
METHODOLOGY ARTICLE Open Access

Cluster correlation based method for
lncRNA-disease association prediction
Qianqian Yuan, Xingli Guo*, Yang Ren, Xiao Wen and Lin Gao*

* Correspondence: xlguo@mail.
xidian.edu.cn; lgao@mail.xidian.edu.
cn
School of Computer Science and
Technology, XIDIAN UNIVERSITY,
Xi’an, Shaanxi, China

Abstract

Background: In recent years, increasing evidences have indicated that long non-
coding RNAs (lncRNAs) are deeply involved in a wide range of human biological
pathways. The mutations and disorders of lncRNAs are closely associated with many
human diseases. Therefore, it is of great importance to predict potential associations
between lncRNAs and complex diseases for the diagnosis and cure of complex
diseases. However, the functional mechanisms of the majority of lncRNAs are still
remain unclear. As a result, it remains a great challenge to predict potential
associations between lncRNAs and diseases.

Results: Here, we proposed a new method to predict potential lncRNA-disease
associations. First, we constructed a bipartite network based on known associations
between diseases and lncRNAs/protein coding genes. Then the cluster association
scores were calculated to evaluate the strength of the inner relationships between
disease clusters and gene clusters. Finally, the gene-disease association scores are
defined based on disease-gene cluster association scores and used to measure the
strength for potential gene-disease associations.

Conclusions: Leave-One Out Cross Validation (LOOCV) and 5-fold cross validation
tests were implemented to evaluate the performance of our method. As a result, our
method achieved reliable performance in the LOOCV (AUCs of 0.8169 and 0.8410
based on Yang’s dataset and Lnc2cancer 2.0 database, respectively), and 5-fold cross
validation (AUCs of 0.7573 and 0.8198 based on Yang’s dataset and Lnc2cancer 2.0
database, respectively), which were significantly higher than the other three
comparative methods. Furthermore, our method is simple and efficient. Only the
known gene-disease associations are exploited in a graph manner and further new
gene-disease associations can be easily incorporated in our model. The results for
melanoma and ovarian cancer have been verified by other researches. The case
studies indicated that our method can provide informative clues for further
investigation.
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Background
About 3% of the human genome is the coding region, which produces multiple pro-

teins, and other non-coding regions transcribe a large number of non-coding RNAs.

Much of the non-coding region of the human genome has historically been regarded as

junk DNA [1]. However, for decades, researchers have discovered that multiple types of

RNA exist, and among the most important is non-coding RNA (ncRNA). According to

transcript lengths, ncRNAs could be further categorized into small ncRNAs and

lncRNAs [2]. LncRNAs are the biggest part of non-coding RNAs which are longer than

200 nucleotides and are not translated into proteins [3, 4]. It is estimated that about 62%

of the human genome is transcribed to produce long non-coding RNAs. Compared with

protein-coding transcripts, lncRNAs have fewer exons and are expressed at lower levels

[5, 6]. However, lncRNAs show extensive mechanisms to play their biological roles com-

pared to small ncRNAs [7]. As shown by more and more studies that lncRNAs play cru-

cial functional roles in cytoplasm and nucleus through cis or trans-regulatory

mechanisms [6], and play important roles in different cellular pathways [8, 9].

In recent years, with the rapid development of high-throughput sequencing technolo-

gies, researchers have identified many lncRNAs in eukaryotic organisms. For example,

Cabili et al. integrated chromatin marks and RNA-sequencing data to identify more

than 8000 long intergenic ncRNAs across 24 different human cell types and tissues

[10]. And accumulating evidences have shown that mutations and disorders of

lncRNAs are closely related to many complex human diseases [11]. The earliest

lncRNAs to be discovered were XIST [12] and H19 [13]. These two genes have been

demonstrated to be linked to several types of cancers. For example, One of the first

lncRNAs to be identified, H19, acts as a decoy for several tumor suppressor miRNAs,

with let-7 [14]. Another important discovery of lncRNAs is that the lincRNA termed

HOTAIR is increased in expression in primary breast tumors and metastases, and

HOTAIR expression level in primary tumors is a powerful predictor of eventual metas-

tasis and death [15]. Yan et al. comprehensively analyzed the characteristics of lncRNAs

in different types of human cancers at the genome, transcription and epigenetic levels

[16]. The results indicated that lncRNAs are more specific than mRNAs in expression

and dysregulation in different cancers [16]. With regard to liver cancer, Yang et al. not

only analyzed the dysregulated lncRNAs, but also inferred its pathogenesis by combin-

ing methylation and copy number variation [17]. Due to their functional significance,

various databases have been developed to store lncRNA related information, such as

lncRNAdb [18], NONCODE [5], including the information of lncRNA structure, ex-

pression, and so on. LncRNADisease [19], Lnc2Cancer [20] are mainly focused on dif-

ferent lncRNA-disease associations. These databases are crucial for deciphering

lncRNA functions in human diseases. However, the functions and biological relevance

of the vast majority of lncRNAs remain enigmatic.

Recently, the functions of lncRNAs and their associations with human diseases have

attracted much attention from researchers because increasing evidences indicated that

lncRNAs play critical roles in the development of various human diseases. With the de-

velopment of novel experimental and computational methods, researchers have pro-

posed a variety of models to predict the biological functions of lncRNAs and lncRNA-

disease associations. For example, Chen et al. constructed a computational tool named

LRLSLDA to predict novel human lncRNA-disease associations [21]. It is well known
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that LRLSLDA is the first lncRNA-disease association prediction model which is based

on the assumption that the functions of lncRNAs associated with similar diseases are

often similar. A semi-supervised learning framework of Laplacian Regularized Least

Squares was mainly applied in this model. As a result, LRLSLDA significantly improved

the performance of previous methods used to solve the similar computational biology

problems. Based on the basic assumption that similar diseases tend to have associations

with functionally similar lncRNAs, more computational models were developed, such

as LNCSIM [22] and LDAP [23]. LNCSIM calculated lncRNA functional similarity on a

large scale based on lncRNA-disease associations and disease semantic similarity. LDAP

was proposed to predict potential lncRNA-disease associations by using a bagging SVM

classifier based on lncRNA similarity and disease similarity. Furthermore, some models

were developed by integrating multiple data sources into networks. In 2015, Guo et al.

developed a reliable method named lncGFP [24] based on a global network strategy to

predict probable functions of lncRNAs at large scales, which may give clues to the po-

tential associations between lncRNAs and diseases. Sun et al. proposed a computational

method named RWRlncD [25] by implementing random walk with restart (RWR) on

the lncRNA functional similarity network. Chen et al. developed model named

IRWRLDA [26] which combined lncRNA expression similarity and disease semantic

similarity to set the initial probability vector of the RWR to predict novel lncRNA-

disease associations. Yang et al. constructed a coding-non-coding gene-disease bipartite

network based on the known gene-disease associations and uncovered the hidden

lncRNA-disease associations by implementing a global propagation algorithm on this

network [27]. Chen et al. developed a model called KATZLDA by integrating known

lncRNA-disease associations, lncRNA expression profiles, lncRNA functional similarity,

disease semantic similarity and Gaussian interaction profile kernel similarity to uncover

potential lncRNA-disease associations [28]. Furthermore, KATZLDA could work for

both new diseases and lncRNAs. Due to few known lncRNA-disease associations, some

researchers have developed methods that rely on other information besides the known

lncRNA-disease associations. For example, Liu et al. identified potential lncRNA-

disease associations based on known gene-disease associations and gene-lncRNA co-

expression relationships which was the first computational method without the need to

rely on known lncRNA-disease associations [29]. All the lncRNA-disease association

prediction models aforementioned were listed in the Table S1(see Additional file 1).

In this paper, a simple and efficient method was developed to predict novel lncRNA-

disease associations. First, a bipartite network is constructed by integrating known

lncRNA-disease associations and protein-coding gene-disease associations. Then the

concept of disease clusters and gene clusters is presented in the bipartite network. The

key idea behind this method is that the nodes in one part associated with the same

node in another part are more similar with each other, which is similar to the assump-

tion used by other methods [22, 23, 26]. Based on the above, we proposed a new

method to calculate association scores for potential gene-disease pairs. Cross-

Validation tests were used to evaluate the performance of our method. As a result, our

method obtained reliable AUCs of 0.8169, 0.8410 in the LOOCV based on Yang’s [27]

dataset and Lnc2Cancer 2.0 [30] database, respectively. We further implemented 5-fold

cross validation on our method and obtained reliable AUCs of 0.7573, 0.8198 based on

Yang’s dataset and Lnc2Cancer 2.0 database, respectively. The performance of our
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method was superior to other similar methods on the two datasets. Moreover, case

studies on melanoma and colon cancer demonstrated that it could give clues to further

investigations.

Results
Prediction of lncRNAs associated with diseases

For the gene-disease pairs without edges in the bipartite network, our method can cal-

culate an association score for a pair which can be used to measure the potential asso-

ciation strength of this gene-disease pair. Ultimately, we sorted the association scores

of all potential gene-disease pairs and selected the top 1% as predicted results, and ob-

tained a total of 2320 potential gene-disease associations (1321 lncRNA-disease pairs

and 999 protein coding gene-disease pairs) (see Additional file 2).

Performance evaluation

LOOCV and 5-fold cross validation were applied to evaluate the prediction perform-

ance of our method based on known lncRNA-disease associations from the dataset of

Yang [27] and Lnc2Cancer 2.0 database [30]. When LOOCV was applied, each known

lncRNA-disease association was removed from the lncRNA-disease bipartite network

in turn as test sample. Our method was assessed by how well the removed lncRNA-

disease association was ranked within all the lncRNA-disease associations. The receiver

operating characteristics (ROC) curve can be obtained by plotting true positive rate

(TPR) versus false positive rate (FPR) at different rank thresholds. Given the rank

threshold k, TPR indicates the percentage of the removed edges with ranks higher than

the threshold and FPR indicates the percentage of negative samples with ranks higher

than this threshold. Therefore, ROC can be drawn and area under ROC curve (AUC)

could be further calculated (see Additional file 3). Considering the isolated nodes whose

unique edges were removed, we cannot obtain any relevant information about them. So

we removed all the nodes whose degrees were one before we performed LOOCV. The

dataset of Yang contained 236 lncRNA-disease associations between 102 diseases and

44 lncRNAs (see Additional file 4). And 1541 lncRNA-disease associations between 249

lncRNAs and 85 diseases were obtained from the Lnc2Cancer 2.0 database (see Add-

itional file 4).

Our method was compared with the following three state-of-the-art methods (Yang’s

method [27], IRWRLDA [26] and KATZLDA [28]) by cross validation tests on two

datasets (Yang’s dataset and Lnc2Cancer 2.0). In LOOCV tests and 5-fold cross valid-

ation tests, the performance of our method was superior to other three methods. De-

tails for LOOCV tests can be seen in Fig. 1a and b, and the results of 5-fold cross-

validation tests were shown in Fig. 1c and d.

Robustness of our method

To test the robustness of our method in a network view for predicting potential gene-

disease associations, the method of Multiple Survival Screening (MSS) [31] is used to

test our method under perturbation of the bipartite network. First, a total of 2320 po-

tential gene-disease associations in our bipartite network was used to evaluate the per-

formance of our method in these perturbation tests, which is called the set of
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verification edges. Then, a certain percentage of edges (10, 20, 30%, respectively) in the

network were deleted randomly in these tests. Our method was utilized to predict po-

tential associations on these remaining networks. The performance is evaluated on the

verification set. At each different threshold, re-sampling experiments are performed

1000 times. A vector of size 2320 was constructed, corresponding to 2320 predicted

edges. Each value in the vector represented the times of its corresponding verification

edge could be predicted in 1000 experiments. Our method was more stable in compari-

son with Yang’s method at different thresholds (Fig. 2). The results of 1000 re-sampling

experiments at different thresholds were shown in Additional file 5. When 20% of edges

were deleted, the prediction accuracy could be maintained at around 0.8 which was sig-

nificantly higher than Yang’s method (p-value = 0.022). As the proportion of deleted

edges increased, the accuracy decreased gradually (Fig. 2). Here, we also randomly

rewired the edges to construct random network, while keeping the degree of each node

in the bipartite network unchanged. Our method was also applied to the random net-

work for comparison. The results indicated that the accuracy of our method was sig-

nificantly higher than that of random network (p-value< 10− 10).

Case study

In order to further demonstrate the performance of our method in predicting potential

lncRNA-disease associations, the results of colon cancer and melanoma were analyzed

Fig. 1 Cross validation tests of our method. a Comparative results of LOOCV on Yang’s dataset. b
Comparative results of LOOCV on the Lnc2Cancer 2.0 dataset. c Comparative results of 5-fold cross
validation on Yang’s dataset. d Comparative results of 5-fold cross validation on the Lnc2Cancer 2.0 dataset
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as case study. For each case, the genes associated with the disease were ranked accord-

ing to their association scores. Based on our results (2320 potential gene-disease associ-

ations), we retained genes within top 5% related to these two diseases independently

for further analysis. Our predictions were validated by other independent experiments,

part of which were listed in Table 1.

Colorectal cancer (CRC) is a common malignant tumor of the digestive tract that oc-

curs in the colon. In recent years, the prevalence rate of colorectal cancer has increased

continuously [32]. The studies indicated that lncRNAs played an important role in the

development and progression of colorectal cancer [33]. There were 31 lncRNAs pre-

dicted to have potential associations with colorectal cancer by our method. Part of

them were validated by other independent experiments. For example, Zhou et al. deter-

mined that MIR31HG was closely related to the recurrence of colorectal cancer [34].

The signature of MIR31HG held great potential for risk assessment of recurrence and

personalized management of colorectal cancer patients. Chen et al. observed that miR-

374a inhibited colorectal cancer progression by reducing CCND1 to inactivate the

PI3K/AKT pathway [35]. Cui et al. demonstrated that lncRNA-HEIH promoted CRC

tumorigenesis through counteracting miR-939–mediated transcriptional repression of

Bcl-xL, and suggested that lncRNA-HEIH may serve as a prognostic biomarker and

therapeutic target for CRC [36]. They found that lncRNA-HEIH was significantly in-

creased in colorectal cancer tissues and cell lines. The expression of lncRNA-HEIH was

Fig. 2 Comparative results of robustness test between our method and Yang’s method at different
thresholds. The vertical ordinate indicated the times predicted correctly in 1000 re-sampling experiments
between our method and Yang’s method at each different threshold. And the last graph represents times
predicted correctly in 1000 re-sampling experiments on the random network by our method

Table 1 Case studies of colorectal cancer and melanoma

LNCRNA Disease PMID Rank

MIR31HG Colorectal cancer 30,195,788 Top23

CCND1 Colorectal cancer 27,191,497 Top23

lncRNA-HEIH Colorectal cancer 29,081,216 Top28

LSINCT5 Colorectal cancer 25,526,476 Top29

MIR31HG Melanoma 25,908,244 Top32

U47924.27 Melanoma 28,225,791 Top32

CCND1 Melanoma 23,001,925 Top32

Yuan et al. BMC Bioinformatics          (2020) 21:180 Page 6 of 14



positively associated with tumor size, invasion depth, and poor prognosis of CRC pa-

tients [36]. Moreover, Xu et al. found that the expression level of LSINCT5 was closely

related to the disease-free survival and disease-specific survival rates based on Kaplan-

Meier analysis in CRC patients [37].

Melanoma, also known as malignant melanoma, is a type of malignant tumor derived

from melanocytes. As one of the most malignant tumors in skin tumors, melanoma is

prone to distant metastasis, so early diagnosis and treatment are particularly imperative.

Accumulating evidences have revealed that lncRNAs played critical roles in the devel-

opment and progression of melanoma. There were 32 lncRNAs predicted to have po-

tential associations with melanoma among our results. Some results were validated by

other studies. For example, Montes et al. found that patients with higher levels of

MIR31HG often have reduced p16INK4A expression, which suggested that MIR31HG

with repression of p16INK4A in these patients favored cancer development [38]. Wang

et al. observed that the low expression of U47924.27 was significantly associated with

decreased survival in melanoma patients, revealing the potential role of U47924.27 in

melanoma tumorigenesis and metastasis [39]. Furthermore, Vízkeleti et al. observed

that CCND1 alterations were linked to melanoma progression and CCND1 amplifica-

tion may have a prognostic relevance in cutaneous melanoma and emphasized that

changes in CCND1 gene expression may influence the metastatic progression, survival

and metastasis localization [40].

Discussion
LncRNAs are involved in the regulation of various processes in cells and the develop-

ment of complex diseases through a variety of biological mechanisms. Therefore, pre-

dicting and discovering lncRNAs associated with complex diseases are important for

the diagnosis and treatment of diseases. In this paper, we constructed a bipartite net-

work using known gene-disease associations. Then we predicted potential lncRNA-

disease associations only based on the topological information of the gene-disease bi-

partite network. It is assumed that genes (diseases) associated with the same disease

(gene) are more similar. The assumption was incorporated into our bipartite network

to proposed the definitions of gene clusters and disease clusters. The biological signifi-

cance of the two kinds of clusters are analyzed in comparison with those in random

networks. And then, the problem of predicting potential lncRNA-disease associations

was formulated as a problem of measuring the association strength between gene clus-

ters and disease clusters. The ‘ C _ score ’ index was first defined to estimate the associ-

ation strength between clusters. Then the gene-disease association score was defined

based on the C _ score with regard to the influence of different degrees of the node in

the bipartite network. Cross validation test was applied to evaluate the prediction per-

formance of our method. In comparison with the state-of-the-art prediction methods,

our method can achieve better performance in terms of AUC values and robustness.

Moreover, case studies of melanoma and colon cancer were implemented to further

demonstrate that it could be a useful and simple method for predicting potential rela-

tionships between lncRNAs and diseases as well.

However, there are also some limitations existing in our current method. In spite of

the fact that our method is significantly superior to the previous methods, its perform-

ance can also be improved by incorporating other information in our model. Due to
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the fact that only the known gene-disease associations were exploited in the model, our

method cannot be applied to the diseases without any known associated genes. Further

data integration will be helpful to improve the power of our model and characterize the

complex relationships between new genes (without any known associated diseases) and

new diseases (without any known associated lncRNAs) from different perspectives. For

example, the Single Nucleotide Polymorphism (SNP) information, disease similarity in-

formation and lncRNA similarity information can be integrated in the network, which

will be our further study. Moreover, the advancement of useful models in other fields

such as miRNA-disease association prediction [41, 42], drug-target interaction predic-

tion [43] and synergistic drug combination prediction [44], would greatly facilitate the

development of lncRNA-disease association prediction.

Conclusion
In this study, we proposed an effective method for predicting potential lncRNA-disease

associations based on a bipartite network. Firstly, the gene-disease bipartite network

was constructed based on known gene-disease associations. Then a formula of gene-

disease association score was proposed to evaluate the strength of the potential associa-

tions between diseases and lncRNAs. Our method was estimated comprehensively by

cross-validation, robustness analysis and case studies in comparison with other

methods. The results showed that our method had higher prediction accuracy and ro-

bustness even if it was simple and easy.

Methods
Data sources

The dataset of known gene-disease associations used in this article were from the work

of Yang [27], including lncRNA-disease associations and protein-coding gene-disease

associations. The lncRNA-disease associations contained two parts. One was from the

LncRNADisease [19] database included 480 experimentally confirmed associations be-

tween 118 lncRNAs and 166 diseases. The other part was from literature mining in-

cluded 380 lncRNA-disease associations between 226 lncRNAs and 145 diseases. There

were 578 associations between 295 lncRNAs and 214 diseases totally. Besides, protein-

coding gene-disease associations from Yang’s study [27] were also incorporated into

the current study. Finally, a total of 1558 gene-disease associations between 1096 genes

(295 lncRNAs and 801 protein-coding genes) and 214 diseases were merged together

to construct the gene-disease bipartite network (see Additional file 6).

Based on the known associations between lncRNAs and diseases, we constructed

a bipartite network defined as G(X, Y, L). The X denoted a set of lncRNA nodes.

The Y denoted a set of disease nodes in which the nodes were associated with the

lncRNAs in X. L represented a set of edges between the nodes in X and the nodes

in Y. Regarding to the associations between protein-coding genes and diseases

which can provide more informative clues, these associations were further inte-

grated into the bipartite network. Thus, the X was a family of protein-coding genes

and lncRNAs. Ultimately, a bipartite network based on known protein-coding

gene/lncRNA disease associations was constructed for the prediction of potential

gene-disease associations.
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Disease cluster and gene cluster

It is assumed that diseases (genes) associated with the mutual genes (diseases) are more

similar [45] which was exploited to predict novel gene-disease associations in our work.

Therefore, as is for the gene-disease bipartite network G(X, Y, L), we defined the notion

of disease cluster and gene cluster based on this assumption. For any given disease, we

called the collection of its associated genes in the bipartite network as a gene cluster.

Similarly, for any given gene, we called the collection of its associated diseases in the bi-

partite network as a disease cluster. As shown in Fig. 3, the gene cluster of disease d

was denoted by gCluster(d) indicated by a green dashed line. The disease cluster of

gene g was denoted by dCluster(g) indicated by a red dashed line. Moreover, for any

node v in the network we built, the N(v) described a set of nodes linked to v. Obviously,

we had N(d) = gCluster(d) and N(g) = dCluster(g).

The node similarity in the same cluster was calculated to explore the biological sig-

nificance of these two kinds of clusters in the bipartite network to facilitate the applica-

tion of the clusters. For this purpose, we examine the node similarity of these two

kinds of clusters first in our bipartite network as follows. For any given gene g in the bi-

partite network, the similarity of corresponding dCluster(g) was calculated by the aver-

age similarity between any two diseases in the cluster. Analogously, the similarity of

gCluster(d) for disease d was computed through the average functional similarities of

any two genes in the cluster. Next, we constructed different random clusters which had

the same size as the corresponding gene/disease clusters. The similarities of random

clusters were calculated in the same way (see Additional files 3, 7 and 8). The result of

Fig. 3 Disease cluster and gene cluster in bipartite network: The circle represented disease node, the
hexagon represented gene node, the disease cluster dCluster(g) of gene g was identified by a red dotted
line, the gene cluster gCluster(d) of disease d was identified by a green dotted line, and the blue line
represented edge between gCluster(d) and dCluster(g)
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comparative functional similarities of random gene clusters with that of real gene clus-

ters was represented in Fig. 4a. The result of comparative similarities of random disease

clusters with that of real disease clusters was represented in Fig. 4b. As expected, the

node similarities of real disease clusters were significantly higher than those of random

disease clusters in the bipartite network (p-value = 0.0004). It can be seen that the com-

parison of real gene clusters with random gene clusters had comparable results (p-

value = 0.0003). These results indicated that disease clusters and gene clusters really

existed in our bipartite network and may have some biological significance. It is reason-

able to infer that the existence of such clusters was due to the fact that nodes in the

identical cluster were connected to at least one mutual node in the network. Addition-

ally, the shortest topological distance between any two nodes in a disease cluster or a

gene cluster was two, which was the minimum distance between nodes from the same

side in a bipartite network. Consequently, for a potential gene-disease pair (g, d) whose

relationship was remain unknown in the bipartite network, we explored the similarity

of the disease cluster dCluster(g) and the functional similarity of the gene cluster gClus-

ter(d) to calculate the association strength of a potential gene-disease pair (g, d).

Calculation of cluster association score

Given a pair of gene-disease association (g, d), g and d represented a gene and a disease

in the bipartite network, respectively. The cluster association score of the gene cluster

corresponding to d and the disease cluster corresponding to g can be mathematically

defined as follows:

C score g; dð Þ ¼ LðdCluster gð Þ; gCluster dð ÞÞj j ð1Þ

Where dCluster(g) and gCluster(d) were disease cluster of gene g and gene cluster of

disease d, respectively. L(dCluster(g), gCluster(d)) was the edges set in which the elem-

ent represented the edge between nodes in dCluster(g) and that in gCluster(d). In

addition, |•| denoted the size of the edges set. The eq. (1) described the cluster associ-

ation score of a gene-disease pair (g, d) is used to characterize how heavily the gene

cluster was associated with the disease cluster. It was determined by the number of

Fig. 4 Cluster similarities in the bipartite network. a Comparison of functional similarities between real gene
clusters and random gene clusters. b Comparison of similarities between real disease clusters and random
disease clusters
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edges between the two clusters. For example, the value of C _ score(g, d) in Fig. 3 was 7,

because there were 7 connected edges between dCluster(g) and gCluster(d) which were

drawn by blue lines.

To better verify the performance of C _ score in measuring the correlations between

genes and diseases, we calculated C _ score values of any gene-disease pairs as long as

there was at least one edge between them in the bipartite network. Furthermore, ac-

cording to the gene cluster and the disease cluster of each edge, we constructed ran-

dom gene cluster and random disease cluster with the same size, respectively. Then we

calculated C _ score value based on the random gene cluster and the random disease

cluster for comparison (see Additional files 3,9). It was interesting that the results indi-

cated that the C _ score values of real clusters corresponding to the known edges were

much greater than that derived from random clusters (Additional file 1, Fig. S1). It can

be expected that the C _ score can provide informative insights into the uncovering the

potential disease-gene associations. As a result, the gene-disease association score was

defined based on the C _ score in the following section.

Calculation of gene-disease association score

While there was no known edge between gene g and disease d in the bipartite network,

we can calculate the gene-disease association score based on the aforementioned for-

mula of C _ score (cluster association score) for gene-disease pair (g, d). Notably, the

value of C _ score was determined only by the number of connections between two

clusters corresponding to the disease and the gene. It was influenced by the degrees of

gene g and disease d in three different types of cases, which was exampled in Fig. 5. It

was reasonable to expect that these three distinct types between two clusters may ap-

pear in the network, and all of them had a C _ score value of 1. However, the associ-

ation strength of the gene g and the disease d in the three conditions were obviously

different. Apparently, the disease cluster corresponding to gene g and the gene cluster

corresponding to disease d in Fig. 5a had the strongest association among three cases.

Since the nodes in Fig. 5b and Fig. 5c had higher degrees, their values of C _ score were

equivalent to that in Fig. 5a. It was obvious that the cluster association score was a

Fig. 5 The influence of node degree on the calculation of gene-disease association scores in the bipartite
networks. The circle represented disease node, the hexagon represented gene node, the disease cluster
dCluster(g) of gene g was identified by a red dotted line, the gene cluster gCluster(d) of disease d was
identified by a green dotted line
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favorable method for nodes with large degrees. Therefore, considering the influence of

nodes degree in the bipartite network, the association score between gene g and disease

d was defined based on the C _ score and the node degree as follows.

DG score g; dð Þ ¼ 1
N gð Þj j þ

1
N dð Þj j

� �
� C score g; dð Þ ð2Þ

Here, N(g) and N(d) represented the degrees of gene g and disease d in the bipartite

network, respectively. C _ score(g, d) was the cluster association score which can be cal-

culated by the formula (1). The value of DG _ score(g, d) reflected the association

strength of gene-disease pairs with no known edges in the bipartite network.
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