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Abstract

Background: Methylated RNA immunoprecipitation sequencing (MeRIP-Seq) is a popular sequencing method for
studying RNA modifications and, in particular, for N6-methyladenosine (m6A), the most abundant RNA methylation
modification found in various species. The detection of enriched regions is a main challenge of MeRIP-Seq analysis,
however current tools either require a long time or do not fully utilize features of RNA sequencing such as strand
information which could cause ambiguous calling. On the other hand, with more attention on the treatment
experiments of MeRIP-Seq, biologists need intuitive evaluation on the treatment effect from comparison. Therefore,
efficient and user-friendly software that can solve these tasks must be developed.

Results: We developed a software named “model-based analysis and inference of MeRIP-Seq (MoAIMS)” to detect
enriched regions of MeRIP-Seq and infer signal proportion based on a mixture negative-binomial model. MoAIMS is
designed for transcriptome immunoprecipitation sequencing experiments; therefore, it is compatible with different
RNA sequencing protocols. MoAIMS offers excellent processing speed and competitive performance when compared
with other tools. When MoAIMS is applied to studies of m6A, the detected enriched regions contain known biological
features of m6A. Furthermore, signal proportion inferred from MoAIMS for m6A treatment datasets (perturbation of
m6A methyltransferases) showed a decreasing trend that is consistent with experimental observations, suggesting
that the signal proportion can be used as an intuitive indicator of treatment effect.

Conclusions: MoAIMS is efficient and easy-to-use software implemented in R. MoAIMS can not only detect enriched
regions of MeRIP-Seq efficiently but also provide intuitive evaluation on treatment effect for MeRIP-Seq treatment
datasets.
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Background
RNA modification, represented by the epitranscriptome
[1], refers to biochemical modifications of RNAs that are
involved in functional regulations such as translation effi-
ciency and mRNA stability without a change in the RNA
sequence. Over 100 types of RNA modifications have
been reported [2]. Among them, researchers have recently
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focused on certain abundant modifications such as N6-
methyladenosine (m6A) [3], N1-methyladenosine (m1A)
[4], and 5-methylcytidine (m5C) [5].
With the fast growth of next-generation sequencing

(NGS), scientists can study RNAmodifications at a whole-
transcriptome scale. Methylated RNA immunoprecipita-
tion sequencing (MeRIP-Seq) is a type of NGS technology
for studying RNA modifications and is particularly widely
used to detect m6A, a modification found in various
species including human, mouse, and zebrafish [6–8]. In
MeRIP-Seq, an antibody specific to a certain type of RNA
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modification (such as m6A or m1A) is used to immuno-
precipitate RNA; it is similar to another popular sequenc-
ing technology, i.e., ChIP-Seq (Chromatin immunopre-
cipitation sequencing) [9], which is used in studies of
transcription factor binding. However, based on the inher-
ent features of DNA and RNA, there is some difference
between MeRIP-Seq and ChIP-Seq data. First, the distri-
bution of ChIP-Seq read counts is relatively uniform while
that of MeRIP-Seq is more variable owing to transcript
abundance so that MeRIP-Seq requires an input RNA-
Seq sample as a control. Second, transcript abundance
affects the duplication rate, which must be considered
in preprocessing MeRIP-Seq data. Third, because RNA
sequencing can store strand information, which provides
more accurate transcriptome profiling by strand-specific
protocols [10], strand information must be well utilized
when analyzing MeRIP-Seq data.
Commonly used tools for identifying enriched regions

of MeRIP-Seq include MACS [11], exomePeak [12], and
MeTPeak [13]. MACS, which is a popular software in
ChIP-Seq analysis, assumes the Poisson distribution for
read counts. Applying MACS in MeRIP-Seq analysis
requires the genome size to be set [14]; furthermore,
because no gene information is considered, the enriched
regions contain ambiguous annotations. exomePeak and
MeTPeak are both exome-based peak callers that also
assuming the Poisson distribution for read counts, and
MeTPeak is developed based on exomePeak by integrat-
ing a hidden Markov Model (HMM). Although these
two tools are exome-based, they do not process strand-
specific and paired-end cases and are time consuming.
Besides, with more attention on the treatment experi-
ments of MeRIP-Seq, these tools can not satisfy the need
for intuitive evaluation on the treatment effect from the
comparison.
To facilitate the analysis of MeRIP-Seq, we devel-

oped “model-based analysis and inference of MeRIP-
Seq (MoAIMS),” which is efficient and user-friendly
software designed for transcriptome immunoprecipita-
tion sequencing. MoAIMS can detect enriched regions
and infer the signal proportion of MeRIP-Seq based on
a mixture negative-binomial(NB) model. It is compat-
ible with different RNA sequencing protocols includ-
ing paired/single-end and non-strand/strand-specific
sequencing. Our results demonstrated the excellent pro-
cessing speed (it only takes several minutes to finish
analysis of one dataset) and competitive performance of
MoAIMS compared with other tools. When MoAIMS
is applied to studies of m6A, the detected enriched
regions contain known biological features of m6A. Fur-
thermore, MoAIMS can provide an intuitive indicator
of treatment effect for treatment experiments. The sig-
nal proportion inferred from MoAIMS for m6A treat-
ment datasets (perturbation of m6A methyltransferases)

showed a decreasing trend, consistent with experimental
observations. Finally, functional analysis on the m6A per-
turbation datasets reveals the interplay between m6A and
histone modification. In conclusion, we developed effi-
cient and user-friendly software for MeRIP-seq analysis.

Implementation
A MeRIP-Seq dataset consists of one immunoprecipita-
tion (IP) sample and one input sample (used as con-
trol). MoAIMS takes aligned IP and input bams as
input. Aligned bams are generated from pre-processing
as shown in the workflow of MeRIP-Seq analysis (Fig. 1).
In the pre-processing, reads are aligned to a target
genome by transcriptome-based aligners such as STAR
[15], Tophat [16], and HISAT [17]. Only uniquely mapped
reads are kept. Then, reads are sorted and marked for
duplication using PicardTools [18] or samtools [19]. Given
the RNA sequencing protocol (single-end or paired-end,
strand-specific or not) and a target genome annotation
(in GTF format), MoAIMS is ready for analysis. Typically,
MoAIMS requires several minutes to complete the anal-
ysis of one MeRIP-Seq dataset. The primary outputs of
MoAIMS contain enriched regions (in BED12 format),
goodness of fitting (GOF) plot (Fig. 2), and a summary
table of the fitted models (Table 1). The source code
and the user’s manual are available at https://github.com/
rreybeyb/MoAIMS
In the analysis performed by MoAIMS, it firstly obtains

transcriptome bins by concatenating all exons for the
expressed genes. Then, it uses featureCounts for counting
reads in the bins. Subsequently, it models the distribution
of the bin counts by a mixture NB distribution and detects
the enriched regions. The details are described as follows.

Read counts of bins
Counting reads in bins was performed for the transcrip-
tome of expressed genes because unexpressed genes pro-
vide little information for signal detection. The default
threshold for expressed genes is 0.5 TPM(transcripts per
million). All exons for the expressed genes were concate-
nated and split into bins with size 200 bp(default setting).
Subsequently, featureCounts [20] was used for counting
reads in the bins. The parameters used in featureCounts
include the following: requireBothEndsMapped=TRUE
(for paired-end sequencing), read2pos=5, ignoreDup=T,
allowMultiOverlap=T.

Model construction
A negative-binomial mixturemodel
Our software implements and extends the statistical
framework proposed by MOSAiCS [21], which is used to
detect ChIP-Seq enriched regions and cannot be directly
applied to MeRIP-Seq data because it is designed for
processing DNA Sequencing and models the bin counts

https://github.com/rreybeyb/MoAIMS
https://github.com/rreybeyb/MoAIMS


Zhang and Hamada BMC Bioinformatics          (2020) 21:103 Page 3 of 12

Fig. 1Workflow of MeRIP-Seq analysis using MoAIMS. Reads are pre-processed through alignment, sort (by coordinates), and mark-duplication.
Given the RNA sequencing protocol and annotation of genes in GTF format, MoAIMS is ready for analysis. The primary outputs include detected
enriched regions (in BED12 format), goodness of fitting (GOF) plots, and a model summary table

on the whole-genome scale. The statistical framework
assumes that the observed bin counts of an IP sample
follows a mixture negative-binomial model composed of
a background component and a signal component that
are unobserved. Let Z represent the components, where
Z ∈ {0, 1} (0 for the background component and 1 for the
signal component) and Yj is the observed read count of
the jth bin; therefore, the mixture model can be written as
Equation(1),

P(Yj) = (1 − πs)P(Yj|Zj = 0,�B) + πsP(Yj|Zj = 1,�S),
(1)

of which πs is the signal proportion(πs ∈[ 0, 1]), equal to
P(Zj = 1), and (1 − πs) is equal to P(Zj = 0); �B and
�S are parameters of background and signal distribution
respectively.
When the bin is from the background component, the

read count follows the distribution NB(a, a
a+μj

), with a
the size parameter and a

a+μj
the probability parameter

of the NB distribution. When the bin is from the sig-
nal component, the read count can be represented as
Yj = Nj + Sj + k (one-signal, named 1S mode), where
Nj is the count from a non-specific background follow-
ingNB(a, a

a+μj
), Sj is the count from an actual enrichment

following NB(b, c
c+1 ) (c = b

μ
, μ is the mean), and k is

the minimal read count required for the signal compo-
nent. Thus, the distribution of the signal component is

a convolution of negative binomials. Details of the dis-
tributions are provided in the Supplementary. Addition-
ally, our software implements the mixture NB model of
the signal component(two-signal, named 2S mode) from
MOSAiCS considering the complexity of the signal com-
ponent, where Sj is the count following the distribution
πs1NB(b1, c1

c1+1 ) + (1 − πs1)NB(b2, c2
c2+1 ), with πs1 (πs1 ∈

[ 0, 1]) the first signal proportion.
In summary, the parameters of NB to be estimated in

the model are represented as � = {�B,�S1,�S2}, where
�B = (a,μj) for the background component, �S1 =
(b, c) for the signal component in 1S mode and �S2 =
(b1, c1, b2, c2) for the signal component in 2S mode.

Parameters estimation
First, we estimated the parameters of the background
component, �B = (a,μj). μj is estimated by regression
using the input bin count data. A simple illustrative figure
for the regression process is shown in Figure S1. The
detailed explanation is described as follows.
Each IP bin count Yj has a corresponding input bin

count Xj. For the bins from the background component, it
is assumed that {Yj}(j = 1, 2, ...,T)with the same input bin
count from the same distribution; thus, {Yj} are grouped
by the input bin count to Si = {Yj|Xj = xi} (xi is the
group value equal to available and unique bin count value,
i.e. 0,1,2,..., for input sample and i is the group index). For
Yj ∈ Si, it follows that NB(a, a

a+μi
). Subsequently, regres-

sion is performed with xi as the predictor variable and
μi(euqal to E(Si), the median value of Yj ∈ Si) as the
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Fig. 2 Examples of goodness of fitting (GOF) plots for a human and a mouse dataset. X-axis is bin count and Y-axis is frequency. Real data, simulation
data of 1S (one-signal) mode, and simulation data of 2S (two-signal) mode, are plotted in black, red, and blue lines, respectively

response variable. MOSAiCS uses the weighted robust fit-
ting of linear model (RLM) [22] for regression with the
function log(μi) = β0 + β1 log(xi), of which β0 and β1 are
the coefficients. However, in some cases of RNA sequenc-
ing, we found that the generalized additive model (GAM)
[23] can provide better fitting as shown in Figure S1. GAM
uses a sum of unspecified smooth functions

∑G
s=1 fs(vs)

Table 1 An example of the model summary table

Dataset πs BIC_1S BIC_2S optim_k optim_reg

WT_rep1 0.138 1679168 1678590 2 rlm

WT_rep2 0.11 1212063 1212005 2 rlm

The columns represent dataset names, signal proportion, BIC values for 1S
(one-signal) mode, BIC values for 2S (two-signal) mode, optimized k, and optimized
regression methods.

to replace the linear form
∑G

s=1 βsvs in the generalized
linear model where v is predictor variable and G is the
number of predictor variables. Here, we used only one
predictor variable, that is, the input bin count. There-
fore, when using GAM, μi can be estimated by log(μi) =
β0 + f (log(xi)|β), where f is represented using smooth-
ing splines and β is a vector of coefficients for the spline
term with length of 9 as default. We implemented GAM
using R package mgcv [24] and set the restricted max-
imum likelihood [25] as the method for estimating the
smoothing parameters. To optimize the model, MoAIMS
implements both RLM and GAM and subsequently uses
that with a lower BIC(Bayesian Information Criterion)
[26]. BIC scores were calculated in the general method by
r ln(T) − 2 ln(L̂), where r is the number of parameters, T
the number of bins, and L̂ the maximum likelihood.
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The size parameter a is estimated by â =∑
i niâi/

∑
i ni, where âi =[E(Si)]2 /[Var(Si) − E(Si)]

(the expectation is calculated using median value;
the variation is calculated using the median absolute
deviation) and ni is the number of bins.
After estimating the parameters of the background com-

ponent, expectation maximization (EM) algorithm [27]
was applied to estimate the parameters of the signal com-
ponent in 1S mode, �S1 = (b, c), and πs. πs is estimated
in the maximization step with optimized k value rather
than based on a pre-defined k value in MOSAiCS. For
the parameters b and c, the method of moments is used
as MOSAiCS. The details of modified EM process for 1S
mode are provided in the Supplementary. We performed
the EM process to estimate the parameters of the signal
component in 2S mode, �S2 = (b1, c1, b2, c2), and πs1
unchanged as MOSAiCS.

Model design for MeRIP-Seq analysis
The modification and extension of the statistical frame-
work proposed by MoSAiCS is aimed to make our soft-
waremore suitable forMeRIP-Seq analysis. This statistical
framework is based on the negative-binomial distribution
that is capable of modeling the variance of gene expres-
sion. We validated it by plotting the residuals between
IP signal and estimated background corresponding to the
gene expression. As Figure S1 shows, IP signal increases
as the gene expression increases.
The modification and extension involved three aspects.

First, we used log-transformation in estimating the
background means instead of power-transformation in
MOSAiCS because log-transformation is more commonly
used in RNA sequencing analysis [28], and this can sim-
plify the parameter tuning required in power transforma-
tion. Second, we set k, the minimum count in the sig-
nal regions, flexible instead of pre-defined in MOSAiCS.
Because k may depend on the library size and signal-to-
background ratio of the experiments [29] , we set k flexible
and optimized in the model fitting. With the optimized
k, the signal proportion (πs) was estimated by EM rather
than based on a pre-defined k value in MOSAiCS. Third,
in addition to the RLM used by MOSAiCS in estimat-
ing background means, we applied GAM for regression
to obtain better fitting for some cases of RNA sequenc-
ing data, as shown in Figure S1. An example of summary
table of the fitted models is shown as Table 1 that provides
signal proportion, BIC values for 1S (one-signal) mode,
BIC values for 2S (two-signal) mode, optimized k, and
optimized regression methods.

Detection of enriched regions
The enriched regions were decided under the threshold
of the false discovery rate (FDR), which was calculated
as in [29, 30]. In this study, false discovery means a

genomic region that is claimed to be significant when
it is not. For a set M of m enriched regions that sat-
isfies a defined cut-off (default is 0.05), the estimated
FDR is equal to (1/m)�j∈MP(Z = 0|Yj), where P(Z =
0|Yj) is equal to (1−π̂s)p̂0,j

(1−π̂s)p̂0,j+π̂sp̂1,j for the 1S mode and
(1−π̂s)p̂0,j

(1−π̂s)p̂0,j+π̂s[π̂s1p̂1,j+(1−π̂s1)p̂1,j] for the 2S mode with p̂0,j
and p̂1,j as the post probability for the jth bin from the
background component and the signal component respec-
tively. Finally, the enriched regions were merged and out-
put in the BED12 format with the highest bin count of
merged regions as the score, which can be used as a filter
to obtain higher confident signal region candidates.

Goodness of fitting (GOF)
To display the goodness of fitting (GOF), the simulations
is performed using the estimated parameters. For the sim-
ulation of the 1S mode, m background bins and n signal
bins were randomly sampled according to πs, where m +
n = T . The background read count of T bins were gen-
erated from the background distribution NB(a, a

a+μj
)(j =

1, ...,T). Subsequently, for n signal bins, the read count
was composed of the background read count, the count
sampled from the signal distribution NB(b, c

c+1 ), and the
minimal count k. For the simulation of the 2S mode,
m background bins, n1 first-signal bins, and n2 second-
signal bins were randomly sampled according to πs and
πs1, wherem + n1 + n2 = T . The background read count
of T bins were generated from the background distribu-
tion NB(a, a

a+μj
)(j = 1, ...,T). Subsequently, for the signal

bins, the read count was composed of the background
read count, the count sampled from the corresponding
signal distribution NB(b1, c1

c1+1 ) or NB(b2, c2
c2+1 ), and the

minimal count k. Figure 2 gives an example of GOF plot.

Results
Comparison with other tools
Detection ofm6A-enriched regions
We performed analysis on two m6A MeRIP-Seq stud-
ies. One is from mouse embryonic stem cell [31] that
uses the single-end and strand-specific sequencing pro-
tocol. The mouse datasets include the wild type and
knock-out ofMettl3 (anm6Amethyltransferase), of which
each has two biological replicates. The other is from
human A549 cell line [32] that uses the paired-end and
strand-specific sequencing protocol. The human datasets
contain negative control (shGFP) and perturbation of
three types of m6A methyltransferases including Mettl14,
Mettl3, and WTAP, of which each has two replicates.
Table S1 summarized the information of datasets. Raw
fastq files were retrieved from Gene Expression Omnibus
[33] with accession numbers GSE52662 and GSE54365.
Reads were aligned to human (hg19) and mouse (mm10)
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Fig. 3 Comparison of motif occurrence for MACS, exomePeak, MeTPeak, and MoAIMS for a wild-type mouse dataset. The X-axis is the decreasing
rank of the enriched regions from the top 1000 to top 5000. The ranking scheme for MACS, exomePeak and MeTPeak is fold change. For MoAIMS,
the ranking scheme of fold change(FC) and score are both used for comparison. The Y-axis is the percentage of motif occurrence

genome using STAR (version 2.6.0c, default setting) [15]
with annotation files of GENCODE (human release19 and
mouse release M19) [34]. Only uniquely mapped reads
were kept. The sorted (by coordinates) and duplication-
marked bam files were generated by Picard (version
2.18.1) and subsequently used as input for MoAIMS.

Three commonly-used tools for comparison are
MACS(version MACS2), exomePeak(v2.13.2) and MeT-
Peak(v1.0.0). Duplication-removed bam files were used
as input for the three tools. For MACS, we specified
parameters “–nomodel –extsize=100 –keep-dup=all -g
286,000,000 (for human)/221,000,000 (for mouse)’. ’We

Fig. 4 Comparison of top enriched regions with m6A miCLIP sites called by MACS, exomePeak, MeTPeak, and MoAIMS for a human negative control
dataset. X-axis is the decreasing ranks of the enriched regions from the top 1000 to top 5000. The ranking scheme for MACS, exomePeak and
MeTPeak is fold change. For MoAIMS, the ranking scheme of fold change(FC) and score are both used for comparison. Y-axis is the number of
enriched regions with m6A miCLIP sites
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Table 2 Features of MoAIMS compared with other tools

Features MoAIMS exomePeak MeTPeak MACS

Exome-based Y Y Y N

Strand-specific/Paired-end Y N N N

Time-consuming N Y Y N

Inference of signal
proportion

Y N N N

Visualization of model
fitting

Y N N N

Output in BED12 format Y Y Y N

Support for differential
methylation analysis

N Y N N

kept the peaks called by MACS overlapped with exonic
regions for comparison. For exomePeak and MeTPeak,
we used the default setting.
First, we compared the m6A-enriched regions called

by MoAIMS with MACS, exomePeak, and MeTPeak. We
verified to what extent the enriched regions called by
the four tools agree with each other using BEDTools
[35]. To obtain higher confident regions, we chose the
enriched regions (FDR≤0.05) called by MoAIMS with
score ≥10. Table S2 shows the results for the mouse
wild-type datasets. Each cell of the table represents the
percentage of enriched regions of tools in the columns

detected by tools in the rows; the number in bracket is the
number of enriched regions called by each tool. It is indi-
cated that our enriched regions are overlapped more with
MACS and exomePeak. Additionally, MeTPeak called rel-
atively less peaks and, in some cases, could miss enriched
regions, as shown in Figure S1.
Subsequently, we verified the occurrence of the DRACH

motif [36], a classicm6Amotif where D =A, G, or U; R =A
or G; andH =A, C, or U, in the top-5000 enriched regions.
The ranking scheme for MACS, exomePeak and MeT-
Peak is fold change. For MoAIMS, the ranking scheme of
fold change(FC) and score are both used for comparison.
Sequences of length 200 bp were extracted around the
summits of the enriched regions. For MACS, we used the
summits it provided; for MoAIMS, exomePeak, and MeT-
Peak, the summits were defined as the positions with the
highest read coverage. Because we had the strand-specific
sequencing data, we only counted themotifs that occurred
in the expressed genes with coverages (for MACS, only
motifs with coverages were counted). Figure 3 compares
the percentage of motif occurrence in the decreasing peak
ranks for a wild-type mouse dataset (comparisons are
also conducted for the other untreated datasets shown
in Figure S1). The results indicated that our software
achieved comparable performance to the other three
tools.

Fig. 5 Example of detection of strand-specific enriched regions. The plot is generated using IGV [38], showing the enriched region called by MACS,
exomePeak, MeTPeak, and MoAIMS in the first four tracks. The following tracks are coverage and aligned reads (strand orientation is colored) for the
IP and input sample, respectively, and the genome annotation
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Table 3 Performance on the time cost

Dataset MoAIMS exomePeak MeTPeak

Human shGFP_rep1 14.1 141.0 176.4

Mouse WT_rep1 10.6 110.4 143.4

shGFP_rep1 is one human negative control dataset. WT_rep1 is one wild-type
mouse dataset. The units of time is minute.

Next, we are interested to know to what extent the
m6A miCLIP sites agree with the MeRIP-Seq enriched
regions. We collected miCLIP-Seq data of human A549
cell line from [37], which maps m6A sites at single-base
resolution.We counted the number of regions containing
miCLIP sites in the top-5000 enriched regions detected by
the four tools(The ranking scheme is the same as that for
counting motif occurrence). Figure 4 shows that our soft-
ware with score ranking has the most number of regions
with m6A miCLIP sites in the decreasing peak ranks
(comparisons were also conducted for the other human
dataset provided in Figure S1). To determine whether the
number was affected by the length of the enriched regions,
we compared the length of the top-5000 enriched regions
between the tools, as shown in Table S3. The result shows
that compared with MeTPeak, which ranks second with
regard to consistency with miLCIP sites, MoAIMS can
detect more regions with m6A miCLIP sites under the
similar resolution.

Features of MoAIMS
MoAIMS is efficient software with appealing features,
as shown in Table 2. Thus, we performed comparison
analysis with regard to those features. First, because our

software is compatible with general RNA sequencing pro-
tocols in counting reads, we investigated how the meth-
ods of counting reads affected the detection of enriched
regions for pair-end RNA sequencing. The comparison
was conducted for the human shGFP (negative control)
datasets among exome-based callers: MoAIMS, exome-
Peak, andMeTPeak. Table S4 lists the number of enriched
regions detected by these three tools using pair-end reads
and first-in-pair reads, separately. The result indicates that
exomePeak andMeTPeak differ in themethod of counting
paired-end reads, while the difference is limited for our
software.
Next, our software is a strand-aware caller; thus, it

can avoid calling ambiguous regions that are overlapped
with other regions on different strands. Figure 5 shows
an example of how our software called strand-specific
enriched regions. As shown in the figure, a protein-coding
gene Mtmr10 and an antisense gene RP23-84M17.2 are
partially overlapped. The coverage track in red (colored by
strand) indicates the signal in Mtmr10, not the antisense
gene. For this case, exomePeak and MeTPeak have call-
ings on both genes, butMoAIMS can avoid the ambiguous
callings.
Finally, our software offers excellent processing

speed compared with exome-based callers exome-
Peak and MeTPeak, which require approximately 2
hours to analyze one dataset (MeTPeak needs even
more time because it applies HMM). Table 3 lists the
time cost for a human and a mouse dataset, indi-
cating that our software is competitive as it only
requires several minutes and can yield comparable
performance.

Fig. 6 Position profile of m6A-enriched regions for a wild-type mouse dataset. X-axis is the relative position coordinates and Y-axis is the mean
coverage of the enriched regions. The plot is generated using RCAS [39]
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Fig. 7 Signal proportion for m6A treatment experiments. X-axis represents two mouse MeRIP datasets of wild type (WT) and knock-out of METT13
(KO_Mettl3) with blue for replicate 1 and yellow for replicate 2. Y-axis represents the signal proportion

Application on feature and functional analysis of m6A
m6A is characterized by its location preference close to
three prime untranslated regions (3’ UTRs); thus, we ver-
ified the position preference of the enriched regions (with
score ≥10) called by MoAIMS. For the wild-type mouse
datasets, as shown in Figure 6 and S7(a), the enriched
regions exhibit location bias near 3’ UTRs, which is con-
sistent with the results of the original study [31]. For
the human negative control datasets, we observed that
enriched regions appeared near 5’ UTRs, as shown in
Figures S7(b) and (c), which agrees with the findings
of the original study [32] regarding methylated m6A at
transcription start sites.
Because our software infers the signal proportion

from the mixture NB model, we assumed that this
value can reflect the treatment effect; for example,
the knocking-down/out of methyltransferases (such as
WTAP, METTL3, or METTL14) can cause decreased sig-
nal proportion. For the mouse datasets, as shown in Fig. 7,
Mettl3 knock-out exhibits a clear decreasing trend for
signal proportion, which agrees with the findings of a
recent study [40] that include a discussion on the m6A
methyltransferase treatment experiments and the effect
of treatment in this dataset. For the human datasets, as
shown in Figure S1, WTAP shows a relatively clear effect
after perturbation, while Mettl3 and Mettl14 shows less
effect. This trend is consistent with the original study [32],
in which the authors observed the necessity of WTAP
for m6A methylation, while perturbation of Mettl3 and
Mettl14 exhibited milder effects in decreasing methyla-
tion level. These results suggest that the signal proportion

can be used as an intuitive indicator of the m6A treat-
ment effect, which can facilitate biologists’ evaluation on
the treatment experiments.
Finally, we conducted a functional analysis on the genes

affected by the perturbation of methyltransferases. We
performed gene ontology (GO) analysis by RCAS [39] on
genes with lost m6A-enriched regions. The loss of m6A-
enriched regions is defined as a state from being detected
in all the replicates of the wild type to being undetected
in all the replicates of the treated type. The GO results of
enriched biological process (BP) terms are shown in Fig. 8.
For the mouse datasets of the wild type andMettl3 knock-
out, the enriched BP terms are related to planar polarity
and polarity, thus suggesting that the loss of m6A affects
the development of embryo cells. For the human datasets
of negative control and WTAP perturbation, the enriched
BP terms are related to histone methylation and acety-
lation, which also appeared in the term list for mouse.
This observation agrees with that of [41] regarding m6A’s
function in destabilizing transcripts that encode histone
modification enzymes.

Discussion
MoAIMS is an efficient and user-friendly software for the
analysis of MeRIP-Seq. Nonetheless, improvements are
still required. First, MoAIMS currently supports only the
analysis of single samples. For replicate samples, although
enriched regions common in all the replicates can be
easily extracted using our software, a joint statistical
model can be developed as an alternative that considers
the variance among replicates. Next, apart from the NB
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Fig. 8 Enriched biological process (BP) term for genes impacted by perturbation of m6A methyltransferase for shWTAP vs. shGFP(Human) and
KO_Mettl3 vs WT(Mouse). The threshold of the adjusted p-value for the terms are set as 0.05

distribution, other statistical distributions are worth being
tested owing to the wide diversity of RNA sequencing
data. For example, Poisson–Tweedie has been proposed
for studying differential expressed genes as it is a more
general family of count data distributions that can fit RNA
sequencing data under situations of heavy tail or zero
inflation [42]. Additionally, the double Poisson distribu-
tion has been applied to manage under-dispersion RNA
sequencing data [43]. Last but not least, because our soft-
ware can provide user-friendly outputs for downstream
analysis, it is feasible to integrateMeRIP-Seq datasets with

other biological data for a comprehensive functional anal-
ysis, especially for MeRIP-Seq-treatment experiments.

Conclusion
We developed MoAIMS, which is an efficient and user-
friendly software for analysis of MeRIP-Seq. MoAIMS
is compatible with general RNA sequencing protocols,
achieves excellent speed and competitive performance,
and provides user-friendly outputs for downstream analy-
sis. When MoAIMS was applied to studies of m6A, m6A’s
known biological features and its interplay with histone
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modification was revealed. Furthermore, the signal pro-
portion inferred fromMoAIMS can be used as an intuitive
indicator of treatment effect. We hope that MoAIMS
would facilitate MeRIP-Seq analysis and provide more
insights into studies of RNA modification.

Availability and requirements
• Project name:MoAIMS
• Project home page:

https://github.com/rreybeyb/MoAIMS
• Operating systems: Linux, Mac OS, Windows
• Programming language: R
• Other requirements: R version 3.4.0 or higher
• License: GNU GPL
• Any restrictions to use by non-academics: None

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12859-020-3430-0.

Additional file 1: Supplementary materials for "MoAIMS: efficient
software for detection of enriched regions of MeRIP-Seq".
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