The average ROC-AUC value for MeSHSim is

0.0389, 0.0394, 0.0406 and 0.0430 higher than these for the other 4 datasets, respect-

ively. Meanwhile, the average PR-AUC value for MeSHSim increases by 0.0204, 0.0123,

0.0114 and 0.0265 compared with these for the other 4 datasets, respectively. Note that

the other 4 similarity measurements also receive reliable prediction performance.

In addition, we implement paired t-tests to measure whether the ROC-AUC values

and PR-AUC values obtained by MeSHSim across the whole miRNAs are significantly

higher than these in the other 4 datasets. The calculated p-values are available at

Table 1 An overview of the 5 types of similarity measurements for miRNAs

Name of similarity matrix No. of miRNAs Feature for similarity calculation Year of data published

seqSim 2656 miRNA sequences 2018

celllineSim 2295 expression profiles in cell lines 2017

tissueSim 2300 expression profiles in tissues 2017

GOSim 2588 GO of miRNA target genes 2018

MeSHSim 1044 MeSH terms of miRNA-associated diseases 2019
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Fig. 1 The distributions of pairwise similarity values of miRNAs in the 5 datasets

Fig. 2 Boxplot of similarity values of miRNAs in the 5 datasets
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Table 4. The statistical results demonstrate MeSHSim can mostly achieve significantly

better performance than all the other 4 measurements at the significance level 0.05.

Higher precision and recall values within the top k ranking list indicate more positive

testing samples (real miRNA-disease associations in our study) are successfully pre-

dicted. The average precision and recall values across the whole miRNAs in the 5 data-

sets within the top k candidates are illustrated in Fig. 3 and Fig. 4, respectively. The

two figures demonstrate that MeSHSim consistently outperforms the other 4 measure-

ments at different k cutoffs.

Prediction performance evaluation of the 205 common miRNAs in each of the 5 datasets

Considering the numbers of miRNAs in each of the 5 similarity datasets are different,

we further choose the 205 common miRNAs in the 5 datasets to carry out leave-one-

out cross-validation experiments to test their prediction performance.

As shown in Table 5, MeSHSim receives the highest average values of ROC-AUC and

PR-AUC and performs best in the 5 datasets. The average ROC-AUC value for MeSH-

Sim is 0.0267, 0.0363, 0.0372 and 0.0296 higher than these for the other 4 datasets, re-

spectively. Meanwhile, the average PR-AUC value for MeSHSim increases by 0.0536,

0.0729, 0.0714 and 0.0606 compared with these for the other 4 datasets, respectively.

Table 5 also suggests that the other 4 similarity measurements are able to achieve reli-

able prediction performance.

Paired t-tests are implemented to measure whether the ROC-AUC values and PR-

AUC values obtained by MeSHSim across the 205 common miRNAs are significantly

higher than these in the other 4 datasets. The calculated p-values are available at

Table 6, and statistical results demonstrate MeSHSim achieves significantly better per-

formance than all the other 4 measurements at the significance level 0.05.

The average precision and recall values across the 205 common miRNAs in the 5

datasets within the top k candidates are illustrated in Fig. 5 and Fig. 6, respectively. We

Table 2 Four types of statistical results of similarity values in the 5 datasets

mean value standard deviation skewness kurtosis

seqSim 0.1682 0.0783 0.8617 5.5952

celllineSim 0.0860 0.1436 3.4613 16.1542

tissueSim 0.1230 0.2063 2.3258 7.7156

GOSim 0.7925 0.1101 −1.5978 6.0010

MeSHSim 0.1301 0.1690 1.3665 4.8867

Table 3 Comparison of average values of ROC-AUC and PR-AUC received based on HMDD V3.2
for the whole miRNAs in each of the 5 similarity datasets by leave-one-out cross-validations

Average ROC-AUC value Average PR-AUC value

seqSim 0.8880 0.2291

celllineSim 0.8875 0.2372

tissueSim 0.8863 0.2381

GOSim 0.8839 0.2230

MeSHSim 0.9269 0.2495

Note:The bold value indicated the highest one in each column
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can conclude from the 2 figures that MeSHSim consistently outperforms the other 4

measurements at various k cutoffs.

A case study

To further compare their abilities to predict potential disease candidates for miRNAs in

the 5 datasets, we conduct a case study on hsa-mir-2861. The whole 894 disease candi-

dates in the benchmarking dataset are ranked according to our method. We choose the

top k (k = 10, 20, 40, 60, 80 and 100) predicted results for confirmation. We list the

numbers of verified results in Table 7, which indicates the superiority of MeSHSim in

screening the most predicted miRNA-disease associations.

Predictions of new miRNA-disease associations

After extensive comparison, we choose the best-performed similarity measurement

MeSHSim to conduct comprehensive predictions of unknown associations between

miRNAs and diseases. Experimentally verified miRNA-disease associations are down-

loaded from HMDD V3.2. In this inference proceeding, we train the method MBSI (see

Table 4 Pairwise comparison with paired t-tests on the performance results obtained by MeSHSim
and the other 4 measurements

seqSim celllineSim tissueSim GOSim

p-value between MeSHSim and another similarity
measurement based on ROC-AUC values

1.90783E-20 6.63463E-19 4.96762E-19 4.63222E-23

p-value between MeSHSim and another similarity
measurement based on PR-AUC values

0.023617 0.185257 0.221117 0.00308

Fig. 3 Comparison of average PRE values in the top-k predictions for the whole miRNAs in each of the 5
datasets by leave-one-out cross-validations based on HMDD V3.2
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Method) with all known associations. We rank the non-interacting pairs according to

their scores derived from Eq. (1) and extract the top 10 predicted results for each

miRNA. The list of predicted associations can be seen in Additional file 4.

Discussion
In this study, 5 types of features are applied for miRNA similarity calculation. From the

viewpoint of data sources, miRNA sequences are the most available, which is confirmed

by the numbers of miRNAs in Table 1. As to miRNA expressions, accumulating data

are available thanks to biomedical advance. However, it is known that quantitative

values of miRNA expressions are affected by factors like library preparation protocols

and adapter trimming steps. Therefore, robust pipelines to measure the expression

values are well needed. Regarding GOSim, functional annotations for miRNAs are

scarce in public databases and predicted miRNA target genes are integrated in Refer-

ence [40] for similarity calculation. False positive rate of predicted target genes would

Fig. 4 Comparison of average REC values in the top-k predictions for the whole miRNAs in each of the 5
datasets by leave-one-out cross-validations based on HMDD V3.2

Table 5 Comparison of average values of ROC-AUC and PR-AUC received based on HMDD V3.2
for the 205 common miRNAs in the 5 similarity datasets by leave-one-out cross-validations

Average ROC-AUC value Average PR-AUC value

seqSim 0.9114 0.1366

celllineSim 0.9018 0.1173

tissueSim 0.9009 0.1188

GOSim 0.9085 0.1296

MeSHSim 0.9381 0.1902

Note:The bold value indicated the highest one in each column
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affect the similarity results and final prediction performance. For MeSHSim, it quanti-

fies miRNA functional similarity based on MeSH terms derived from existing miRNA-

associated diseases. The number of miRNAs in this dataset would therefore be greatly

constrained. Because of incomplete data of experimentally supported miRNA-disease

associations, the calculated similarity values in MeSHSim may be biased.

Experimental results demonstrate that MeSHSim performs best and the other 4 simi-

larity measurements can also achieve stable and reliable prediction abilities. This can

be explained with two biological facts, i.e. miRNAs target mRNAs through base pairing

and a change in the expression level of a particular miRNA would lead to severe patho-

logical conditions. Therefore, we expect that seamless integration of the 5 kinds of fea-

tures for similarity measurements would produce more reliable prediction results.

For algorithms to infer miRNA-disease associations, the cold-start problem, in which as-

sociated diseases need to be predicted for a totally new miRNA, is a challenge that needs

to be properly addressed. Strictly speaking, the similarity values in MeSHSim should be

re-calculated before each round of cross validation is implemented in our study. As these

values are computed based on known miRNA-disease associations, algorithms using

Table 6 Pairwise comparison with paired t-tests on the performance results obtained by MeSHSim
and the other 4 measurements across the 205 common miRNAs

seqSim celllineSim tissueSim GOSim

p-value between MeSHSim and another similarity
measurement based on ROC-AUC values

0.002349188 6.66612E-05 4.42713E-05 0.000785147

p-value between MeSHSim and another similarity
measurement based on PR-AUC values

0.000938522 3.71868E-06 6.19924E-06 0.000176833

Fig. 5 Comparison of average PRE values in the top-k predictions for the 205 common miRNAs in the 5
datasets by leave-one-out cross-validations based on HMDD V3.2
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MeSHSim for predictions suffer from the cold-start problem. Compared with MeSHSim,

the other 4 similarity measurements do not encounter such challenge.

We focus only on the impact of miRNA similarity on miRNA-disease association predictions

in this study. It is worthy pointing out that disease similarity is also vital for these similarity-

based methods to improve their prediction performance, which is a further research topic.

Conclusions
Pairwise miRNA similarity measurement is an important step for miRNA-disease asso-

ciation predictions. In this study, we collect 5 feature spaces in miRNAs for similarity

calculation and apply the similarity values to miRNA-disease association predictions.

We comprehensively compare the statistical properties of the similarity values and sys-

tematically evaluate their inference performance on one independent benchmarking

dataset. Although satisfied experimental results are received in all the 5 datasets, re-

searchers should be cautious of the potential bias caused by some similarity measure-

ments. Approaches allowing similarity fusion are in need for achieving more reliable

prediction results.

Fig. 6 Comparison of average REC values in the top-k predictions for the 205 common miRNAs in the 5
datasets by leave-one-out cross-validations based on HMDD V3.2

Table 7 Confirmed numbers of the top-k predicted results of hsa-mir-2861 in the 5 datasets

Top 10 Top 20 Top 40 Top 60 Top 80 Top 100

number of confirmed predictions (seqSim) 0 0 1 3 4 4

number of confirmed predictions (celllineSim) 0 1 1 2 4 4

number of confirmed predictions (tissueSim) 0 0 1 2 4 4

number of confirmed predictions (GOSim) 0 1 1 2 4 4

number of confirmed predictions (MeSHSim) 0 1 3 3 5 5
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Methods
Data preparation

We exploit 5 widely-used features for miRNA-miRNA similarity measurements. All

similarity measures are symmetrically normalized to be in the range of (0, 1). The

miRNA-miRNA similarity measures are as follows.

1) Sequence-based similarity between miRNAs: We download nucleotide sequences of

miRNAs from the latest version of miRBase (http://www.mirbase.org/) [41]. The fasta

format sequences of 2656 mature miRNAs in Homo sapiens in the database are kept

and the sequences of miRNAs in other species are removed. The sequence similarity

between two miRNAs is computed using needleall (http://www.bioinformatics.nl/cgi-

bin/emboss/needleall). The parameters for this tool are set according to default values

(Matrix file = EDNAfull, Gap opening penalty = 10, Gap extension penalty = 0.5). We

refer to the 2656 × 2656 sequence similarity matrix as seqSim.

2) Expression-profile-in-cell-line-based similarity between miRNAs: We download

expression profiles of miRNAs in 24 different types of cell-lines from miRmine

(http://guanlab.ccmb.med.umich.edu/mirmine/) [42]. After merging miRNAs with

the same name and deleting miRNAs with whole expression values of 0, we obtain

2295 mature miRNAs. Absolute values of Pearson correlation coefficient (PCC) be-

tween the expression profiles are computed as the measurement of similarity for the

miRNAs. We refer to the 2295 × 2295 expression similarity matrix as celllineSim.

3) Expression-profile-in-tissue-based similarity between miRNAs: We download

expression profiles of miRNAs in 16 different types of human tissues and bio fluids

from miRmine (http://guanlab.ccmb.med.umich.edu/mirmine/) [42]. We take the

same data processing steps as these in celllineSim and obtain 2300 mature

miRNAs. We refer to the 2300 × 2300 expression similarity matrix as tissueSim.

4) GO-of-target-gene-based similarity between miRNAs: Recently, Yang et al. [40] developed

a method entitled MiRGOFS to measure the functional similarity for 2588 miRNAs

based on GO annotations of their target genes. We download the similarity results from

their study. To normalize the raw data, we divide the value of each element before the

diagonal one in each row (and column) by the value of the diagonal element and obtain

a symmetric similarity matrix. Note that the normalized similarity matrix in Reference

[40] was unsymmetric. We refer to the 2588 × 2588 similarity matrix as GOSim.

5) MeSH-term-of-disease-based similarity between miRNAs: In 2010, Wang et al. [38]

presented a method MISIM to infer pairwise functional similarity for miRNAs

based on MeSH terms of miRNA-associated diseases. More recently, an im-

proved and updated version of MISIM (MISIM V2.0 [43]) was released. We

download the similarity values of 1044 miRNAs from MISIM V2.0 (http://

www.lirmed.com/misim/) and refer to the 1044 × 1044 similarity matrix as

MeSHSim.

miRNA-disease association discovering

We adopt one popular rule-based inference method, miRNA-based similarity inference

(MBSI) [15], to discover miRNA-disease associations with the similarities obtained

from the above section.
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We postulate in MBSI if a miRNA is implicated in a disease, similar miRNAs might

also be associated with the disease (see Fig. 7). For a pair of miRNA-disease association

(mi, dj), the inference score of the pair is calculated as,

score mi; d j
� � ¼

Pn
l¼1;l≠iSim mi;mlð ÞaljPn
l¼1;l≠iSim mi;mlð Þ ð1Þ

where mi and dj denote miRNA i and disease j, Sim(mi,ml) is the similarity value be-

tween mi and ml, and alj =1if there is an existing association between ml and dj, other-

wise alj =0. A higher score received from Eq. (1) indicates more confidence in a

predicted association.

Validation and evaluation metrics

We obtain a benchmarking dataset from HMDD V3.2 which contained experimentally

supported miRNA-disease associations. This gold-standard dataset is regarded as true

positive samples and is used for performance test.

We implement leave-one-out cross-validations to evaluate the prediction perform-

ance. Specifically, each miRNA is taken out once for testing and the remaining miRNAs

for training. For each testing miRNA, all its association information is removed and the

predicted scores for its associations with diseases are derived from Eq. (1). We rank the

entire disease set for the testing miRNA according to the scores.

For each testing miRNA, we take the known miRNA-disease associations as positive

instances. For each specific ranking threshold, if the score of a predicted miRNA-

disease association is above the threshold, it is considered as a true positive. Otherwise,

it is taken as a false positive. True positive rate (TPR), false positive rate (FPR), preci-

sion (PRE) and recall (REC) are calculated as follows by varying thresholds to plot ROC

and PR curves,

Fig. 7 The principle behind new miRNA-disease association predictions. If a miRNA with unknown
interaction profile shares a similar property with another miRNA with known interaction profile property,
the former may also share the same interaction profile with the latter
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TPR ¼ TP
TP þ FN

ð2Þ

TPR ¼ TP
TP þ FN

ð3Þ

PRE ¼ TP
TP þ FP

ð4Þ

REC ¼ TP
TP þ FN

ð5Þ

where TP and TN are the numbers of correctly predicted positive and negative samples.

FP and FN are the numbers of misidentified positive and negative samples. We use

values of area under the ROC and PR curves (AUC) to demonstrate the prediction abil-

ity. We also measure the PRE and REC within the top 5, top 10 and top 20 candidates

in the ranking list, because biologists are more interested in the top predictions.
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