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Abstract

Background: The interactions between non-coding RNAs (ncRNA) and proteins play an essential role in many
biological processes. Several high-throughput experimental methods have been applied to detect ncRNA-protein
interactions. However, these methods are time-consuming and expensive. Accurate and efficient computational
methods can assist and accelerate the study of ncRNA-protein interactions.

Results: In this work, we develop a stacking ensemble computational framework, RPI-SE, for effectively predicting
ncRNA-protein interactions. More specifically, to fully exploit protein and RNA sequence feature, Position Weight
Matrix combined with Legendre Moments is applied to obtain protein evolutionary information. Meanwhile, k-mer
sparse matrix is employed to extract efficient feature of ncRNA sequences. Finally, an ensemble learning framework
integrated different types of base classifier is developed to predict ncRNA-protein interactions using these
discriminative features. The accuracy and robustness of RPI-SE was evaluated on three benchmark data sets under
five-fold cross-validation and compared with other state-of-the-art methods.

Conclusions: The results demonstrate that RPI-SE is competent for ncRNA-protein interactions prediction task with
high accuracy and robustness. It’s anticipated that this work can provide a computational prediction tool to
advance ncRNA-protein interactions related biomedical research.

Keywords: Sequence analysis, RNA-protein interaction, ncRNA, Ensemble learning, Position weight matrix, Legendre
moments

Background
Protein is the main bearer of cellular activities. However,
only a small fraction of the Human genome (about 2%)
contains protein-coding genes [1]. The remaining 98% of
the genes are mainly responsible for regulation, that is,
they are involved in controlling when and where genes
are expressed and activated [2]. This part of the huge
genome produces RNA molecules that vary in size,
structure, and function. They are called non-coding
RNAs (ncRNA) [3]. Different types of non-coding RNA
interact with proteins in different ways. NcRNA can be
divided into several categories, which are widely present

in most cells and are vital in life activities. And there are
some ncRNAs that play a role in specific species. Highly
conserved ncRNAs are considered molecular fossils and
functional redundancy in the RNA world, and they have
been found to act as structural or regulatory molecules
involved in the complex flow of life information from
DNA to proteins [4].
NcRNA-Protein interactions (ncRPIs) play an essential

role in many biological functions. Many ncRNAs play a
regulatory role in DNA replication, translation, RNA
splicing, and gene expression (such as trans-acting and
cis-acting), genome defense and so on [5–7]. Meanwhile,
a variety of diseases can be caused by mutations or im-
balances in the composition of ncRNAs in the body,
such as cancer [8], Prader-Wills syndrome [9], autism
[10], Alzheimer’s disease [11], cartilage-hair hypoplasia
[12], hearing loss [13]. Because the role of ncRNAs usu-
ally depends on binding to specific proteins, identifying
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the protein molecules that bind to specific ncRNAs is
the key to studying the function and mechanism of
ncRPIs. Thanks to the Human Genome Project, research
in the life sciences has entered the era of post-genomics.
The application of various advanced high-throughput
experimental methods has generated and accumulated
huge amounts of data that are in urgent need of analysis.
There is already a gap between the known ncRNAs and
their interactions.
High-throughput methods are valuable but time-

consuming and expensive. In recent years, there have
been extensive research on computational prediction
of proteins-RNAs interactions (RPIs) [14–18]. Pan-
caldi et al. applied both Random Forest (RF) and
Support Vector Machine (SVM) model for RPIs pre-
diction, using more than 100 different functional and
physical features, such as genomic context, structure
or localization, experimental translation and so on
[19]. Muppirala et al. introduced a mothed named
RPISeq, which also used RF and SVM classifiers
based on primary sequences information [20]. In
2013, Lu et al. trained different types Fisher linear
discriminant model using the information of hydro-
gen bonding propensities, the secondary structure
and Van der Waals of long ncRNAs and proteins
[14]. Suresh et al. presented RPI-Pred, a computa-
tional approach based on SVM to predict RPIs by
using both high-order structure information [21]. Re-
cently, Cirillo et al. introduced Global Score for
protein-RNA interactions prediction. The main con-
tribution of this method is to integrate the local
characteristics of protein and RNA structures into
the overall binding tendency, and calibrate it based
on high-throughput data [22]. Pan et al. put forward
a model combined stacking autoencoder with ran-
dom forest classifiers named IPMiner, archived great
prediction performance of ncRPIs [23]. As can be
seen, both efficient feature extraction and machine
learning model are important to achieve great pre-
dictive performance in this domain.
In our previous work, we presented a deep learn-

ing stacked autoencoder network based framework
to predict ncRNA-protein interactions, named RPI-
SAN. The main contribution of RPI-SAN is the
application of deep stacked autoencoder to obtain ef-
ficient hidden representation of RNA and protein se-
quence information [18, 24]. Deep learning shows
excellent ability with large-scale data support in
many fields, however, ncRPIs data sets generally
don’t have large scales, thus it’s not very suitable or
urgent need for deep learning methods. Previous re-
search confirmed that in ncRPIs prediction task,
tree-based model and SVM model can work well,
and sequences contain enough information for

predicting ncRPIs [25, 26]. Traditional machine
learning techniques have the potential to be explored
for accuracy and interpretability in small sample
learning tasks, especially ncRNA-protein interactions
prediction task.
To this end, we propose a stacking ensemble based

computational model, RPI-SE, by integrating Gradi-
ent Boosting Decision Tree (GBDT, implemented by
XGBoost) [27], SVM [28, 29] and Extremely ran-
domized Trees [30] (ExtraTree) algorithms to predict
ncRNA-protein interactions. Specifically, k-mer
sparse matrix is used to exploit the sequence infor-
mation of RNA, which retains not only the nucleic
acid components, but also the sequence order infor-
mation [18, 31, 32]. Meanwhile, the Legendre Mo-
ments (LMs) descriptor is applied to convert the
information contained in a the Position Weight
Matrix (PWM) [33, 34] in a feature vector, which
can retain the evolutionary information contained in
amino acid sequences corresponding to physico-
chemical properties. And the Singular Value Decom-
position (SVD) [35] is further applied to reduce the
dimension of vectors. Then, these evolutionary fea-
tures are used to train three base predictors include
GBDT, SVM and ExtraTree. Finally, stacking ensem-
ble is adopted to integrate these base predictors. To
thoroughly verify the performance, the RPI-SE is
evaluated on three benchmark data sets under five-
fold cross-validation, including RPI369 [20], RPI488
[23] and RPI1807 [21], and compared with other
methods, including RPISeq-RF [20], RPI-Pred [21],
lncPro [14], IPMiner [23] and RPI-SAN [18]. The
experimental results demonstrate that RPI-SE is
competent for ncRPIs prediction task, obtained pre-
dictive performance with high accuracy and robust-
ness. The workflow of the proposed method is
shown in Fig. 1.

Results
In this work, we proposed a stacking ensemble based
computational model to predict ncRNA-protein inter-
actions, called RPI-SE, which integrated XGBoost,
SVM and ExtraTree algorithms and using high effi-
ciency features. Above all, we evaluated RPI-SE’s pre-
dictive performance of RNA-protein interactions on
benchmark data sets. Moreover, we compare RPI-SE
with other computational methods on different data
sets, including RPI488, RPI369 and RPI1807. Further-
more, the performance of different integration strat-
egies has also been analyzed. The evaluation
indicators used in the assessment include accuracy
(Acc), true negative rate (TNR), true positive rate
(TPR), positive predictive value (PPV), Matthews Cor-
relation Coefficient (MCC) and the Area Under the
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Receiver Operating Characteristic curve (AUC) are
also adopted to evaluate the performance of RPI-SE.

Evaluate RPI-SE’s performance of RNA-protein
interactions prediction
To evaluate RPI-SE’s ability of predicting RNA-protein
interactions, the RPI-SE is carried out on RPI369 data
set under five-fold cross-validation. The Table 1 shows
the results of five-fold cross-validation of RPI-SE on the
RPI369 data set. Meanwhile, a comparison of the results
of individual base classifiers and stack integration is
shown in Table 2. Certainly, the same experiments were

performed on RPI488 and RPI1807 data sets, and their
results are reported in Additional file 1.
Under five-fold cross-validation, RPI-SE performs

much better than compared methods on RPI369 data
set. From Table 2, RPI-SE performs an accuracy of
88.44%, a TPR of 83.69%, a TNR of 95.87%, a PPV of
80.85%, an MCC of 77.73% and as shown in Fig. 2, RPI-
SE performed an AUC 0.924. It’s the best of the four
comparison predictors. XGBoost achieves an accuracy of
84.54%, a TPR of 81.45%, a TNR of 90.08%, a PPV of
78.87% and MCC of 69.51%. It is the best performing
base classifier. The accuracy, TPR, TNR, PPV and MCC

Fig. 1 The flowchart of the proposed RPI-SE

Table 1 The five-fold cross-validation performance on RPI369 data set

Fold set Acc (%) TPR (%) TNR (%) PPV (%) MCC (%)

1 90.28 86.42 95.89 84.51 81.03

2 88.19 82.56 97.26 78.87 77.61

3 88.19 84.15 94.52 81.69 76.95

4 87.41 81.40 97.22 77.46 76.27

5 88.11 83.95 94.44 81.69 76.81

Average 88.44 ± 1.08 83.69 ± 1.88 95.87 ± 1.38 80.85 ± 2.75 77.73 ± 1.90
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of kernel SVM are 75.3, 72.50, 83.49, 67.61 and 51.86%
and those of ExtraTree are 68.66, 67.65, 72.74, 64.51%
and only 37.57%. The experimental results demonstrate
our model is suitable for RNA-protein interaction
prediction.

Comparison between different integrated learning
strategies
To demonstrate the performance improvement of inte-
gration strategies, we compared stacked ensemble with
base predictors and general averaged ensemble strategies
on RPI369. Stacked ensemble is implemented by a Lo-
gistic Regression function. Logistic regression automatic-
ally learns respective weights for the three base
predictors, including XGBoost, SVM and ExtraTree. As
Fig. 3 shows, stacked ensemble archived an AUC of
0.925, better than averaged ensemble method and three
base classifiers. Experimental results prove that the
stacked integration strategy improves the performance
of the prediction framework and is more powerful and
flexible than the averaged integration strategy.

Compared with other state-of-the-art methods
We further compared RPI-SE with other computational
methods under same conditions. The contrast methods
include IPMiner [23], lncPro [14], RPISeq-RF [20], and
RPI-SAN.
As Table 3 shows, on RPI369 data set, RPI-SE is obvi-

ously better than other methods, with an accuracy of
88.44%, a TPR of 83.69%, a TNR of 95.87%, a PPV of
80.85%, an MCC of 77.73% and AUC of 0.924 (shown in
Fig. 2). RPI-SE increased the accuracy, TPR, TNR, PPV,
MCC, and AUC by more than 13.2, 10, 16.7, 9.5, 27 and
15%, respectively. For RPI488 data set, RPI-SE also ob-
tained acceptable performance (as AUC shown in Fig. 4),
with an accuracy of 89.3%, better than other comparison
methods but only closed to RPI-SAN. As shown in Table
3 and Fig. 5, on the data set RPI1807, the results of all
the methods are close, with an accuracy rate of over
96%. RPI-SE attains a high accuracy of 96.86%.

Discussion
RPI-SE is composed of three basic predictors, XGBoost clas-
sifier, SVM classifier with RBF kernel, and ExtraTree classi-
fier. Different classifiers have different adaptability to the
data. XGBoost has advantages in accuracy and TPR, while
SVM has advantages in stability. At the same time, basic
classifiers have their own disadvantages. It is necessary to in-
tegrate them for best performance. The degree to which the
stacking strategy improves the final prediction performance
is different. When the difference between the classifiers is
greater, stacking integration is more effective. The RPI488
and RPI1807 data sets have stronger correlations, so the
base predictors have more consistent output on these two

Table 2 Performance of individual predictors and RPI-SE on
RPI369 data set

Predictors Acc(%) TPR(%) TNR(%) PPV(%) MCC(%)

XGBoost 84.54 81.45 90.08 78.87 69.51

SVM 75.63 72.50 83.49 67.61 51.86

ExtraTree 68.66 67.65 72.74 64.51 37.57

RPI-SE 88.44 83.69 95.87 80.85 77.73

The boldface indicates this measure performance is the best among the
compared methods

Fig. 2 The performance of RPI-SE and contrast methods on RPI369
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data sets, and the stacking ensemble improves the perform-
ance of the prediction framework less on these two data sets.
RPI-SE uses PWM to convert a protein sequence into a
probabilistic description, which requires that the sequence
length be greater than 50. Therefore, sequences less than 50
in length were removed. The performance of machine learn-
ing models is highly dependent on the parameter set, while
the model parameters of RPI-SE are only adjusted on the
RPI369 data set, which makes it not perform optimally on
the other two data sets. It uses only simple machine learning

models and integration strategies to achieve results that are
close to or better than the most advanced models. These re-
sults proved it is an acceptable methodological innovation in
terms of simplicity and efficiency.

Conclusion
In this research, we put forward a stacking ensemble com-
putational method, RPI-SE, integrated three individual
models, including XGBoost, SVM and ExtraTree, to pre-
dict ncRNA-protein interactions using sequence informa-
tion. PWM and k-mer sparse matrix were employed to
fully mine efficient features from protein and RNA se-
quences. The presented method gained a great perform-
ance on benchmark data sets. Experimental results prove
that the proposed method can accurately and efficiently
predict potential ncRNA-protein interactions. RPI-SE uses
only simple machine learning models and ensemble learn-
ing strategy, and has the advantages of simplicity and in-
terpretability. Meanwhile, RPI-SE has better performance
on small data sets, which is in line with the limited scale
of the ncRNA-protein interaction data. Although deep
learning has been widely adopted in many fields, there is
still plenty valuable work worth doing. As a general ma-
chine learning model, RPI-SE can perform ncRPI predic-
tions more conveniently and rapidly than complex deep
learning models, which can provide useful guidance for
ncRPI related biomedical research.

Methods
Data sets
Three benchmark data sets from the previous research, in-
cluding RPI369, RPI488 and RPI1807, are used to evaluate

Fig. 3 Comparison of different integration strategies

Table 3 Compared RPI-SE with other computational methods
on RPI369, RPI488 and RPI1807 data sets

Data sets Methods Acc(%) TPR(%) TNR(%) PPV(%) MCC(%) AUC

RPI369 IPMiner 75.2 73.5 79.1 71.3 50.7 0.773

RPISeq-RF 70.4 70.5 70.2 70.7 40.9 0.767

lncPro 70.4 70.8 69.6 71.3 40.9 0.740

RPI-SAN 74.9 74.1 78.7 71.7 50.4 0.778

RPI-SE 88.44 83.69 95.87 80.85 77.73 0.924

RPI488 IPMiner 89.1 93.9 83.1 94.5 78.4 0.914

RPISeq-RF 88.0 92.6 82.2 93.2 76.2 0.903

lncPro 87.0 90.0 82.7 91.0 74.0 0.901

RPI-SAN 89.7 94.3 83.7 95.2 79.3 0.920

RPI-SE 89.30 94.49 83.48 95.15 79.31 0.904

RPI1807 IPMiner 98.6 98.2 99.3 97.8 97.2 0.998

RPISeq-RF 97.3 96.8 98.4 96.0 94.6 0.996

lncPro 96.9 96.5 98.1 95.5 93.8 0.994

RPI-SAN 96.1 93.6 99.9 91.4 92.4 0.999

RPI-SE 96.86 96.71 97.69 95.83 93.65 0.994
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the performance of RPI-SE. The RPI369 is a non-
redundant data set without ribosomal proteins or ribosomal
RNAs, from PRIDB [36], which is a comprehensive data-
base calculated from the Protein Data Bank (PDB) [37] of
protein-RNA complexes. It includes a total of 332 RNA
chains and 338 protein chains, and 369 positive interactive
pairs. The RPI488 is a non-redundant lncRNA-protein in-
teractions data set, has 245 negative samples and 243 posi-
tive samples [38–40]. The RPI1807 data set includes 1078
RNA and 1807 protein chains. And the number of positive

and negative samples is 1807 and 1436, contains 493 RNA
and 1436 protein chains. The details of the data sets used
in this work are shown in Table 4.

The ncRNA and protein sequences representation
To fully explore the evolutionary features of ncRNA and
protein sequences, k-mer sparse matrix and position
weight matrix are used to represent RNA and protein se-
quences, respectively. RNA sequence were represented
by the k-mer sparse matrix [31]. From beginning to end,

Fig. 4 The performance of RPI-SE and contrast methods on data set RPI488

Fig. 5 The performance of RPI-SE and contrast methods on data set RPI1807
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it scans each RNA sequence (A, C, G, U) with a k nucle-
otides window, move one nucleotide at a time. Suppose
a RNA sequence with length of L, there are 4k different
possible k-mers and L − k + 1 steps.
As shown in Table 5, the dimension of the corre-

sponding k-mer sparse matrix M is 4k × (L − k + 1).
When mjmj + 1mj + 2mj + 3 are same to the ith k-mer
among 4k different k-mers, set the element aij to 1.
The k-mer sparse matrix M can be defined as follows

and the k is set to 4 for RNA sequence.

M ¼ aij
� �

4k � L−kþ 1ð Þ ð1Þ

aij ¼ 1; if mjmjþ1mjþ2mjþ3 ¼ k−mer ið Þ
0; else

�
ð2Þ

Moreover, the SVD is adopted to reduce M into a 1 ×
256 feature vector.
In consideration of the different structures between

RNA and protein sequences have, we employed a more
biological method for protein sequences to contain bio-
logical evolution information, the position weight matrix
(PWM), which is a widely used representation of motifs
in biological sequences, to convert it. A PWM has one
row for each symbol of the alphabet and 20 rows for
amino acids in protein sequences. The PWM of a pro-
tein sequence with length of l can defined as follow:

PWM ¼
w1;1;w1;2;…;w1;20

w2;1;w2;2;…;w2;20

⋮⋮⋮⋮
wl;1;wl;2;…;wl;20

2

664

3

775 ð3Þ

In practice, both the Position-Specific Iterated BLAST
(PSI-BLAST) tool and against database SwissProt can be
freely downloaded from http://blast.ncbi.nlm.nih.gov/
Blast.cgi. And we set err-value to 0.001, set the value of
iteration to 3.

Then we extracted Legendre Moment (LMs) [41] fea-
ture vectors from the PWM of protein sequence. LMs
can exploit eigenvectors of a matrix without losing infor-
mation, in which the Legendre polynomial is adopted as
the kernel function. It is a type of class orthogonal mo-
ment, which is widely used in image analysis and pattern
recognition.
The 2-D Legendre moments of order (m, n), with

image intensity function f (x; y), are defined as:

Lmn ¼ μmn

Z 1

−1

Z 1

−1
Vm xð ÞVn xð Þ f x; yð Þdxdy ð4Þ

where m, n = 0, 1, 2..., μmn = (2m + 1)(2n + 1)/4, and the
mth order LMs is given by:

Vm xð Þ ¼ 1
2mm!

dm

dxm
x2−1
� �m ð5Þ

which has the following orthogonality, where ϑmn repre-
sents the Kronecker function.:

Z 1

−1
Vm xð ÞVn xð Þ ¼ 2

2mþ 1
ϑmn ð6Þ

Hence, a matrix of R × S elements with function f (i, j)
can be indicated in discrete form as follow:

Lmn ¼ μmn

XR

i¼1

XS

j¼1
hmn x; yð Þ f x; yð Þ ð7Þ

For the Legendre polynomials,
Z

Vm xð Þdx ¼ Vmþ1 xð Þ−Vm−1 xð Þ.
2mþ 1

; x∈ −1; 1½ �
ð8Þ

So, according to the above formula, the accuracy ex-
pression can be defined as follows.

Lmn ¼ μmn

XR−1

i¼0

XS−1

j¼0

Δ m; xð Þ
2mþ 1

� Δ n; yð Þ
2nþ 1

ð9Þ

Δ p; tð Þ ¼ Vpþ1 t þ Δt
2

� �
−Vp−1 t þ Δt

2

� �
−Vpþ1 t−

Δt
2

� �
þ Vp−1 t−

Δt
2

� �

ð10Þ
Therefore, a PWM of a target protein sequence will be

converted into a 1 × 676 feature vector by using LMs.
The truncated SVD was further employed to reduce the
influence of noise and retain the principal features.
Truncated SVD is very similar to principal component
analysis (PCA), but differs in that it works on sample
matrices directly instead of their covariance matrices.
Contrary to PCA, this estimator does not center the data
before computing the singular value decomposition. This
means it can work with sparse matrices efficiently.
When truncated SVD is applied to term-document
matrices, it is known as Latent Semantic Analysis [42].

Table 4 The details of the RNA-protein interaction data sets

Data set Interaction pairs # of proteins # of RNAs

RPI369 369 338 332

RPI488 243 25 247

RPI1807 1807 1807 1078

Table 5 K-mer sparse matrix representation of RNA sequence

R1R2R3R4 R2R3R4R5 … RL-3RL-2RL-1RL

AAAA a11 a12 … a1,L-k + 1

AAAC a21 a22 … a2,L-k + 1

AACA a31 a32 … a3,L-k + 1

… … … … …

UUUU a256,1 a256,2 … a256,L-k + 1
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The feature vectors of the protein will be reduced to 500
dimensions. Finally, each pair of ncRNA-protein con-
tains 1 × 756 conjoined feature vector.

To-be-integrated machine learning classifier
Three kinds of machine learning classifiers are used as
to-be-integrated base classifiers, including GBDT [27],
SVM [28, 29] and ExtraTree [30].
XGBoost is a scalable end-to-end tree boosting

model implementation, which is a great sparsity-aware
approach for sparse data and weighted quantile sketch
for approximate tree learning. Traditional GBDT only
uses first-order derivative information when optimiz-
ing. XGBoost performs second-order Taylor expansion
for cost function, and uses first and second deriva-
tives. It adds a regularization term in the cost func-
tion to control the complexity of the model. A
regular term contains the number of leaf nodes of a
tree, and the sum of squares of the L2 modules of
score on each leaf node. From the Bias-variance tra-
deoff point of view, the regular term reduces the vari-
ance of the model, making the learning model
simpler and preventing over fitting, which is also a
characteristic of its superior to the traditional GBDT.
After iteration, XGBoost multiplied the weight of the
leaf node, mainly to weaken the impact of each tree,
and let the behind have a larger learning space.
XGBoost draws on the practice of random forest and
supports column sampling, which not only reduces
over-fitting but also reduces calculations. A parallel
approximate histogram algorithm is also proposed to
generate candidate segmentation points efficiently.
XGBoost’s objective function can be defined as
follows:

Οbj ¼
Xn

i¼1
l yi; ŷið Þ þ

XK

k¼1
Ω f k
� � ð11Þ

Ω f tð Þ ¼ γTþ λ
2

XT

j¼1
w2

j ð12Þ

Here, l is a differentiable convex loss function that
measures the difference between the prediction ŷi and
the target yi. The regular term controls the complexity
of the model, including the number of leaf nodes T and
the l2 modulus square of the leaf score.
SVM constructs a hyperplane or a series of hyper-

planes in a high-dimensional or infinite-dimensional
space that can be used for classification, regression,
or other tasks. Intuitively, by using a hyperplane to
achieve a good segmentation, it is possible to
maximize the distance between the closest training
data points (function margins) in any class. This is
usually due to a larger margin. The advantages of
support vector machines are: It’s very efficient in high

dimensional space. Even if the data dimension is lar-
ger than the sample size, it is still valid. The subset
of training sets is used in support vectors, so it is also
efficient in memory utilization. The disadvantages of
support vector machines include: If the number of
features is much larger than the number of samples,
it is necessary to avoid overfitting when selecting ker-
nel functions.
Suppose the labeled training data [(xi, yi), i = 1, 2, 3…,

n, yi = (− 1, 1), xi∈ R]. and the separating hyperplane is:
(w(x) + b) = 0. In the linear separable situation, the SVM
maximized the margin by minimizing ‖w‖2/2 subject to
looking for the separating hyperplane as following
constraint:

yi wxi þ bð Þ≥1; ∀xi ð13Þ
In the linear non-separable situation, we can find the

optimal separating hyperplane by introducing slack vari-
ables: ξi, i = 1, 2..., n and user-adjustable parameter C,
then minimizing:

wk k2=2þ C
Xn

i¼1
ξi; ξi≥0; ∀xi ð14Þ

yi wxi þ bð Þ≥1−ξi; ξi≥0; ∀xi ð15Þ
Radial Basis Function (RBF) kernel is adopted in this

experiment, which can be defined as:

f xð Þ ¼ e−γ x−x
0k k2

ð16Þ
Extremely randomized trees essentially consist of

randomizing strongly both attribute and cut-point
choice while splitting a tree node. It builds totally
randomized trees whose structures are independent of
the output values of the learning sample. The
strength of the randomization can be tuned to prob-
lem specifics by the appropriate choice of a param-
eter. Randomness in the computation of segmentation
points is further enhanced. In a random forest, a ran-
dom subset of the candidate features is used in a ran-
dom forest. Unlike a threshold for finding the most
regional diversity, the threshold here is randomly gen-
erated for each candidate feature and selects the best
one of these randomly generated thresholds as a seg-
mentation rule. This method usually reduces the vari-
ance of one-point model, while the cost slightly
increases the deviation.

Implementation of stacking ensemble integration
strategy
The Logistic Regression (LR) is used as the merge layer
to integrate three base classifiers’ output, which can
learn the integration weight w for each base classifier.
The predicted probability value outputs of individual
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classifiers be the level 0 layer, while successive logistic
regression was the level 1. The definition of LR is:

Pw �1jpð Þ ¼ 1

1þ e−wTp �1jpð Þ ð17Þ

where the p is the level 0 classifiers’ probability outputs
and it will degenerate to average strategy when the
weight for each individual classifier of logistic regression
is judged as the same.

Performance evaluation indicators
The evaluation of the experiments in this work was per-
formed under five-fold cross-validation. In each valid-
ation, all data randomly divides into five equal subsets,
four-fold data are used for training, and the rest one-
fold is used for testing. There is no overlap between
train data and test data. The average performances of
five-fold are taken as the final validation performance.
The evaluation indicators used in the experiments can
be defined as:

Acc ¼ TN þ TP
TN þ TP þ FN þ FP

ð18Þ

TPR ¼ TP
TP þ FN

ð19Þ

TNR ¼ TN
TN þ FP

ð20Þ

PPV ¼ TP
TP þ FP

ð21Þ

MCC ¼ TP � TN−FP � FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þp ð22Þ

where TN, TP, FN, and FP indicates the number of true
negative, true positive, false negative and false positive
samples.
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