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Abstract

Background: Feature selection in class-imbalance learning has gained increasing attention in recent years due to
the massive growth of high-dimensional class-imbalanced data across many scientific fields. In addition to reducing
model complexity and discovering key biomarkers, feature selection is also an effective method of combating
overlapping which may arise in such data and become a crucial aspect for determining classification performance.
However, ordinary feature selection techniques for classification can not be simply used for addressing
class-imbalanced data without any adjustment. Thus, more efficient feature selection technique must be developed
for complicated class-imbalanced data, especially in the context of high-dimensionality.

Results: We proposed an algorithm called sssHD to achieve stable sparse feature selection applied it to complicated
class-imbalanced data. sssHD is based on the Hellinger distance (HD) coupled with sparse regularization techniques.
We stated that Hellinger distance is not only class-insensitive but also translation-invariant. Simulation result indicates
that HD-based selection algorithm is effective in recognizing key features and control false discoveries for
class-imbalance learning. Five gene expression datasets are also employed to test the performance of the sssHD
algorithm, and a comparison with several existing selection procedures is performed. The result shows that sssHD is
highly competitive in terms of five assessment metrics. In addition, sssHD presents limited differences between
performing and not performing re-balance preprocessing.

Conclusions: sssHD is a practical feature selection method for high-dimensional class-imbalanced data, which is
simple and can be an alternative for performing feature selection in class-imbalanced data. sssHD can be easily
extended by connecting it with different re-balance preprocessing, different sparse regularization structures as well as
different classifiers. As such, the algorithm is extremely general and has a wide range of applicability.
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Background
Feature selection has recently gained considerable atten-
tion in class-imbalance learning due to the high-
dimensionality of class-imbalanced data across many sci-
entific disciplines [1–3]. To date, a variety of feature
selection methods have been proposed to address high-
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dimensional data. However, only a small number of them
are technically designed to handle the problem of class
distribution under a class-imbalance setting [4–7]. Thus,
performing feature selection from class-imbalanced data
remains a challenging task due to the inherent com-
plex characteristics of such data, and a new understand-
ing or principle is required to efficiently transform vast
amounts of raw data into information and knowledge
representation [8].
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Feature selection can simplify data by eliminating unin-
formative predictors as well as selecting the key biomark-
ers for a certain task. In addition, feature selection is an
effective strategy to alleviate the overlap caused by the
interaction of high-dimensionality and class-imbalance [5,
9, 10]. In fact, standard classifiers can still produce good
discrimination for some highly class-imbalanced data sets
if the data (or two class distributions) at hand can be well
separated, regardless of the class-imbalanced ratio and
the lack of data. However, overlapping (non-separability)
usually occurs in the settings of high-dimensionality and
class-imbalance. An instance from class C belongs to an
overlapping region if out of its k nearest neighbors, more
than h (such as h =[ k/2]) belong to a class other than
C. Overlapping happens when a similar amount of train-
ing data for each class is mixed in the overlapping region.
When overlapping arises, it is very difficult or impossible
to separate a class from others. Some findings have shown
that overlap can play an even larger role in determin-
ing classifier performance than class-imbalance [11]. As
far as high-dimensional and class-imbalanced data is con-
cerned, it is worthwhile to investigate the way to alleviate
the overlap effectively with feature selection.
There are three categories of feature selection in the

context of classification, depending on how these feature
selection searches combine with the construction of the
classification model: filtering, wrapping and embedding
[12]. The filtering method assesses the relevance of fea-
tures by looking only at the intrinsic properties of the data,
and selects high-ranking features based on a statistical or
information measure, such as information gain and gain
ratio [13]. There are two drawbacks of filter-based selec-
tion: first, the filtering selection is independent of the clas-
sifier, which may lead to reduced classification accuracy
with a certain kind of classifier; and second, it ignores the
dependencies among features. Such dependency informa-
tion should be considered in performing variable selection
as strongly related features are often similar and should
be aggregated. The related features may play an important
role in performing feature selection, especially in high-
dimensional settings. The wrapping method, such as a
genetic algorithm [14], wraps a search algorithm around
the classification model to search the space of all feature
subsets. However, an obvious drawback of the wrapping
method is that it is computationally intensive, as the
number of subsets from the feature space grows exponen-
tially as the number of features increases. The embedding
method screens out key features while considering the
construction of a classifier, such as LASSO-based feature
selection and classification [15]. It is integrated in the
modelling process and is classifier-dependent [12].
In class-imbalance scenarios, filtering and wrapping fea-

ture selection methods were the most frequently built and
were used to solve real-world problems, such as disease

diagnosis, textual sentiment analysis, and fraud detection
[16]. Dozens of metrics and their variants are employed
for building filter-based feature selection algorithms in
many research studies [7, 17–19], such as odds-ratio, chi-
squared, Relief, ReliefF, information gain, gain ratio, Gini
index, F − measure, G − mean, signal-to-noise ratio,
and area under receiver operating characteristics (ROC)
graph. To effectively reduce the computation cost, wrap-
ping feature selection techniques usually utilize ad hoc
search strategies, such as a heuristic search [20, 21] and
stochastic search [22]. To the best of our knowledge,
embedding feature selection methods are less investi-
gated than filtering and wrapping methods. One of the
related studies is from the reference [23], which considers
sparse logistic regression with stable selection in han-
dling Alzheimer’s disease neuroimaging initiative dataset
and stated that it achieved competitive performance com-
pared with several filter-based selection methods based
on their experimental results.
Considering the drawbacks of filtering and wrapping

algorithms, in this study, we focus on the embedding-
based selection algorithm by bringing in sparse regular-
ization [24] . Common embedding feature selectionmeth-
ods for classification can not be used simply for addressing
class-imbalanced data without any adjustment because of
the following issues:
(a) These standard selection algorithms are generally

based on the assumption of balanced class distributions,
and the selection results are affected due to the class-
imbalanced ratio between classes and consequently pro-
duce highly biased classification prediction towards the
majority class.
(b) The classifier’s continuous output, to some extent,

may shift due to the domination of the majority class
[25, 26]. Figure 1 exhibits such shifting based on a sup-
port vector machine (SVM) classifier. It can be seen that
the decision score varies greatly as the class-imbalanced
ratio changes. When the threshold in decision function
still keeps the default value (e.g., 0 in SVM and 0.5 in
logistic regression), the decision boundary (or the sepa-
rating hyperplane) must be shifted towards the minority.
From the view of geometry, the separating hyperplane
would be shifted towards the minority class due to the
domination of the majority class. One of the attempts
for handling this question is threshold adjustment[25,
27–29] via moving the decision threshold towards the
majority examples so that the minority class examples
become harder to misclassify. However, as was pointed
out in the references [25, 26], it is difficult to decide
how far the separating hyperplane should be moved
towards the majority class, and such adjustment may
over-correct the decision boundary towards the major-
ity class, which leads to increasing error on the majority
class.



Fu et al. BMC Bioinformatics          (2020) 21:121 Page 3 of 14

Fig. 1 Decision score of the SVM classifier varies greatly as the class-imbalanced ratio changes. In this simulation, the X-matrix (1000× 3) is randomly
produced then fixed while the class label y = ±1 is randomly changed at each iteration under the fixed class-imbalanced ratio. The prediction point
is set be x0 = (−5, 9,−1)T . The black line and the red vertical short segments are, respectively, the mean and standard deviation of prediction
decision score with the class-imbalanced ratio changing from 1 to 99 based on 2000 iterations

(c) Common feature selection measurements are not
suitable in class-imbalance learning. Traditionally, feature
selection techniques were developed tomaximize the total
classification accuracy of a classifier. As is well-known, the
majority class is more influential than the minority class
in performing feature selection.
In this study, the Hellinger distance is employed as an

assessment measurement on the assumption of binor-
mal distributions to combat class-imbalance and output-
shifting in class-imbalance learning.

Methods
Hellinger distance under binormal assumption
The Hellinger distance is a measure of the distributional
divergence [30]. Let P and Q be two probability mea-
sures that are absolutely continuous with respect to a
third probability measure λ. The square of the Hellinger
distance can be defined as follows:

D2
H(P,Q) =

∫ (√
dP
dλ

−
√
dQ
dλ

)2

dλ (1)

Here, λ is set be the Lebesgue measure, so that dP
dλ

and
dQ
dλ

are two probability density functions. Based on the
binormal assumption, P and Q are two normal distribu-
tions, and

⎧⎨
⎩
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Thus Eq. (1) can be rewritten as
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In practice, the parameters μ1, σ 2
1 , μ0, and σ 2

0 can be
replaced by the corresponding sample statistics X̄1, S21, X̄0,
and S20, respectively.
Without a loss of generality, let y = (y1, y2, · · · , yn)T

be binary categorical response and yi = 1 if it belongs
to the minority class (positive) and yi = −1 if it belongs
to the majority class (negative); let xj be the jth feature
(j = 1, 2, · · · , p) and X = (x1, x2, · · · , xp); and let β =
(β1,β2, · · · ,βp)T be the vector of estimate coefficients.
The normality assumption here is on a linear combination
of the predictor matrix X rather than each single feature,
namely

P = Xβ

∣∣∣(y = 1) = β1x1 + β2x2 + · · · + βpxp
∣∣∣(y = 1),

(4)

Q = Xβ

∣∣∣(y = −1) = β1x1+β2x2+· · ·+βpxp
∣∣∣(y = −1)

(5)

Obviously, the binormal assumption on a linear combina-
tion would be more likely to hold than a single variable,
particularly for moderate to large size of features p accord-
ing to the central limit theorem (CLT).
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Definition 1. A quantity is called skew-insensitive if it is
not influenced by the class priors.
Definition 2. Let ti(i = 1, 2, · · · , n) be the original score

of each observation and c be a constant (c �= 0). A quan-
tity is called translation-invariant if it remains unchanged
when each score moves to ti + c, (i = 1, 2, · · · , n).
Property 1. The Hellinger distance is skew-insensitive

under binormal assumption.
Equation (3) shows that the computation of the

Hellinger distance is not influenced by the class-
imbalanced ratio. It is just relevant with the expectations
μ0, μ1 as well as variances σ 2

0 , σ 2
1 of P and Q. The law

of large numbers tells us that these four numerical char-
acteristics are approached by their corresponding sample
statistics if the sample size is large enough. They are
independent of the class-imbalanced ratio. An example is
given in Fig. 2 to exhibit this skew-insensitivity by means
of calculating the magnitude of the Hellinger distance on
two normal distributions. It can be seen from Fig. 2 that
the value of the Hellinger distance stays consistent when
the class-imbalanced ratio changes from 1 to 99, and such
consistency tends to become increasingly true as the sam-
ple size increases. Namely, the magnitude of the Hellinger
distance is not influenced by the class-imbalanced ratio.
In fact, such skew-insensitivity has also been shown in the
reference [31] in terms of comparing isometrics and giving
a synthetic example.

Property 2. Hellinger distance is translation-invariant
under binormal assumption.
Considering that two variances σ 2

0 and σ 2
1 as well as the

difference μ1−μ0 keep invariant as each score moves, the
Hellinger distance will stay the same according to Eq. (3).
As mentioned above, Hellinger distance essentially cap-

tures the divergence between the feature value distribu-
tions of different classes and is not influenced by the class
ratios under binormal assumption. This is the motivation
why Hellinger distance is utilized for class-imbalanced
data in this study. In addition, its translation-invariant is
very useful to combat the output-shifting arisen when a
standard classifier is used to distinguish class-imbalanced
data. Unlike the usage of Hellinger distance in the pre-
vious work [5, 31], where the feature attributes should
be discrete or to discretize the continuous features for
the calculation of Hellinger distance, Hellinger distance in
this study can be calculated directly based on continuous
variables without discretization.

Hellinger distance-based stable sparse selection (sssHD)
and its algorithm
Considering the above questions from class-imbalance
learning and being motivated by the properties of the
Hellinger distance, we proposed a Hellinger distance-
based stable sparse selection (sssHD) approach to per-
form feature selection when the category data is class-

Fig. 2 Skew-insensitivity of the Hellinger distance on simulated normal distributions with four scenarios corresponding to different sizes of the
minority. The black line and red vertical short segments are, respectively, the mean and standard deviation of the Hellinger distance with the ratio
changing from 1 to 99 based on 100 iterations
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imbalanced. An ordinary classifier generally can not per-
form feature selection automatically, but a kind of sparse
penalty coupled with the Hellinger distance metric can be
embedded into the classifier to achieve such a task. For
convenience, a linear SVM classifier is employed as an
example to establish our sssHD algorithm.
SVM [32–35] has shown promising capability in solv-

ing many classification problems. It performs two-
classification task by constructing a hyperplane in the
multidimensional space to differentiate two classes with
a maximal margin. Let xi = (xi1, xi2, · · · , xip)T be the ith
instance and its class label yi = 1 or − 1 (i = 1, 2, · · · , n) .
The decision function of SVM can be expressed as follows:

f (xi) =
{
1, βTxi + β0 > 0,
−1, βTxi + β0 ≤ 0 (6)

where β0 is the constant coefficient, and βTxi+β0 is called
the decision score in this study. The soft margin support
vector classifier can be estimated by solving the following
quadratic optimization problem:

min
1
2
‖β‖2 + C

n∑
i=1

ξi, (7)

s.t.
{
yi(βTxi + β0) ≥ 1 − ξi,
ξi ≥ 0, (i = 1, 2, · · · , n), (8)

where ξ = (ξ1, ξ2, · · · , ξn)T are slack variables which are
associated with the misclassified individuals. Formula (7)
with constraint (8) can be rewritten as

min Loss + λ‖β‖22, (9)

where Loss = ∑n
i=1max(0, 1 − yi(βTxi + β0)) is hinge

loss, and ‖β‖22 = ∑p
j=1 β2

j is the ridge penalty. The
ridge penalty shrinks the estimation coefficients towards
zero and, hence, possibly improves the model’s predic-
tion accuracy; however, it can not perform feature selec-
tion automatically. Therefore, the ridge penalty should be
replaced by a sparse regularization penalty to induce the
sparsity for achieving feature selection. Sparse selection is
a very popular technique to perform variable selection for
high-dimensional data [24, 36–39]. Taking elastic-net [38]
as an example, it is defined as follows:

Cα(β) = 1
2
(1 − α)‖β‖22 + α‖β‖1, (10)

where ‖β‖1 = ∑p
j=1 |βj| is LASSO penalty[24], and α ∈

[ 0, 1]. Actually, the elastic-net penalty is a combination
of ridge and LASSO penalties, which is particularly use-
ful and effective for feature selection, especially when the
data is strongly correlated and high-dimensional. Sparse
support vector machine with elastic-net penalty can be
expressed as

min Loss + λCα(β), (11)

where λ is the tuning parameter that controls the tradeoff
between loss and penalty.
The optimal estimation (β̂ , β̂0) in objective (11) is the

function of λ and α. Consequently, the decision score
t̂ = (t̂1, t̂2, · · · , t̂n)T = Xβ̂ + β̂0 is also influenced by λ

and α. Denoted t̂ by t̂(λ,α) = (t̂0(λ,α), t̂1(λ,α))T , where
t̂0(λ,α) = {t̂i|yi = −1} and t̂1(λ,α) = {t̂i|yi = 1}, the
objective of sparse selection with Hellinger distance can
be defined as

β̂ = max DH
(
t̂0(λ,α), t̂1(λ,α)

)
(12)

A potential question of sparse feature selection is its insta-
bility caused by the variation from the training data [40,
41]. Class-imbalance is going to exacerbate this draw-
back. A decent strategy to overcome such disadvantage
is to combine sparse selection with subsampling. Mein-
shausen et al. [40] pointed out that such marriage yields
finite sample family-wise error control and significantly
improves selection methods. In this study, objective (12)
is conducted many times with subsampling to achieve sta-
ble selection. Denoted β̂ from objective (12) by β̂

(k)
in the

kth subsampling (k = 1, 2, · · · ,K). The importance of the
features is measured by the inclusion frequency, which is
denoted by f = (f1, f2, · · · , fp)T , and is defined as follows:

fj = 1
K

K∑
k=1

g
(
β̂

(k)
j

)
, j = 1, 2, · · · , p, (13)

where g
(
β̂

(k)
j

)
= 1 if β̂

(k)
j �= 0, otherwise g

(
β̂

(k)
j

)
= 0.

All the features are ranked with their inclusion frequen-
cies, and the feature with maximal inclusion frequency is
the most important. More details of the sssHD algorithm
is given in Algorithm 1. The ratios of subsampling from
the majority (r0) and minority (r1) are set to be equal in
this study to keep the class-imbalance ratio of the subset
the same as the original data. sssHD is extremely gen-
eral and can be easily extended; for example, sparse SVM
can be placed by sparse logistic regression [42] or Fisher
linear discriminant [43]; re-balance methods such as over-
sampling [44] or under-sampling [45] could be connected
if necessary; sparse regularization (Eq. (10)) also has many
alternatives, such as SCAD [36], adaptive LASSO [39],
group LASSO [46], and group bridge penalty [47].

Assessment metrics and experimental methods
In class-imbalance learning, the majority and the minority
are generally called as negative and positive, respectively.
A binary classifier predicts all the instances as either pos-
itive or negative. Thus, it produces four types of outcome:
true positive (TP), true negative (TN), false positive (FP)
and false negative (FN). Several metrics can be defined



Fu et al. BMC Bioinformatics          (2020) 21:121 Page 6 of 14

Algorithm 1 Hellinger distance based stable sparse selec-
tion (sssHD)
1: (X0, y0): predictor matrix and class label;
2: n0, n1: the size of the majority, minority respectively;
3: r0, r1: the ratio of subsampling from the majority,

minority respectively;
4: p: the number of features;
5: T : times of iteration.
6: Initial f ← (0, 0, · · · , 0)T ∈ Rp;
7: for k = 1 to K do
8: Randomly picking out n0r0, n1r1 samples from

the majority, minority respectively, then merging
together, denoted by (X, y);

9: Do feature selection under the objective (12), then
fj ← fj + 1 if β̂j �= 0 , where β̂j is the estimate
coefficient of the jth predictor for all j ∈ {1, 2, · · · , p};

10: end for
11: f ← f/K .

according to these outcomes, such as

TPR = recall = TP
TP + FN

= TP
n1

;

TNR = TN
TN + FP

= TN
n0

;

FPR = FP
FP + TN

= FP
n0

;

precision = TP
TP + FP

;

G − mean = √
TPR × TNR;

F − measure = 2(precision × recall)
precision + recall

As shown in above, precision is the proportion of true
positives among the positive predictions; recall (TPR)
measures the proportion of positives that are correctly
identified; G − mean is the geometric mean of TPR and
TNR, which measures the accuracy on both the majority
class and the minority class; F−measure is a kind of com-
binations of precision and recall, and is high when both of
them are high.
ROC curve can be created by plotting TPR on the y-axis

against FPR on the x-axis at various threshold settings.
Let T ,T1 and T0 denote respectively the continuous out-
puts for total, positive and negative examples by the binary
classifier (such as SVM); T is the mixture of T1 and T0.
Larger output values are associated with positive exam-
ples. So for a given threshold c (−∞ < c < +∞), an
example is predicted positive if its value is greater than c.
Thus,

TPR(c) = P(T1 > c) = P(T > c|y = 1),

FPR(c) = P(T0 > c) = P(T > c|y = 0)

A ROC curve may be defined as the set of points:

ROC(·) =
{
(TPR(c), FPR(c))

∣∣∣ − ∞ < c < +∞)
}

The area under ROC (AUCROC) is calculated here by
using trapezoidal rule [48], where the point with the min-
imal value at this FPR is linked to the point with the
maximal value at the next FPR value when there is more
than one value at the same FPR value. Let F1, F2, · · · , FK be
all the different FPR values satisfying F1 < F2 < · · · < FK ,
and Tmax

k and Tmin
k are the maximal andminimal TPR val-

ues corresponding to Fk (k = 1, 2, · · · ,K), respectively.
The empirical AUCROCwith the lower trapezoidal rule is

AUCROC =
K−1∑
k=1

1
2

(
Tmin
k + Tmax

k+1
)
(Fk+1 − Fk) (14)

In this study, TPR, G − mean, F − measure, AUCROC
and precision are employed as assessment metrics to per-
form real data experiments. Cross validation is performed
for each real data in computing these measures. In order
to keep the invariant of the imbalance ratio in each fold,
stratified sampling is utilized. Namely each fold contains
the same size of negative (and positive) instances and their
class-imbalance ratios are equal to the ratio of original
data set.
To evaluate sssHD algorithm with the above real data

sets, we compare it with other four filter-based feature
selection methods: Fisher score [49], Relief [50], area
under receiver operating characteristic (AUCROCfilter)
[51] and area under precision-recall curve (AUCPRCfil-
ter) [52].
Fisher score: the Fisher score could strongly depend on

the directions of the spread of the data by calculating the
difference of each feature’s mean values in two classes:

Fj =
∣∣μ1j − μ0j

∣∣
σ 2
1j + σ 2

0j
, j = 1, 2, · · · , p, (15)

where μ0j, μ1j, σ 2
0j, and σ 2

1j are respectively the mean and
the variance of the jth predictor of the majority and the
minority. Attributes with a higher score are more impor-
tant for separating the two classes. Fisher score has been
utilized successfully in many classification issues [53, 54].
Relief: the Relief is a randomized algorithm that

attempts to give each predictor a weight indicating its
level of relevance to the target. In each iteration, Relief
first needs to search two nearest neighbors for any
selected example point (xi): one from the same class
(nearhiti), and one from the other class (nearmissi); then,
if Euclidean distance is employed, the weight vector w =
(w1,w2, · · · ,wp)T is updated so that
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wj ←− wj − (xij − nearhitij)2 + (xij − nearmissij)2,
j = 1, 2, · · · , p,

(16)

where xij, nearhitij and nearmissij correspond to the jth
component of xi, nearhiti and nearmissi, respectively.
Attributes with a larger weight are more relevant with the
response. The Relief method can be applied to a variety
of complicated situations and now has several generaliza-
tions, such as ReliefF [55].
AUCROCfilter: as stated above, ROC can be used as a

metric to evaluate the final model. In addition, ROC and
its area could be used as a filter feature selection method
when just considering a single predictor each time. To
obtain the predicted class labels, ROC should be com-
bined with a classifier. Obviously, an attribute with larger
area under the curve is more important for classifying
the target. An ROC-based filter feature selection strategy
has been used for high-dimensional class-imbalanced data
[51].
AUCPRCfilter: as an alternative of ROC, the precision-

recall curve (PRC) has gained increased attention recently
in class-imbalance learning [56]. The PRC curve is cre-
ated by plotting the recall on the x-axis against precision
on the y-axis at various threshold settings. The area under
PRC (AUCPRC) can be seen as the average of the pre-
cision weighted by the probability of a given threshold
and is utilized to define how a classifier performs over
the whole space. Similarly, AUCPRC coupled with a clas-
sifier can be used individually as a filter-based feature
selection method for each attribute. Attributes with larger
AUCPRC are more significant for separating classes.

Results and discussion
Simulation study
In this section, we test our HD-based method with simu-
lation data in a range of settings, comparing it to another
two embedded feature selection methods: classification
accuracy (ACC)-based and ROC-based sparse selection
techniques.

Simulation data
The X-matrix corresponding to two classes are separately
generated via multivariate normal distributions. Namely,
X

∣∣(y = 0) ∼ Np(μ0,�) and X
∣∣(y = 1) ∼ Np(μ1,�).

Here μ0 �= μ1, namely, the predictors in two classes have
the same covariance but different mean value. The first
ten variables are set to be key features and the rest are
null variables. The difference between μ1 and μ0 is zero
for null features, but two for key features. � is a blocked
correlation matrix, with off-diagonal elements of ρ|i−j| for
all i, j = 1, 2, · · · , 10 (key features), and ρ|i−j| for all i, j =
11, 12, · · · , p (irrelevant features). Between-block correla-
tion is zero. The size of total samples is fixed (namely

n0 + n1 = 960), whereas the number of predictors p is
set be, on one hand, 100 to evaluate an over-determined
case (n > p), and on the other hand, 2000 to assess an
under-determined situation (n < p). The majority to the
minority ratio here is set be 1 : 1, 3 : 1, 9 : 1 and 15 : 1,
respectively. Low (ρ = 0), moderate (ρ = 0.4) and high
(ρ = 0.92) correlation structures are simulated under the
above settings. The R code for generating this simulation
data can be found in the supplementary information.

Computation and results
SVMwith sparse penalty (10) is employed here to perform
feature selection. Three measurements, namely ACC,
ROC and HD, are utilized to search the optimal parame-
ters in sparse SVM. To be fair, subsampling is not involved
in computation with HD and all the model parameters
are set to be same for three algorithms. The mean of the
number of correctly (C) and incorrectly (IC) selected pre-
dictors are calculated based on 500 trials and the results
are reported in Table 1. C corresponds to the number of
selected variable from 10 key features. It can be seen that
most of key features are correctly selected by using HD,
especially when the correlation structures among pre-
dictors are not too high. In addition, HD performs best
compared with ACC and ROC in terms of C in most
situations, which means that the statistical power of HD-
based technique is extremely competitive in comparison
with other two assessments. IC is actually the number of
selected features from the null variables. Table 1 shows
that IC from HD is quite low. Considering a large num-
ber of null features, the false discoveries from HD are
much less than that from both ACC and ROC in almost
all the cases. Therefore HD-based selection is suitable to
recognize key features and control the false discoveries.
Figure 3 shows the false discovery rate (FDR) derived

from ACC, ROC and HD under different class-imbalance
ratios. It can be easily seen that HD-based selection out-
performs ACC-based and ROC-based selections in terms
of FDR in most situations. In addition, with the increase
of class-imbalance ratio, FDR from HD varies very slowly
and this trend is much weaker than that from ACC or
ROC. This is consistent with the properties of HD.

Real data study and discussion
Data sets and software
The following five gene expression datasets are employed
to test the performance of the sssHD algorithm.
DLBCL dataset
The DLBCL dataset contains 58 diffuse large B-cell

lymphomas (DLBCL) and 19 follicular lymphoma (FL)
instances [57]. The original data includes the expres-
sion profiles of 7129 genes, and 6285 of them are
retained by adopting the data preprocessing method
[58]. The class-imbalanced ratio of this set is 3.05, and
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Table 1 The feature selection result on simulation data in which 10 key biomakers are included. Mean reported based on 500
replications

C IC

p/r Ratio n0 n1 ACC ROC HD ACC ROC HD

A: p = 100, r = 0 1 : 1 480 480 8.43 2.76 9.93 0.10 0.09 0.00

3 : 1 720 240 10.00 2.95 10.00 3.79 0.77 0.04

9 : 1 864 96 10.00 6.28 10.00 19.64 1.33 0.42

15 : 1 900 60 10.00 7.95 10.00 60.36 0.85 1.77

B: p = 100, r = 0.4|i−j| 1 : 1 480 480 9.96 9.86 9.96 0.25 0.13 0.01

3 : 1 720 240 10.00 9.96 9.99 6.67 0.90 0.14

9 : 1 864 96 10.00 9.98 10.00 57.64 3.09 1.14

15 : 1 900 60 3.80 9.91 10.00 31.01 3.23 1.85

C: p = 100, r = 0.92|i−j| 1 : 1 480 480 9.98 10.00 10.00 0.51 0.63 0.57

3 : 1 720 240 10.00 9.84 9.90 1.58 0.59 0.47

9 : 1 864 96 0.69 8.01 8.01 5.87 0.67 0.59

15 : 1 900 60 0.00 6.85 6.85 0.00 0.84 0.71

D: p = 2000, r = 0 1 : 1 480 480 7.89 2.79 9.94 0.10 0.04 0.00

3 : 1 720 240 10.00 3.20 10.00 5.08 1.54 0.03

9 : 1 864 96 10.00 5.83 10.00 98.24 1.83 0.20

15 : 1 900 60 10.00 7.38 10.00 404.96 5.94 2.13

E: p = 2000, r = 0.4|i−j| 1 : 1 480 480 9.97 9.91 10.00 0.28 0.18 0.01

3 : 1 720 240 10.00 9.91 10.00 13.06 1.06 0.16

9 : 1 864 96 10.00 9.95 10.00 293.50 4.30 0.57

15 : 1 900 60 10.00 9.93 9.98 711.05 6.34 2.71

F: p = 2000, r = 0.92|i−j| 1 : 1 480 480 9.95 10.00 10.00 0.76 0.54 0.53

3 : 1 720 240 10.00 9.73 9.72 4.05 0.28 0.25

9 : 1 864 96 3.15 7.95 7.95 161.82 0.68 0.56

15 : 1 900 60 1.07 6.62 6.62 107.61 0.69 0.58

the selected top q predictors are employed to compare
our results via several assessment methods, where q =
1 to 10, 20, 30, 40, 50, 100, 200, 3142 and 6285.
SRBCT dataset
The SRBCT dataset [58, 59] includes 83 instances in

total described by 2308 genes in four classes: the Ewing
family of tumors (EWS), Burkitt lymphoma (BL), neurob-
lastoma (NB) and rhabdomyosarcoma (RMS), which have
29, 11, 18, and 25 cases, respectively. To adapt binary clas-
sification and follow the partition performed in reference
[6], we investigate BL versus the rest, where their sizes are
11 and 72, respectively. The class-imbalanced ratio of this
set is 6.55, and the selected top q predictors are employed
to compare our results via several assessment methods,

where the q = 1 to 10, 20, 30, 40, 50, 100, 200, 1154 and
2308.
CAR dataset
The CAR dataset [60] contains in total 174 instances

described by 12533 genes in eleven classes: prostate,
bladder/ureter, breast, colorectal, gastroesophagus, kid-
ney, liver, ovary, pancreas, lung adenocarcinomas, and
lung squamous cell carcinoma. 9182 of 12533 features
are left after doing the data preprocessing [58]. To adapt
binary classification and follow the partition performed
in the reference [6], we consider class kidney versus
the rest, where their sizes are 11 and 163, respectively.
Thus the class-imbalanced ratio of this set is 14.82, and
the selected top q predictors are employed to compared
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Fig. 3 The FDR under different class-imbalance ratios. Six subgraphs correspond to six cases shown in Table 1

our results via several assessment methods, where q =
1 to 10, 20, 30, 40, 50, 100, 200, 4591 and 9182.
GLIOMA dataset
The GLIOMA dataset [61] contains in total 50

instances described by 12625 genes in four classes: can-
cer glioblastomas (CG), non-cancer glioblastomas (NG),
cancer oligodendrogliomas (CO) and non-cancer oligo-
dendrogliomas (NO). Among the 50 instances, 14, 14, 7,
and 15 cases belong to classes CG, NG, CO and NO,
respectively. Among the 12625 genes, 44341 of them
remain after data preprocessing [58]. To adapt binary
classification and to follow the partition performed in
the reference [6], we study the class CO versus the rest,
where the numbers of two classes are 7 and 43, respec-
tively. The class-imbalanced ratio of this set is 6.14, and
the selected top q predictors are employed to compared
our results via several assessment methods, where q =
1 to 10, 20, 30, 40, 50, 100, 200, 2217 and 4434.
LUNG dataset
The LUNG dataset [58] includes five classes, two of

them are adenocarcinomas and squamous cell lung car-
cinomas with sample size of 21 and 20 respectively, and
are used in our study. Three of all the 3312 predic-
tors are removed beforehand as they are constant or
nearly constant, leaving 3309 predictors after preprocess-
ing. The selected top q predictors are utilized to compared
our results via several assessment methods, where q =
1 to 10, 20, 30, 40, 50, 100, 200, 1654 and 3309. The class
ratio of this set is 1.05, and it is employed to mainly exhibit

14433 was given in [58], but a value of 4434 is obtained via the data from [58].

the performance of our proposed algorithm on balanced
dataset.
The summary of five data sets is shown in Table 2, and

the data is given in the additional files.
Software
The sssHD algorithm and the related methods or pro-

cedures are performed with R language [62], building
on packages sparseSVM (https://CRAN.R-project.org/
package=sparseSVM), e1071 (https://CRAN.Rproject.
org/package=e1071), precrec [48], and ggplot2 [63]. The
R code, including the sssHD algorithm and other related
procedures, is given in the additional files.

Experimental results and discussion
Our algorithm is compared with four methods: Fisher
score, Relief, AUCROCfilter and AUCPRCfilter. All
methods are performed in two situations: no resam-
pling and resampling with SMOTE [44] over all of
the training data sets. SMOTE is an intelligent over-
sampling approach, which adds new, artificial minority

Table 2 The number of instances, features, majority, and
minority as well as the class-imbalanced ratio (CIR) of five
datasets used in this study

Datasets Instances Features Majority Minority CIR

DLBCL 77 6285 58 19 3.05

SRBCT 83 2308 72 11 6.55

CAR 174 9182 163 11 14.82

GLIOMA 50 4434 43 7 6.14

LUNG 41 3309 21 20 1.05

https://CRAN.R-project.org/package=sparseSVM
https://CRAN.R-project.org/package=sparseSVM
https://CRAN.Rproject.org/package=e1071
https://CRAN.Rproject.org/package=e1071
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examples by interpolating between pre-existing minor-
ity instances rather than simply duplicating original
examples. The minority class is over-sampled by tak-
ing each minority class point and introducing syn-
thetic examples along the line segments joining any/all
of the k minority class nearest neighbors. Depend-
ing upon the amount of over-sampling required, the
neighbors from the k nearest neighbors are randomly
chosen.
Classification results under no resampling
In this section, we show the efficacy of the proposed

sssHD approach on five gene expression datasets, and
compare it with four other filter-based feature selection
methods by assessing several performance measurements
with no resampling preprocessing. The SVM classifier is
employed to finish the classification task. The prediction
result is obtained by performing leave-one-out cross val-
idation rather than k-fold cross validation, as it is quite
likely that, in the case of class-imbalance, the distribu-
tion within each fold varies widely with the uniformly

sampling for creating the folds. The results on the first
set (DLBCL) are shown in Fig. 4, while the results on
last four sets (SRBCT, CAR, GLIOMA and LUNG) are
given in the supporting information as additional files to
save space. Figure 4 includes five subgraphs that evalu-
ate five feature selection methods with TPR, G − mean,
F − measure, AUCROC and precision, respectively. It can
be seen that sssHD gains satisfactory classification perfor-
mance with just several top-ranked features, regardless of
the metric used. The sssHD approach is competitive with
other four feature selection methods, especially when the
number of top-ranked predictors used is not too large.
This finding indicates that the top-ranked features rec-
ognized by sssHD actually have the most relevance with
the target. Let q be the number of top-ranked features
that used to firstly reach the maximal value with five met-
rics. q is 3 by sssHD, which is less or equal to the value
identified by the other four methods for dataset DLBCL
with G − mean, F − measure, AUCROC and precision
measurements. Thus sssHD algorithm achieves the best

Fig. 4 The performance of five methods on DLBCL with no resampling. The five subgraphs report TPR, G − mean, F − measure, AUCROC and
precision, respectively
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performance with the smallest number of features ranked
at the top in the case of no resampling the data. Therefore,
sssHD outperforms the other four methods in the origi-
nal class-imbalanced data. This is also consistent with the
property of skew-insensitivity of the Hellinger distance. A
similar consequence can be obtained on SRBCT, CAR and
GLIOMA datasets; for more details, see SI-Figs. 1, 3, 5
and 7 in the supporting information as additional files.
In addition, sssHD achieves competitive performance and
performs similarly well on balanced dataset LUNG, which
further demostrates the skew-insensitivity of HD.
Classification results with SMOTE resampling
In this section, we consider the result by implement-

ing re-balancing the data with SMOTE oversampling.
The class ratio is approximately 1 : 1 after doing
that. The SVM classifier is still utilized while coupled
with stratified 5-fold cross validation due to the bal-
ance of the two classes herein. The performance of five
methods on the DLBCL data set is shown in Fig. 5.
Compared with Figs. 4, 5 shows that the performance
with oversampling preprocessing is better than that with

no resampling in most cases. Except Relief, the other
four methods can obtain satisfactory accuracies, and they
have almost no difference. sssHD is less affected by
oversampling in comparison with other four methods.
This result agrees with two properties of the Hellinger
distance: skew-insensitivity and translation-invariant. An
interesting discovery is that the optimal number of key
features selected under original class-imbalanced data is
less than that under SMOTE oversampling. We guess
that such an oversampling strategy may lead to over-
selection in choosing relevant variables. It also indirectly
demostrates that it is necessary to develop feature selec-
tion technique designed for original class-imbalanced
data rather than re-balanced data. A similar result can
be obtained for SRBCT, CAR and GLIOMA datasets
by SMOTE preprocessing (LUNG dataset is not per-
formed here due to its balance); for more details, see SI-
Figs. 2, 4 and 6 in the supporting information as additional
files.
It should be pointed out that oversampling with SMOTE

is applied before stratified cross validation to keep the

Fig. 5 The performance of five methods on DLBCL with SMOTE over-resampling. The five subgraphs report TPR, G − mean, F − measure, AUCROC
and precision, respectively
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class ratios consistent between the training set and the
testing set. It is well known that SMOTE is not to simply
replicate the original minority instances. In other words,
the generated samples are different from the original data
and also different from each other. Therefore, the points
in testing set are generally not same with those in train-
ing set. However, if randomly resampling is used, where
new samples are randomly duplicated from the minority
class, the instances in testing set are likely to be similar
to those in training set consequently leading to enhanced
performance.

Conclusion
In this paper, we proposed a feature selection approach
(sssHD) based on the Hellinger distance. Due to the prop-
erties of Hellinger distance, the sssHD algorithm is well
suited to perform feature selection in class-imbalance
learning. We have shown that sssHD can obtain high
performance and is extremely competitive against several
existing selection methods by means of several assess-
ment measures. sssHD is extremely general as it can be
easily extended from at least three aspects: 1) combin-
ing with different re-balance samplings such as under-
sampling, over-sampling, SMOTE and so on; 2) changing
the sparse regularization structure according to the char-
acteristic of the predictor matrix, such as group LASSO
[46], if the predictors possess some kind of group struc-
ture; and 3) the SVM classifier used in sssHD could be
replaced by other classifiers, if necessary, such as discrim-
inant analysis, naive Bayes, logistic regression, random
forest, etc.. Therefore, many generalization algorithms
can be derived from sssHD. In addition to discovering
features that are truly associated with the response, con-
trolling the FDR is also important in performing vari-
able selection [64], so the Hellinger distance coupled
with ‘model-X’ knockoffs [65], a useful technique to limit
the FDR, would be a feasible choice to recognize true
relevant feature and reduce the FDR as much as pos-
sible in high-dimensional class-imbalance learning. In
addition, the Hellinger distance presents advantages for
performing class-imbalanced data, so a worthy attempt
may be to directly establish a Hellinger distance fea-
ture selection algorithm that does not depend on any
classifiers.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12859-020-3411-3.

Additional file 1: Supporting information is provided in a PDF file, in
which the results on SRBCT, CAR and GLIOMA datasets are reposited.

Additional file 2: Five datasets used in this study are given as a .txt file.

Additional file 3: The R code for implementing the sssHD algorithm and
related calculations is available.
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