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Abstract

Background: The ability to confidently predict health outcomes from gene expression would catalyze a revolution
in molecular diagnostics. Yet, the goal of developing actionable, robust, and reproducible predictive signatures of
phenotypes such as clinical outcome has not been attained in almost any disease area. Here, we report a
comprehensive analysis spanning prediction tasks from ulcerative colitis, atopic dermatitis, diabetes, to many cancer
subtypes for a total of 24 binary and multiclass prediction problems and 26 survival analysis tasks. We systematically
investigate the influence of gene subsets, normalization methods and prediction algorithms. Crucially, we also explore
the novel use of deep representation learning methods on large transcriptomics compendia, such as GTEx and TCGA,
to boost the performance of state-of-the-art methods. The resources and findings in this work should serve as both an
up-to-date reference on attainable performance, and as a benchmarking resource for further research.

Results: Approaches that combine large numbers of genes outperformed single gene methods consistently and
with a significant margin, but neither unsupervised nor semi-supervised representation learning techniques yielded
consistent improvements in out-of-sample performance across datasets. Our findings suggest that using
-regularized regression methods applied to centered log-ratio transformed transcript abundances provide the best
predictive analyses overall.

Conclusions: Transcriptomics-based phenotype prediction benefits from proper normalization techniques and
state-of-the-art regularized regression approaches. In our view, breakthrough performance is likely contingent on
factors which are independent of normalization and general modeling techniques; these factors might include
reduction of systematic errors in sequencing data, incorporation of other data types such as single-cell sequencing
and proteomics, and improved use of prior knowledge.
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Background

The potential to tailor therapies for individual patients
rests on the ability to accurately diagnose disease and
predict outcomes under various treatment conditions.
Predictors based on high-throughput ‘omics technolo-
gies hold great promise, but a number of technical chal-
lenges have limited their applicability [1]. Phenotypes may
be complex—involving contributions from large numbers
of genes—but ‘omics data are so high-dimensional that
exploring all possible interactions is intractable. This sit-
uation is further complicated by the small sample sizes of
typical biological studies and by large systematic sources
of variation between experiments [2, 3]. However, recent
developments in machine learning have raised hopes that
new computational methods integrating data from many
studies may be able to overcome these difficulties. Accu-
rate prediction of phenotype or endpoint(s) from ‘omics
data would usher in an era of molecular diagnostics [4, 5].

Machine learning methods often benefit from large
datasets where learning complex relationships is feasi-
ble. Although individual biological experiments tend to be
small, relatively large amounts of ‘omics data are available
in public repositories. For example, hundreds of thou-
sands of samples from human RNA sequencing (RNA-
seq) experiments are available from the recount2 and
ARCHS4 databases [6-8]. Still, these data cover a wide
variety of tissues and diseases. Moreover, there are no
specific diseases with large numbers of samples and, in
many cases, the metadata are not sufficient to determine
basic experimental facts like the tissue of origin [9]. As a
result, leveraging these data to improve prediction tasks
will require machine learning techniques that can learn
from large, heterogeneous datasets.

Genes rarely act in isolation, so it is reasonable to expect
that combinations of genes may be more effective than
individual genes for predicting phenotypes. For example,
linear models operating on RNA-seq data create predic-
tors from a weighted combination of gene expression
values. However, some of these features could reflect bio-
logical processes that are involved in multiple phenotypes.
Many previous analyses have explored this possibility
by creating complex features that incorporate biological
knowledge from gene sets [10, 11], ontologies [12], or
interaction graphs [13—15]. More recently, unsupervised
machine learning methods incorporating principal com-
ponents analysis [16], autoencoders [17-20], or other neu-
ral network architectures have been developed to discover
such features by analyzing large transcriptomics datasets.
These attempts are examples of a general program called
representation learning in which the purpose of training
such unsupervised models is to extract a complex feature
embedding from the model [21]. In this setting represen-
tation learning holds great promise which is furthermore
straightforwardly testable: If these learned features cap-
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ture biologically relevant processes, then predictive models
built from those features should outperform models built
directly from relative transcript abundances.

In this work, we present a comprehensive analysis of
phenotype prediction from transcriptomics data with a
particular emphasis on representation learning. Using
the recount2 database [7], we systematically explored the
impact of normalization techniques, gene sets, learned
representations, and machine learning methods on pre-
dictive performance for a set of 24 binary and multi-
class prediction problems and 26 survival analysis tasks.
In total, we analyzed thousands of predictive mod-
els using 5-fold nested cross validation to rigorously
assess out-of-sample performance. We found that predic-
tors that combined multiple genes outperformed single
gene predictors, that logarithmic transformations outper-
formed untransformed relative expression measurements,
and that for survival analyses larger gene sets outper-
formed smaller gene sets. However, neither unsupervised
nor semi-supervised representation learning techniques
yielded consistent improvement on out-of-sample predic-
tive performance across datasets. In fact, /-regularized
regression methods applied directly to the centered log-
ratio transform of transcript abundances performed con-
sistently well relative to the other methods. Therefore
we recommend treating that particular combination as a
baseline method for predictive analysis on RNAseq data.
Throughout this text we refer to the combination of /-
regularized regression methods applied directly to the
centered log-ratio transform of transcript abundances as
the recommended model.

Results

Approach

A high-level description of our quality control, data pro-
cessing, and machine learning analyses is provided in
Fig. 1. Details of the dataset and these steps are provided
in the “Methods” section.

Briefly, our dataset is sourced from the recount2 data-
base [7], and contains expression data from Genotype-
Tissue Expression (GTEx) project [22], The Can-
cer Genome Atlas (TCGA) Pan-Cancer Clinical Data
Resource [23], and The Sequence Read Archive (SRA). We
selected a subset of experiments from recount2 that did
not have sparse gene expression data and could be mapped
to the same set of tissues covered in GTEx. We assigned
the various experiments to “training” (~37k samples),
“validation” (~4k samples), and “test” sets (~4k sam-
ples). All samples lacking suitable metadata for supervised
learning were allocated to the training set. From metadata
provided with recount2, the Gene Expression Omnibus
[24], and TCGA Pan-Cancer Clinical Data Resource we
derived labels for 24 binary and multiclass and 26 survival
analysis tasks. Descriptions of these tasks and their assign-
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Fig. 1 Schematic. An overview of the quality control, data processing, and training pipelines. Data from recount undergoes several quality checks at
the sample and study level, resulting in a dataset of approximately 45,000 samples divided into training, testing, and validation datasets. Twelve
different datasets are created from these data, each with a different gene set (all, comprising all genes; O, comprising key GO categories; OT,
comprising O genes that are known transcription factors) and transform (“TPM”, transcripts per million; “CLR", a centered-log-ratio transform of TPM;
"Z-score”, a Z-score normalization of the CLR data relative to healthy tissue expression levels in GTEx; “Z-ternary”, a ternarization of Z-score). The
training data is used to train unsupervised models capable of embedding the data (a “no embedding” model is also included, which does not alter
the data). These embedded features, along with labels for individual tasks, are used to train a variety of supervised models. The supervised models
are trained and evaluated using nested cross validation
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ment to the training, validation, and test sets are provided
in the “Methods” section (see Tables 1, 2, 3, and 4).

We considered four different normalization methods
to correct for variance introduced in the data collection
and measurement process. We first converted the sam-
ples from counts to Transcripts Per Million (TPM) [25],
a normalization which estimates relative molar concen-
tration of transcripts in a sample. Under the operating
assumption that relative transcript abundance is determi-
nant of downstream biological function, TPMs should be
the baseline quantification to work with from RNAseq.
In contrast, raw counts or counts per million (CPMs)
contain irrelevant counting bias stemming from variable
transcript length. Likewise, the common alternative of
fragments per kilobase per million (FPKMs) do not coher-
ently measure relative molar concentration, because they
rely on a sample-dependent normalization factor. As such,
FPKMs are not a useful measure when processing sam-
ples which are not entirely technical replicates of a single
tissue sample [25, 26]. Secondly we applied the centered
log-ratio transformation (CLR) [27] to the TPM data
to address the fact that RNA-seq data quantify relative,
rather than absolute, gene expression [28, 29]. The CLR
transform has two useful features. First of all, it normalizes
compositional data so that samples representing the same
relative abundances are equated. Secondly it converts
multiplicative relationships between the relative abun-
dances into linear relationships — a feature which allows
statistical models to represent fold-differences between

Table 1 TCGA binary tasks
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expression vectors, and to model the error properly. Since
these two normalization methods do not account for the
tissue of origin of the sample, we evaluated additional
normalization methods based on differential expression
with respect to normal tissue. The third normalization
method converted the CLR transformed expression data
from each sample to a tissue-normalized Z-score by sub-
tracting the mean and dividing by the standard deviation
of the associated tissue in GTEx. This mean and stan-
dard deviation of the CLR transformed expression data
were computed across the GTEx data in recount? for each
annotated tissue type. Therefore the tissue-normalized Z-
score expression data measures deviations from normal
tissue of each type. As a result, characteristic deviations
from normal expression will have the same features after
this transformation, even across different tissue types.
Finally, a fourth ternarized normalization discretized the
Z-scores into down-regulated (Z < —2), normal (-2 <
Z < 2), or up-regulated (Z > 2) categories.

For each of these normalization approaches, we also
explored three gene sets corresponding to transcription
factors [30] (denoted OT), protein coding genes anno-
tated as with biological processes or molecular functions
in the Gene Ontology 12 (denoted O), and all genes pro-
vided by recount2 (denoted all). The O and OT gene sets
are substantially smaller than the all gene set and allow
exploration of the dependence on the number of genes.
In total, we examined twelve different normalization-gene
set combinations for each predictive problem.

Project Disease Label Label type Group Samples

TCGA stage tasks
COAD colon adenocarcinoma [I-vs. 1+ binary train 505
KIRC kidney renal clear cell carcinoma - vs. I+ binary train 544
LIHC liver hepatocellular carcinoma - vs. 1+ binary train 374
LUAD lung adenocarcinoma - vs. 1+ binary train 542
SKCM skin cutaneous melanoma II-vs. I+ binary train 249
STAD stomach adenocarcinoma - vs. 1+ binary train 416
THCA thyroid cancer - vs. 1+ binary train 513
UCEC uterine corpus endometrial carcinoma - vs. I+ binary train 554
LUSC lung squamous cell carcinoma - vs. 1+ binary validate 504
BRCA breast invasive carcinoma [I-vs. 1+ binary test 1134

TCGA grade tasks
CESC cervical squamous cell carcinoma [1-vs. 1+ binary train 306
KIRC kidney renal clear cell carcinoma 1= vs. 1+ binary train 544
LGG low grade glioma 1= vs. 1+ binary train 532
LIHC liver hepatocellular carcinoma [I-vs. 1+ binary train 374
PAAD pancreatic adenocarcinoma II-vs. I+ binary train 179
STAD stomach adenocarcinoma 1= vs. 1+ binary train 416
UCEC uterine corpus endometrial carcinoma 1= vs. 1+ binary train 554
HNSC head-neck squamous cell carcinoma [I-vs. 1+ binary test 504

The 18 binary tasks derived from TCGA used to train supervised models and validate the unsupervised embeddings. The tasks are grouped into two categories, TCGA tumor

stage tasks (10), and TCGA tumor grade tasks (8). The project names correspond to those in Fig. 2
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Table 2 SRA tasks

SRA tasks
Project Disease Label Label type Group Samples
GSE65832 atopic dermatitis lesional vs. not binary train 40
GSE66207 Crohn’s disease type: B1,B2 or B3 multiclass (3) train 20
GSE72819 ulcerative colitis treatment remission binary validate 69
GSE47944 psoriasis lesional vs. not multiclass (3) validate 63
GSE50244 diabetes normoglycemic, impaired, diabetic multiclass (3) validate 76
GSE67785 psoriasis lesional vs. not binary test 28
The 8 tasks derived from SRA used to train supervised models and validate the unsupervised embeddings. The project names correspond to those in Fig. 2
Table 3 TCGA overall survival (OS) tasks

TCGA OS tasks
Project Disease Label Label type Group Samples
CESC cervical squamous cell carcinoma 0S survival train 304
COAD colon adenocarcinoma oS survival train 455
ESCA esophageal carcinoma (6 survival train 184
KIRP kidney papillary cell carcinoma oS survival train 289
LUAD lung adenocarcinoma 0S survival train 507
ov ovarian cancer (&) survival train 420
PAAD pancreatic adenocarcinoma (&) survival train 178
SARC sarcoma 0sS survival train 259
STAD stomach adenocarcinoma oS survival train 409
UCEC uterine corpus endometrial carcinoma 0S survival train 540
HNSC head-neck squamous cell carcinoma 0S survival validate 501
BLCA bladder urothelial carcinoma oS survival test 407
LUSC lung squamous cell carcinoma oS survival test 495

The 13 overall survival tasks derived from TCGA used to train supervised models and validate the unsupervised embeddings. The project names correspond to those in Fig. 2

Table 4 TCGA progression-free interval (PFI) tasks

TCGA PFl tasks
Project Disease Label Label type Group Samples
CESC cervical squamous cell carcinoma PFI survival train 304
COAD colon adenocarcinoma PFI survival train 455
ESCA esophageal carcinoma PFI survival train 184
KIRP kidney papillary cell carcinoma PFI survival train 288
LUAD lung adenocarcinoma PFI survival train 507
ov ovarian cancer PFI survival train 420
PAAD pancreatic adenocarcinoma PFI survival train 178
SARC sarcoma PFI survival train 259
STAD stomach adenocarcinoma PFI survival train 411
UCEC uterine corpus endometrial carcinoma PFI survival train 540
HNSC head-neck squamous cell carcinoma PFI survival validate 501
BLCA bladder urothelial carcinoma PFI survival test 408
LUSC lung squamous cell carcinoma PFI survival test 496

The 13 progression-free surivival tasks derived from TCGA used to train supervised models and validate the unsupervised embeddings. The project names correspond to

those in Fig. 2
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We considered four different types of representations of
the gene expression data learned by unsupervised models.
First, supervised models were trained directly on the nor-
malized expression data without alearned embedding. We
also considered representations constructed with Prin-
cipal Components Analysis (PCA), a Stacked Denois-
ing Autoencoder (SDAE), and a Variational Autoencoder
(VAE) trained on the 37k samples in the training set
without any supervising information.

For each binary or multiclass prediction task, we
trained a k-Nearest Neighbor (kNN) classifier, a Random
Forest (RF), and an [;-regularized multinomial Logis-
tic Regression (LR) on the normalized and transformed
data using 5-fold nested cross validation. Using nested
cross validation (“Methods” section) is important because
it accounts for performance variance that results from
different hyperparameter choices (e.g., the number of
nearest neighbors, the depth of the trees in the forest,
or the strength of the regularization coefficient). An -
regularized Cox proportional hazards model was used for
all survival tasks, also with 5-fold nested cross valida-
tion. Binary tasks were compared using the Area Under
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the receiver operating characteristic Curve (AUC); mul-
ticlass tasks were compared using the accuracy, and sur-
vival tasks were compared using the concordance-index
(C-index) [31, 32].

Our systematic model search covered four normal-
ization methods, three gene sets, four representations,
and three supervised algorithms totaling 144 comparison
models for each of the 24 binary and multiclass tasks.
For the survival tasks we used the same normalization
methods, gene sets, and representations, but considered
only one supervised algorithm (Cox proportional haz-
ards). For comparison, we also trained linear predictors
using the recommended method that were only allowed
to use a single gene. The choice of gene was treated as a
hyperparameter and optimized using 5-fold nested cross
validation.

Analyses

The predictive performance assessed through 5-fold
nested cross validation varied considerably across and
within the predictive problems (see Fig. 2). Gene expres-
sion data improved predictive performance relative to

binary multiclass
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Fig. 2 Performance by predictive task. The performance of all models on each task, ordered by the median performance on each task. The tasks are
divided into three groups based on the type of label; the top row shows classification tasks (binary and multiclass) while the bottom shows survival
tasks. Each task is labeled by an abbreviation at the top of the plot and the number of samples at the bottom; see the Supplementary material for
more details on each task. The task label has one star if the data is in the validation group and two stars if the data is in the test group. For each task,
the gray points show the results over the entire set of models and the horizontal line shows their median. The filled black circle shows the
performance of the recommended model, while the open black circle shows the performance of the best single gene model. The recommended
model uses no embedding, all genes, and the CLR transform; the supervised model is logistic regression for the classifier tasks and a Cox
proportional hazards model for the survival tasks. The recommended model is often among the best models on a problem and frequently
outperforms the best single gene model; the primary exception is the pancreatic adenocarcinoma overall survival (PAAD OS) dataset
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random guessing in almost all cases, indicating that RNA-
seq data do contain information that is broadly useful
for out-of-sample prediction. Moreover, linear predictors
that used the expression data from all genes generally
outperformed models that only used a single, most pre-
dictive gene. It is still common to analyze genes indepen-
dently in differential expression and regression analyses;
our results indicate, however, that linear combinations
of genes are significantly more predictive than individ-
ual genes. Although there was sizable variance in per-
formance across tasks, predictive performance was not
correlated with any obvious dataset characteristics such as
the number of subjects.

In order to compare the effects of the gene set size
and transformation, it is helpful remove between-task
variance and then to aggregate results across tasks. To
remove the between-task variance, we defined a shifted
statistic in which we subtracted the median value of all
models on the same task. For example, the AUC for the
random forest classifier on the STAD stage dataset was
shifted by subtracting the median AUC for all of the binary
classifiers trained on the STAD stage dataset. Averages
of the shifted statistics across predictive problems can
be easily interpreted: if the value is less than zero then
the method underperformed the median, whereas the
method outperformed the median if the value is greater
than zero.

Within-task variance in predictive performance was
partially explained by the choice of gene set and nor-
malization method (see Fig. 3). Because the number of
samples in each dataset was much smaller than the num-
ber of genes annotated in recount2, we hypothesized
that using prior knowledge to select small, biologically
relevant gene sets based on the Gene Ontology or tran-
scription factor activity would improve out-of-sample pre-
dictive performance by preventing overfitting. However,
this hypothesis was not supported by our analyses. The
choice of gene set made no difference for the classification
problems, whereas the smaller gene sets underperformed
on the survival tasks. The log-transformed normalization
methods slightly outperformed TPMs, and the Z-score
normalization performed the best, on average. Perfor-
mance improvements of Z-score normalization relative to
CLR were small, however, and we do not think that the
small gains justify the additional complexity introduced
by referencing each sample to an external dataset (i.e.,
GTEx).

Next, we examined differences in absolute performance
between the kNN, RF, and LR models on the classification
problems (only a linear Cox proportional hazards model
was tested on the survival tasks). As shown in Fig. 4, the
kNN classifier consistently underperformed the RF and
LR classifiers. The RF was the best performing method
for thirteen tasks, LR for nine tasks, and kNN for two
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tasks, but LR was more consistent than RF and had better
average performance.

Gene expression data are very high dimensional, with
the number of genes ranging from ~1.5k in the transcrip-
tion factor gene set to ~56k in the gene set consisting of all
genes annotated in recount2. In contrast, the supervised
task datasets typically consisted of only a few hundred
samples. Moreover, it seems unlikely that genes actually
coordinate in a linear fashion to generate complex pheno-
types. Therefore we hypothesized that predictive perfor-
mance could be improved by training predictors on lower
dimensional representations derived from unsupervised
analyses of the ~37k unlabeled samples in the training set.
One could also view these analyses as a type of transfer
learning, in which biological knowledge derived from the
analysis of one dataset is used to inform the analyses of
another.

The first feature representation that we considered was
a Principal Components Analysis (PCA) with 512 latent
dimensions. These principal components are orthogo-
nal linear combinations of expression values that rep-
resent the directions of largest variance in the training
set. Together, the 512 principal components we used
explained the majority of the variation in the transcrip-
tional datasets (see Supplementary figures). We found that
using PCA derived representations as features decreased
the out-of-sample performance of downstream predictive
analyses (Fig. 5). Therefore, we do not recommend using
features derived from PCA of large RNA-seq compendia
for predictive analyses.

Training a linear model on top of representations
derived from a linear transformation like PCA is equiva-
lent to a regularized linear model trained on the unem-
bedded data. Deep neural network-based architectures
like SDAEs and VAEs, by contrast, process an input
expression vector through a series of nonlinear transfor-
mations to learn more complex features. Therefore, we
also trained a 512-dimensional SDAE and VAE on the
training set for each gene set-normalization combination
and used the representations derived from these neural
networks as features for downstream prediction tasks.
Nevertheless, we found that preprocessing the expression
data using these networks decreased the out-of-sample
performance of downstream prediction tasks relative to
just using the normalized expression data directly (Fig. 5).

Semi-supervised representation learning

There are a variety of reasons that unsupervised repre-
sentation learning can fail to discover features that are
useful for downstream predictive tasks. For example, a
small but consistent difference in the expression of a gene
between two groups (e.g., healthy and diseased) can be
used to train a highly accurate predictor. However, if this
difference is much smaller than the variance in the expres-
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sion of other non-predictive genes, then it will be ignored
by most unsupervised representation learning algorithms.
One way to avoid this problem is use a semi-supervised
method to learn the representation.

The goal of semi-supervised representation learning is
to derive a common set of features that are useful for mul-
tiple downstream predictive tasks. Our semi-supervised

model consists of an autoencoder along with a number
of logistic regression classifiers, one for each supervised
task involved in the training set. The predictors oper-
ate on the 512-dimensional latent space embedding of
the autoencoder. For any expression vector the autoen-
coder contributes a reconstruction loss. Furthermore, if
there is a predictive task label associated to the expression
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vector, then the associated linear predictor contributes a
classification loss as well. We trained the model to min-
imize a loss function that was a weighted combination
of the autoencoder loss and the supervised loss averaged
across each of the predictive tasks. We considered the
out-of-sample predictive performance of four representa-
tions: the unembedded data, data embedded by a model
trained using only autoencoder loss, data embedded by a
model trained on the combined autoencoder and super-
vised losses, and data embedded by a model trained using
only the supervised loss. More details are provided in the
online “Methods” section.

In order to test the semi-supervised model, we divided
the larger labeled training datasets into two halves. The
first half of the labeled training datasets were combined
with the unlabeled data from the training set and used to
train the semi-supervised autoencoder. The second half
of the training datasets were held out as validation. We
also held out the validation and testing labeled datasets
as in the analyses of the representations learned by unsu-

pervised algorithms. This strategy provided two types of
validation tasks: those in which the representation was
trained on similar data (e.g., from the same study), and
those in which the representation had not been trained
on similar data. The results are shown in Fig. 6. Using
the learned features slightly improved median predictive
performance on the divided tasks but did not improve pre-
dictive performance on the validation and testing tasks
used in the previous analyses.

Discussion

The hypothesis that gene expression measurements can
be combined into higher level features that should be
useful for predicting phenotypic characteristics has intu-
itive appeal. Indeed, we believe that genes act together
as coordinated pathways that control cellular processes.
Moreover, changes in expression at the tissue level could
reflect higher level changes due to differences in cellu-
lar composition. As a result, one would expect that it is
possible to define useful high-level features for expression
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Fig. 5 Performance by unsupervised model and gene set. The binary task performance of each unique model type is shown, grouped by
unsupervised model and gene set. A model type is a combination of unsupervised model, supervised model, gene set, and normalization; for
example, the recommended model is one model type. Each model type is a single line on this plot. The performance shown is the average of
shifted AUCs across binary tasks, weighted by the number of samples in each task to reduce the effect of fluctuations in tasks with fewer samples.
There are four unsupervised model types, VAE (variational autoencoder), SDAE (autoencoder), PCA (principal components analysis), and
no-embedding (in which the data is unchanged). The best results come from using all genes without an unsupervised embedding
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Fig. 6 Performance for semi-supervised models. The binary task performance is shown for four different types of embedding models across two
different datasets and two different gene sets. The four models are a purely unsupervised autoencoder (autoenc.), a semi-supervised embedding
model (mixture), a purely supervised embedding model (pure sup.), and a no-embedding model (no emb.). To train the supervised component of
the embedding models, specific task datasets are divided into two halves, one contributing to the supervised loss in training, and the other held
out; the performance of the four models on the held-out halves are shown in the left column. The performance of the same models on the
validation and testing tasks (which take no part in training any embedding model) are shown in the right column. Models on the O gene set are
shown in the upper row, and on the OT gene set in the lower row. The gray points show the shifted AUCs on all tasks in each group and all model
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data; this intuition has driven the development of pathway
analyses [33-35], gene set analyses [10, 11], knowledge
graphs [14, 15], and cell-type deconvolution approaches
[36—-38] to analyzing transcriptomics experiments. More
recently, a number of studies have introduced deep learn-
ing methods that aim to discover useful gene, or tran-
script, combinations that reflect the underlying biology
without imposing particular prior knowledge [4, 5, 39—
41]. In theory, these learned representations should pro-
vide better predictive performance because they are trans-
ferring biological knowledge derived from one dataset to
another. In addition, they reduce the dimension of the
input data and, as a result, potentially mitigate overfitting.
Here, we set out to systematically and rigorously assess the
impact of these representations on downstream predictive
tasks.

Our key results can be summarized in a few bullet
points:

e Multivariate predictors outperformed predictors

based on the best single gene.

e Larger gene sets performed better than smaller gene

sets.

e CLR and tissue-specific Z-score normalization were

better than TPM.

e Logistic regression and random forests performed

equally well.

Representations derived from unsupervised or semi-
supervised methods did not improve out-of-sample per-
formance for phenotype prediction. Based on these key
results, we conclude that /;-regularized regression applied
to the CLR transformed relative transcript abundances
is generally the best choice for predictive analyses using
transcriptomics data. The Z-score and Z-ternary nor-
malizations generally perform comparably to CLR, but
require the GTEx data as a reference and hence CLR is
recommended.
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Figures 2, 3, 4 and 5 present results for the evalua-
tion of unsupervised models on supervised tasks, studying
performance as different aspects of the models change.
Figure 2 shows how the performance varies across super-
vised tasks and demonstrates that the recommended
model is nearly always one of the better performing mod-
els. Figure 3 presents the relative performance for the
choices of normalization and gene set, showing that using
larger gene sets improves performance on survival tasks.
Figure 4 presents the performance across supervised tasks
for different choices of the supervised model, showing
that random forest and logistic regression models perform
well. Figure 5 shows the relative performance across dif-
ferent unsupervised models, divided by gene set, demon-
strating that supervised models on unembedded data for
all genes are the best performing. The supervised evalua-
tion results are recorded in an online repository [42] and
further visualized in the Supplementary material. Taken
together, these motivate the choice of the recommended
model.

Our first conclusion, that multivariate predictors out-
perform predictors based on single gene expression mea-
surements, was the clearest cut. This has some practical
consequences when combined with our other conclusion
that larger gene sets are better, especially for the fitting
of proportional hazards models used for survival anal-
yses. First, using multivariate predictors on large gene
sets means that the number of covariates will almost
always vastly outnumber the subjects in a study. There-
fore, it is absolutely necessary to regularize these models
by adding penalties to the coefficients. Moreover, nested
cross validation should be used for all performance assess-
ments to mitigate overfitting to hyperparameter choices
and to minimize variance in the performance metric. Sec-
ond, it is often impractical —or even impossible— to fit
these models using standard methods on typical comput-
ing architectures. For example, open source packages for
survival analyses typically use second-order methods to
optimize the objective function. This works for a single
gene, but fitting the multivariate model requires comput-
ing a very large matrix of second derivatives, e.g., 56,000 x
56,000 in this study. As a result, it was necessary to imple-
ment first-order optimization methods and perform most
of the matrix operations using graphical processing units
to make the survival analyses in this study feasible.

Overall, we found that choices such as the normaliza-
tion method, the gene set, the type of supervised predic-
tion algorithm, and the use of a learned representation
made surprisingly little impact on out-of-sample predic-
tive performance. Moreover, we could not identify any
clear trends. For example, it is not necessarily better to use
smaller gene sets or other lower dimensional representa-
tions for studies with smaller sample sizes. In light of these
results, it is not clear that features derived from either
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prior knowledge or from representation learning methods
have much value in the analyses of bulk RNA-seq data. If
the relationship between bulk gene expression and phe-
notype is not one-to-one, then there is already a limit on
how well one could predict phenotype from gene expres-
sion. Relatively simple methods may be already very close
to this limit.

Feature importance for the recommended model

This study consists of an analysis of methods for pheno-
type prediction in which methods are compared against
each other according to their performance across a large
number of predictive problems. The overarching ques-
tion is how well different methods perform in finding
a predictive signal in the datasets. Once such a method
demonstrates that a useful predictive signal is present it
may become beneficial to attempt an interpretation of
the model features. Such analysis can yield useful insights
about biological function, and the presence of the pre-
dictive signal provides credence to such interpretations.
Although it is beyond the scope of this work to attempt
interpretations of model features for each of the model
types, we performed an interpretive analysis of the rec-
ommended model as it operates on the binary predictive
tasks included in this study. We included tables [43] in
the figshare repository of the relative predictive impor-
tance of genes for each of the binary tasks, and among
all three gene sets. A logistic regression model assigns
coefficients to each covariate (in this case genes) which
describes the strength of influence of that covariate on
the outcome variable. In order to compare the importance
of different genes for each regression model we ranked
the genes according to their regression coefficient values
and normalized the ranking by the total number of genes
included. Because the predictive models are trained with
five-fold cross-validation, there are five different models
for each predictive problem, each with different coeffi-
cient values. Therefore, the feature importance of a gene
on a particular predictive task is the average normal-
ized rank of that gene’s regression coefficient across the
five cross-validation folds. The most striking observation
we made upon reviewing the gene importance rankings
was that many genes related to epithelial-to-mesenchymal
transition (EMT) were present in the top genes that dif-
ferentiate stage in various TCGA cancer types. Tumors
with EMT features are more likely to metastasize, consis-
tent with the fact that these features distinguish cancer
stage. In fact, the ranks of feature importance derived
from our models can be further used for gene set enrich-
ment tests to enable exploring biological processes that
associate with contrasts or survival. However, we are wary
of placing too much emphasis on such an interpretation
of Iy coefficient rankings. When looking at the distri-
bution of coefficient rankings we did not see examples
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of obvious outliers. Rather we saw distributions which
looked roughly normal, consistent with the imposition of
an [ prior on the coefficients.

Conclusions

We believe our analysis will have three important effects
on the wide community engaged in the project of extract-
ing insights from RNAseq data.

e Our work provides strong justification for
recommendations that guide other researchers
working on similar problems with RNAseq datasets.
A researcher confronted with the problem of
predicting phenotypes from RNAseq data ought to
feel confident that /5-regularized linear predictors
will yield results which are at or near state-of-the-art.

e Our work provides a collection of curated datasets
and benchmarks which can provide terra firma on
which to further develop techniques for predictive
analyses on RNAseq datasets. Benchmark datasets
coupled with standardized testing protocols are used
extensively in machine learning research to assess
technological improvements. This work provides
such a resource to the computational biology
community.

e Our work encourages researchers to direct more
energy towards the reduction of systematic errors
which appear “higher” in the data chain — from
improved lab techniques for handling tissue samples
to controlling errors in assay technology itself.
Because such sources of error are likely just as
present in other technologies such as single-cell
RNAseq, improvements in these regards effect more
than just bulk RNAseq data.

In summary, transcriptomics-based phenotype predic-
tion clearly benefits from proper normalization tech-
niques and state-of-the-art regression approaches. How-
ever, breakthrough performance is likely contingent on
factors such as reduction of systematic errors in sequenc-
ing data, incorporation of other data types such as single-
cell sequencing and proteomics, and improved use of
prior knowledge.

Methods

The analysis presented here and depicted in Fig. 1 is a
multi-step procedure, starting from read counts data in
the recount2 database and ending at performance met-
rics for various models. There are principally three stages:
dataset preparation, unsupervised model training, and
supervised model training.

Dataset preparation

The recount2 database [7] is a repository of transcrip-
tomics data sourced from over 2000 independent tran-
scriptomics experiments. The transcriptomics data from
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these experiments has been reprocessed using a uniform
processing pipeline, forming a single dataset amenable to
large scale computational analyses. Such analyses would
otherwise be problematic due to systematic differences
between the original processing pipelines. The data in
recount2 consists of counts of gene reads as well as
exon-level quantifications. Our study concerned the gene
counts data exclusively.

The data comprising recount2 can be divided into three
broad groups according to their sources: GTEx, TCGA,
and SRA. The GTEx group was sourced from the Geno-
type Tissue Expression program and contains 9538 sam-
ples from healthy individuals across 30 tissue types. The
TCGA group was sourced from the Cancer Genome Atlas
project and contains 11284 samples from individuals with
cancer across 21 tissue types. In that group samples were
taken from tumor sites as well as normal tissue adjacent to
tumor (NAT) sites. GTEx and TCGA are each single, large
collaboration projects with high quality control standards
and protocols for sample processing. Metadata for these
projects is extensive. The SRA group contains 49638 sam-
ples from 2033 smaller, distinct experiments collected in
the Sequence Read Archive. Metadata for experiments in
SRA are sparser, with tissue labels occasionally absent.

In total, 70460 samples were available in recount2 when
the database was downloaded. However, many of these
samples are not ideal for representation learning with
transcriptomics data. We developed a quality control
(QC) pipeline to remove samples or entire SRA studies.
The number of samples remaining after the QC pipeline
is 39848. The QC steps are as follows:

e Remove samples in which the reported cell type is a
cell line. 9644 samples fit this criterion.

e Remove studies in SRA from single-cell sequencing.
Examining metadata from GEO, 38 studies in SRA
with 5865 samples in recount2 have single-cell
transcriptomic data.

e Remove samples in which the reported tissue does
not match any tissue in GTEx. 6824 samples fit this
criterion (see Z-score normalization later).

e Remove samples in SRA which have duplicate GEO
accession numbers (GSMs). There were 9601
samples that met this criterion.

e Remove samples in which more than 30% of genes
listed in the Gene Ontology (GO) 12 under the
“biological process” or “molecular function”
categories have a counts value of 0. 15390 samples
met this criterion.

The number of matching samples in each step are non-
exclusive, meaning a sample can match more than one of
the exclusion criteria. These effect of these exclusion cri-
teria are depicted in the Supplementary figures. In total we
removed 30612 samples, approximately 43% of the total.
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No GTEx samples were removed; and only 521 TCGA
samples were removed.

It is useful to present some detailed commentary on the
duplicate GEO accession number criterion. We observed
that several samples have duplicate GSMs, and that many
such samples had the same number of reads (a round
number, e.g., 8 million). This suggests that the individual
samples could be chunks of reads from the same under-
lying sample. However, we could find no satisfying reason
for duplicate GSMs or the round number of read counts
for these samples, and therefore excluded them from the
dataset.

The QC pipeline determines which samples are admit-
ted to the final dataset; there are also choices to be made
about which genes to consider in the analysis, and which
normalizing procedures to apply to the expression data.

We considered three different gene sets in the analysis:

e all genes: (57992 genes).

e O genes: genes in GO under the “biological process”
or “molecular function” categories (17970 genes at
the time of dataset creation).

® OT genes: O genes also labeled as transcription
factors 29 (1530 genes at the time of dataset creation).

In addition, we considered four different normalizing
transformations of the counts data:

e TPM: The counts are transformed into transcripts
per million (tpm), which account for gene length to
normalize reads. The TPM value is determined in
terms of the counts as,

10° - (counts; /length,)
2_j(counts;/length;) ’

tpm; =

in which i and j index genes.

e CLR: A centered-log-ratio transform is carried out
on the TPM vectors. The CLR value is determined in
terms of the TPM values as,

1
clr; = log(tpm;) — N Zlog(tpmj),
j

in which N is the number of genes.

e Z-score: The Z-score transform is carried out on the
CLR features. The Z-score is the CLR value
standardized by the mean expression of a gene in
healthy tissue, determined by the GTEx samples for
the same tissue. The Z-score value is determined in
terms of the CLR value as,

clr; — mean(clr, tissue);

z-score; =

! std(clr, tissue);

e Z-ternary: The Z-ternary transform is carried out on
the Z-score features. The Z-score values are
ternarized based on their value, and the ternarization
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indicates whether the gene’s expression is increased,
decreased, or unchanged relative to the mean
expression in healthy tissue. Since the distribution of
Z-score values is expected to be approximately
normal for healthy tissue, any Z-score value below -2
is assigned the Z-ternary value of -1; any Z-score
value above 2 is assigned the Z-ternary value of 1, and
any Z-score value between -2 and 2 is assigned the
Z-ternary value of 0.

We made use of the open-source python library gene-
munge [44] for making these normalizations and selecting
the gene sets. Each of the normalizations are carried out
on the expression data for all genes. Whenever a smaller
gene set is used, the values of the features for the selected
genes are simply taken from the data for all genes. The
three gene sets and four normalizations yield twelve dif-
ferent datasets that are used in the analysis.

Tasks and dataset allocation

The above procedure describes the preparation of the
gene expression datasets. In addition to the expression
data, some samples have one or more labels suitable for
predictive modeling. TCGA has rich metadata with natu-
ral label types, available in the TCGA Pan-Cancer Clinical
Data Resource [23]; some SRA studies also contain useful
metadata in GEO [24] relevant to human disease. From
the TCGA and recount2 metadata we selected four cat-
egories of predictive tasks: binary labels for the grade of
a tumor in various cancer types (8 tasks); binary labels
for the stage of a tumor in various cancer types (10
tasks); times for overall survival in various cancer types
(13 tasks); and times for progression free interval in var-
ious cancer types (13 tasks). From the GEO metadata we
selected binary and multiclass labels for various clinical
characteristics (6 tasks) [45-50]. In total there are 50 tasks
for which supervised models may be built.

We divided the 50 predictive tasks into three groups,
“training’, “validation’, and “test” We then built a “train-
ing” gene expression dataset consisting of any samples
with a label in the training task group, as well as any sam-
ples with no label. This dataset, which has 36794 gene
expression samples, was used to train the unsupervised
models. A sample’s inclusion in this dataset distinguishes
the training and validation task groups. Both the train-
ing and validation tasks were used in the analysis, whereas
tasks in the test group were held out until the end of the
project so that no model selection criteria might influence
performance on these tasks in any way. The supervised
tasks are summarized in Tables 1, 2, 3, and 4.

Unsupervised models
Three different types of unsupervised models were trained
on the gene expression datasets: principal components
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analysis (PCA), stacked denoising autoencoders (SDAE),
and variational autoencoders (VAE). These three types
were chosen because they offer a range of sophistica-
tion, features, and expressive power. PCA is a simple
means of generating a linear feature embedding. SDAEs
and VAEs are examples of deep neural networks which
have significant expressive power. The SDAE is capable of
learning an implicit distribution of feature embeddings of
a dataset; the VAE learns an explicit distribution of feature
embeddings which can be sampled from.

Principal components analysis (PCA)

The problem of finding the k principal components of a
suitably large collection of vectors of dimension n admits
an analytic solution. But the computation required to per-
form this calculation is in O®°), making it intractable
in high dimensions. Due to the high dimension of the
larger gene sets (>17k), we performed the PCA analy-
sis via stochastic gradient descent following the algorithm
introduced by Arora et al. [51] called “Stochastic Approx-
imation” The leading 512 principal components were
retained.

Stacked denoising autoencoders (SDAE)

We employed denoising autoencoder architectures of
“hourglass” shape with seven layers. The hourglass nar-
rows to a middle layer of 512 dimensions, yielding a
512-dimensional encoder. The details of the architecture
are recorded in the Supplementary material. The models
were trained with stochastic gradient descent to minimize
the mean squared reconstruction loss. We found that pre-
training the models layerwise before end-to-end training
produced the best results. Therefore these models are best
described as stacked denoising autoencoders per the orig-
inal presentation [52]. The models were regularized by
input noise variance and an l weight penalty, with these
hyperparameters selected by sweeping a range.

Variational autoencoders (VAE)

We also included a deep generative model among our
unsupervised model types, the variational autoencoder
[53]. In particular, we employed the methods of Klam-
bauer et al. [54] which make use of self-normalizing units,
SNNs, for improved training dynamics and representa-
tional capability. We trained the models using the KL-
annealing method of Bowman et al. [55] during the first
100 epochs and then let training proceed with the nor-
mal loss function for the remaining epochs. The layer
dimensions are recorded in the Supplementary material.
The latent encodings consist of 512 dimensions for the
distributional means and 512 for the distributional log
variances. Therefore the trained model’s feature encoder
is the restriction to the 512 dimensions of the means
variables.
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The “no-embedding” model

In addition to these unsupervised models, we also em-
ployed a kind of control comparator: a “no-embedding”
model which does nothing to the expression data. The
dimension of the gene expression data is not reduced
under the no-embedding model; the features are the nor-
malized gene expression vectors themselves.

Computational constraints

We trained the PCA model on each of the four normaliza-
tions for each of the three gene sets. Due to computational
constraints we applied the SDAE and VAE models to each
of the four normalizations for the O and OT gene sets
excluding the all genes set. The lack of an improvement
in performance on smaller gene sets indicated the dataset
with all genes was unlikely to provide quality embedding
models.

Supervised models

We evaluated the ability of an unsupervised model to
learn useful representations across transcriptomics data
by assessing the performance of supervised models oper-
ating on the learned representations. For each unsuper-
vised model and predictive task, we trained and evaluated
supervised models using nested cross validation. The per-
formance of these predictive models gave an indication of
how well the learned representation captured features in
the data useful for various kinds of phenotype prediction.
Before presenting the different kinds of supervised mod-
els, we present a small primer on nested cross validation.

Nested cross validation

Nested cross validation is designed to provide a robust
estimate of the expected (predictive) model performance
on new data, optimizing over a set of hyperparameter val-
ues (such as the maximum depth in a random forest). In
nested cross validation, there are two loops over the data,
the outer and inner loop. The inner loop is used to select
an optimal hyperparameter value, and the outer loop is
used to estimate the performance of the model with this
hyperparameter value. In the outer loop, data is divided
evenly into K groups, or folds (we use K = 5). For each
fold, the data for that fold is held out and the remaining
K — 1 folds are used for the inner loop. In the inner loop,
this data is divided into K folds, and on each fold the data
for that fold is held out and the model is trained on the
remaining K — 1 folds for each hyperparameter value. The
held-out fold is used to estimate the model performance
for each hyperparameter value, and this performance is
averaged over all folds in the inner loop. The best per-
forming hyperparameter value is selected, and the model
is re-trained on all data used in the inner loop. The model
performance is then evaluated on the held out data from
the outer fold. This value is averaged over all folds in the
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outer loop, and this final average is the estimated model
performance. Note that a different optimal hyperparam-
eter may be selected for each outer fold. Nested cross
validation is resistant to hyperparameter overfitting, as
the model is evaluated on data completely held out from
the process of selecting the optimal hyperparameter. With
this robustness comes increased computational complex-
ity —if there are N hyperparameter values tested, nested
cross validation requires training K(KN + 1) individual
models.

Classification tasks
For classification tasks we applied three different types of
supervised models:

¢ Logistic regression (LR). Logistic regression with an
Iy penalty, trained via stochastic gradient descent.
The logistic regression model is a single layer neural
network with a softmax activation on the output. The
hyperparameter optimized was the /o penalty,
logarithmically spaced between 107 and 10? in ten
steps. The model was implemented in pytorch [56].
Hyperparameters and training notes are provided in
the Supplementary material.

e Random forest (RF). Random forest models with
100 trees per forest. The hyperparameter optimized
was the maximum depth of the random forest,
logarithmically spaced between 2 and 27 in seven
steps. We relied on the scikit-learn [57]
implementation of random forest.

¢ K-nearest neighbors (kNN). The hyperparameter
optimized was the value of k, the number of
neighbors used, taking a value of 1, 3,5, 7, or 9.

Although there are countless types of predictive models,
we chose these three because they cover a wide range of
features and characteristics of predictive models. LR is the
canonical example of a generalized linear model. A ran-
dom forest is a decision tree-based, non-linear classifier
which is known to achieve state-of-the art performance
on a large number of difficult classification problems [58].
And finally, the kNN is a non-parametric model, making
a contrast with the other two parametric models.

Survival tasks

For survival tasks, in which the overall survival time or the
progression free interval time were predicted, we trained
a Cox proportional hazard (CPH) model. The standard
solvers for CPH models use second-order methods, such
as versions of Newton’s method, making them unsuitable
for use with a large number of features. The computa-
tion time required for the 512-dimensional embedding,
using nested cross validation, is already immense; training
CPH models on data without an embedding is completely
impractical. Instead, we implemented a CPH model in
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pytorch, and trained it via stochastic gradient descent
by backpropagating through the Cox-Efron pseudolikeli-
hood[59]. Such models can be trained with a large number
of features —even all genes— and can be accelerated with
graphical processing units. We regularized these models
with an [ penalty whose strength, logarithmically spaced
between 107° and 103 in ten steps, was optimized in the
inner cross-validation loop. Even with this computational
speedup, evaluating the survival tasks requires the bulk
of compute time. It bears noting that these models were
still trained with a fixed initial learning rate which was
small enough to guarantee controlled gradient descent
across all tasks. It is certain that absolute performance
on individual contrasts could be improved by also opti-
mizing the learning rate in the nested cross validation.
However, because the study concerns the relative perfor-
mance of this algorithm across gene sets, embeddings, and
normalizations, we avoided this additional multiplier on
the computational time.

Single-gene comparators

All of the above supervised models are trained on features
from multiple genes. In order to compare our embed-
ding models to single-gene analysis, we also trained a
set of models on single genes with no-embedding model.
For these models the hyperparameter optimized in the
inner cross validation loop is the gene selected for the
model. We had no need to run these comparators across
all transform/predictor combinations so we restricted
these examples to clr-transformed data and used only
the univariate logistic regression models for classification
tasks. For survival tasks, single-gene CPH models were
trained. No regularization term was necessary in either
case because these models have so few parameters. These
results provide a direct comparison to the multi-gene,
CLR-transformed, no-embedding results.

Components of supervised model results

In total, we evaluated a very large number of (multi-gene)
supervised models. There are five different characteristics
of a single result:

e Task. There are 24 classification tasks and 26 survival
tasks.

¢ Gene set. There are three gene sets, all genes, O
genes, and OT genes.

e Normalization. There are four data normalizations,
TPM, CLR, Z-score, and Z-ternary.

¢ Unsupervised model. There are four types of
unsupervised model, PCA, SDAE, VAE, and
no-embedding. SDAE and VAE were only trained on
the O and OT gene sets.

e Supervised model. For classification tasks, three
different supervised models were trained, LR, RF, and
kNN. For survival tasks, a CPH model was trained.
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This amounts to 3920 results. In terms of individual
models trained during nested cross validation, there are
807600 models.

Semi-supervised models

The semi-supervised models are designed to learn a fea-
ture embedding which is co-adapted to the purpose of
reconstruction as well as the performance of supervised
models operating on the embedding. Each of the semi-
supervised models consists of a linear, single-hidden layer
autoencoder coupled to a number of logistic regression
predictors —one for each supervised task involved in
the training dataset. The supervised predictors operate
on the autoencoder’s 512-dimensional encoding. Both a
schematic diagram of the model architecture and the
details of the architectures are recorded in the Supple-
mentary figures.

Data preparation

In order to be able to assess the performance of semi-
supervised representation learning within-task, we had to
further subdivide some of the labeled expression data. In
particular, we subdivided into two halves the binary pre-
dictive tasks within the “training set” which contained at
least 200 samples. The first half was used in the training
of the semi-supervised model; the second half was held
out for validation. We called these sets the “divided tasks”;
they were drawn from the following binary tasks:

{CESC grade, COAD stage, KIRC grade, KIRC stage,
LGG grade, LIHC stage, LIHC grade, LUAD stage, SKCM
stage, STAD stage, STAD grade, THCA stage, UCEC
stage, UCEC gradej}.

The rest of the tasks which constituted the original “val-
idation” and “test” sets were used for validation. So the
training set for each semi-supervised model consisted of
all expression data from the first halves of the fourteen
divided tasks along with their associated binary labels.

Training of semi-supervised models

Given any sample expression vector x from the training
set we can compute the autoencoder reconstruction loss
on that sample, specifically as the squared reconstruction
error, R(x); := (AE(x); — %7)%, in which AE(x) denotes
the action of the autoencoder on x. Supposing that x has a
class label I, € {0,1} from the /™ predictive task, we can
also compute a classification error of the associated binary
logistic regression classifier Pj,

C(x, lx) = CrossEntropy(Pj, x, lx)
= —log(Pj(x)lx + (1 — Pj(x))(1 — Ly)).

We trained our semi-supervised models (via stochas-
tic gradient descent) to minimize a convex combination
of these two error terms. The constant controlling the
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interpolation of these two losses we called the “predic-
tor strength,” 7, which ranged from 0 to 1. Our training
algorithm allowed different batch sizes for the autoen-
coder loss and the predictor losses; let these be denoted
by BR, and BC, respectively. Let {x;,}, {¥x, lx,} be batches
drawn randomly from the training data, the first consist-
ing of only expression vectors, the second containing both
expression vectors and paired class labels. Our loss term
takes the form,

BR BC
1—m T
(0 s b, D =5 mzzl R(xm>+ﬁ-; Cy L)

J
+ AAE - L(AE) + Ap - Y (P)).
j=1

Here, ] denotes the total number of predictive tasks. The
last two terms are [ weight penalties on the model param-
eters; these are controlled by adjustable constants A5g and
Ap.

We compared three scenarios for the predictor strength
in our analysis,

e 7 = 0.0, ie. the model is an autoencoder only.

e 7 = 0.1, the model is trained with a mixture of both
losses.

e 7 = 1.0, ie. the model is a purely supervised
shared-embedding model.

We also compared results to a no-embedding model as
a kind of control.

For each gene set, data normalization, and predictor
strength scenario, we performed a sweep over all 16
pairs of values for Asg and Ap in the cartesian product
{0,0.1,0.01,0.001}2. We selected the I coefficient pair
which minimized average error on the held-out half of the
divided contrasts.

Finally, we assessed the performance of predictive mod-
els (across all three types, LR, RF, KNN) operating on the
learned data embedding to compare the effect of semi-
supervised representation learning across these three sce-
narios. Those results are displayed in Fig. 6 in the main
text.
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