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Abstract

Background: The Sackin index S of a rooted phylogenetic tree, defined as the sum of its leaves’ depths, is one of the
most popular balance indices in phylogenetics, and Sackin’s paper (Syst Zool 21:225-6, 1972) is usually cited as the
source for this index. However, what Sackin actually proposed in his paper as a measure of the imbalance of a rooted
tree was not the sum of its leaves’ depths, but their “variation”. This proposal was later implemented as the variance of
the leaves’ depths by Kirkpatrick and Slatkin in (Evolution 47:1171-81, 1993), where they also posed the problem of
finding a closed formula for its expected value under the Yule model. Nowadays, Sackin's original proposal seems to
have passed into oblivion in the phylogenetics literature, replaced by the index bearing his name, which, in fact, was
introduced a decade later by Sokal.

Results: In this paper we study the properties of the variance of the leaves’ depths, V, as a balance index. Firstly, we
prove that the rooted trees with n leaves and maximum V value are exactly the combs with n leaves. But although V
achieves its minimum value on every space BT, of bifurcating rooted phylogenetic trees with n < 183 leaves at the
so-called “maximally balanced trees” with n leaves, this property fails for almost every n > 184. We provide then an
algorithm that finds the trees in BT, with minimum V value in time O(n log(n)). Secondly, we obtain closed formulas
for the expected V value of a bifurcating rooted tree with any number n of leaves under the Yule and the uniform
models and, as a by-product of the computations leading to these formulas, we also obtain closed formulas for the
variance under the uniform model of the Sackin index and the total cophenetic index (Mir et al., Math Biosci
241:125-36, 2013) of a bifurcating rooted tree, as well as of their covariance, thus filling this gap in the literature.

Conclusion: The phylogenetics community has been wise in preferring the sum S(T) of the leaves’ depths of a
phylogenetic tree T over their variance V(T) as a balance index, because the latter does not seem to capture correctly
the notion of balance of large bifurcating rooted trees. But it is still a valid and useful shape index.
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Background

In the last decades there has been an increasing interest
in the definition and study of indices quantifying prop-
erties of trees. Besides the research on this topic carried
out within the framework of Quantitative Graph Theory
[12], the main motivation has come from the field of
phylogenetics, through the application of such indices in
the description and comparison of phylogenetic trees. In
effect, there is the commonly accepted belief that the
characteristics of the branching pattern of a phylogenetic
tree reflect the properties and tendencies of the evolu-
tionary processes that have produced it [19, 34]. As a
consequence, the shape of a phylogenetic tree is thought
to offer clues to the features of the evolutionary processes
underlying it and in particular to provide a ground to
test hypothesis on these features [14, Chap. 33]. This has
motivated the introduction of many tree shape indices on
phylogenetic trees, related only to their topology and not
taking into account branch lengths or the actual taxa on
their leaves. These indices have then been used to test evo-
lutionary hypothesis and models [3, 13, 21, 24, 27, 33, 34,
40, 44] as well as in other applications [2, 8, 18, 30, 42].

Although considerations about the shape of phyloge-
netic trees go back at least to the late 1960s [37], since
the early 1980s this research has focused mainly on their
balance [41], intuitively understood as the tendency of the
descendant taxa of any internal node to split into clades of
similar size. In principle, the imbalance of a phylogenetic
tree reflects the propensity of evolutionary events to occur
along specific lineages, although in some cases it may also
be due simply to a bias in the method used to build it
(35, 41].

The degree of balance of a phylogenetic tree is usually
measured using balance indices. Several such indices have
been proposed [9, 11, 16, 27, 29, 31, 32, 39, 41] (see also
the section “Measures of overall asymmetry” in [14, Chap.
33]) and Shao and Sokal [41, p. 273] explicitly advised to
“choose more than one index” to quantify the balance of
a tree. One of the most popular and widely used is the
so-called Sackin index S, defined as the sum of the depths
(i.e., their distance from the root) of the leaves of the tree.
Although the paper [39] by Sackin is usually cited as the
source for this index, to our knowledge it was used for the
first time by Sokal in [42] and it was not called “Sackin’s
index” until the paper [41] by Shao and Sokal on tree
balance.

However, against what the index bearing his name
would indicate, Sackin did not propose to use the sum of
the leaves’ depths as a measure of the balance of a rooted
tree (or, rather, of its imbalance). What the author of [39]
actually did was to point out that more balanced trees
tended to have lower (maximum) depth and smaller varia-
tion of the leaves’ depths. To make his point, he compared
these properties on a fully symmetric tree with 8 leaves
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and a comb with the same number of leaves (see (a) and (b)
in Fig. 1). The fully symmetric tree has the smallest pos-
sible depth for a bifurcating tree with 8 leaves, which is 3,
while the comb has the largest possible such depth, 7. As
to the variation of the leaves’ depths, all leaves of the fully
symmetric tree have the same depth, while all leaves in the
comb have different depth, except for the pair forming the
deepest cherry; in fact, as we shall prove in Theorem 1, the
comb with # leaves turns out to have the largest variance
of the leaves’ depths among all rooted trees with # leaves.

It is clear that the depth §(T') of a tree T is a very coarse
shape index, with a small range of values for any num-
ber of leaves, so it is easy to understand that it did not
crystallize as a balance index. But Sackin’s second pro-
posal, the degree of variation of the leaves’ depths, seems
a very reasonable idea. It was later implemented by Kirk-
patrick and Slatkin in [27] as the variance of the leaves’
depths, which we shall denote henceforth by V, and these
authors showed empirically that its power is similar and
sometimes higher than that of S in some statistical tests
with alternative hypothesis representing “this tree is not
random” Yet, although V was used as a shape index in
a few early studies [25-27] and it was even collected in
the section “Measures of overall asymmetry” in Felsen-
stein’s book [14], it seems to have passed into oblivion, and
Shao and Sokal’s proposal of using the sum of the leaves’
depths, and attributing it to Sackin, has been preferred by
the phylogenetics community.

One of the problems that we consider in this paper is
to determine to which extent V measures the degree of
imbalance of a rooted tree. To do that, we study which
trees achieve the maximum and the minimum values of
V for any given number of leaves n: they would play the
role of the least and the most balanced rooted trees with #
leaves according to V. With respect to the maximum value
of V, it is achieved at the combs, which are the trees classi-
fied as most imbalanced by other balance indices like the
Sackin index [15], the Colless index [32], the total cophe-
netic index [31], the number of cherries (the comb is the
only bifurcating tree with a single cherry), or the rooted
quartet index [11]. With respect to its minimum value, in
the case of multifurcating trees it is achieved, among other
trees, at the rooted star trees (cf. Fig. 1c), which have all
leaves of depth 1 and hence null variance, in agreement
again with all other balance indices for multifurcating
trees like the Sackin index, the total cophenetic index,
the rooted quartet index, or the Colless-like indices intro-
duced in [32]. So far, so good, except for the fact that,
actually, any multifurcating tree with all its leaves of the
same depth has minimum V value, 0, independently on its
shape, which implies that V' cannot be used in the context
of taxonomic trees, where all leaves have the same depth:
one less than the number of taxonomic ranks in the tree.
By the way, V shares this drawback with the Sackin index,
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(a) (b) (c)

Fig. 1 a A fully symmetric tree with 8 leaves. b A comb with 8 leaves. ¢ A rooted star with 8 leaves

because the value of the latter on a taxonomic tree only
depends on its number of leaves and of taxonomic ranks,
and not on its shape.

The main problem lies in the bifurcating rooted trees
with minimum V value, which would correspond to the
bifurcating rooted trees classified as most balanced by V.
On the positive side, since the fully symmetric bifurcating
trees where the number of leaves is a power of 2 have all
their leaves of the same depth, their V value is the min-
imum, 0, in agreement with their full balance. And for
each number # < 183 of leaves, the minimum V value
among all rooted bifurcating trees with # leaves is reached
at the maximally balanced trees, those bifurcating trees
where the descendant leaves of every internal node split
among its pair of children into two subsets of cardinali-
ties differing at most by 1. This is in agreement with other
balance indices, like the Sackin index [15], the Colless
index [10], the total cophenetic index [31], and the rooted
quartets index [11], that classify as most balanced these
maximally balanced trees (tied with other trees in the case
of the Sackin and Colless indices, and only them in the
case of the other two indices). These maximally balanced
trees were called “the most balanced trees” by Shao and
Sokal [41].

The trouble with V starts with n = 184. The bifurcating
tree with 184 leaves and minimum V value is not max-
imally balanced (see Fig. 2). And it turns out that, as n
grows to 0o, the fraction of numbers # of leaves for which
the minimum V value is achieved at the maximally bal-
anced tree tends to O (see Theorem 3). So, for large num-
bers of leaves, the bifurcating trees that are most balanced
according to V are almost never the maximally balanced
ones. In our opinion, this result is quite surprising and
counterintuitive. Indeed, we prove in Proposition 5 that a
multiset of leaves’ depths is realized by a maximally bal-
anced tree if, and only if, its entries are either constant
(which corresponds to the fully symmetric trees) or they
take two different values differing by 1 unit, and our intu-
ition told us (and, probably, Sackin) that these multisets
containing only depths equal to § (the depth of the tree)
and § — 1 were those presenting the lowest variation, that

is, the smallest variance. Our work shows that it is almost
never the case.

This drawback makes V' unsuitable as a measure of
the imbalance of bifurcating trees with large number of
leaves. But V' can still be used with this purpose on
small bifurcating trees and, in general, as a shape index,
for instance to test evolutionary hypothesis. As we have
already mentioned, Kirkpatrick and Slatkin analyzed its
power in some specific tests of this type in [27], where they
showed it to be comparable and sometimes higher than
that of the Sackin and Colless indices. In a subsequent
study by Agapow and Purvis [1] that extended Kirkpatrick
and Slatkin’s tests to other more biologically motivated
models, V was also classified, together with the Sackin
and Colless indices, in the leading group of balance indices
with respect to their power in detecting some types of
nonrandom diversification. In a later paper by Blum and
Francois [3], V was not included in the set of tested indices
and the Sackin index was shown to be very powerful in
rejecting the Yule model against biased speciation mod-
els that generate either very imbalanced or very balanced
trees, but not so powerful with models generating less
evidently balanced or imbalanced trees. Let us also men-
tion that V has also been considered in two experiments
testing the resolution of several balance indices, i.e., their
capacity to discriminate between similar and different tree
shapes, for different specific measures of shape similarity
[23, 28]. In both cases it was classified in the top-three set
of balance indices, again together with the Sackin and the
Colless indices.

In the application of a balance index to test evolu-
tionary models, it is convenient to have closed formulas
for its expected value under different probabilistic mod-
els of phylogenetic trees [3]. This was already pointed
out by Kirkpatrick and Slatkin in [27], where they com-
plained that “its expectation [of V under the Yule model]
is not known analytically” and they had to estimate it
by simulations. So, in this paper we also provide closed
formulas for the expected value of V under the Yule,
or Equal-Rate Markov, model [22, 46] and the uniform,
or Proportional to Distinguishable Arrangements, model
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Fig. 2 The leaves' depths of the left-hand side tree T € BT jg, have
smaller variance than those of the right-hand side maximally
balanced tree Bigq
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[7, 38] for rooted bifurcating phylogenetic trees (see
Theorems 4 and 5, respectively). Additionally, as a by-
product of the tools developed to prove these theorems,
we also obtain closed formulas for the variance under the
uniform model of the Sackin index and the total cophe-
netic index as well as of their covariance (see Theorem 6).
It is worth recalling that, for the variance of the Sackin
index under the uniform model, only a recursive formula
[36] and its asymptotic behaviour [4] were known so far.

Since the proofs of most results in this paper are quite
long and technical, in order not to lose the thread of the
paper we have moved almost all of them, as well as all the
auxiliary lemmas used in them, to the Additional file 1.
Besides, all the data sets and scripts related to this paper
are available at the GitHub repository https://github.com/
biocom-uib/var_depths.

Notations

Trees

In this paper, by a tree T we always mean a rooted tree
without out-degree 1 nodes, understood as a directed
graph with its arcs pointing away from the root. We shall
denote by L(T) the set of leaves (i.e., of out-degree O
nodes) of T; the nodes in T that are not leaves are called
internal. A tree is bifurcating when all its internal nodes
have out-degree 2; when we want to emphasize that a tree
need not be bifurcating, we shall call it multifurcating. We
shall always consider two isomorphic trees as equal, and
we shall denote by 7,* and BT, the spaces of (isomor-
phism classes of) multifurcating and bifurcating trees with
n leaves, respectively.

Let T be a tree. If (u,v) is an arc in 7, we say that the
node v is a child of the node u and also that u« is the parent
of v. When two nodes have the same parent, we say that
they are sibling. When there exists a path from u to v in
T, we say that v is a descendant of u and also that u is
an ancestor of v. The lowest common ancestor of a pair of
nodes u,v in T is the unique common ancestor of them
that is a descendant of every common ancestor of them.
The subtree of T rooted at a node v is the subgraph of T
induced by the descendants of v.

The depth 57(v) of a node vin T is the length (in num-
ber of arcs) of the unique path from the root of T to v.
We shall denote by 6(T') the depth of T, that is, the largest
depth of any leaf in it. Furthermore, we shall denote by
A(T) the multiset of depths of the leaves of T, where each
depth appears with multiplicity the number of leaves with
this depth, and we shall say that two trees T, T € 7, are
depth-equivalent when A(T) = A(T').

A comb is a bifurcating tree such that all its internal
nodes have a leaf child: cf. Fig. 1b. We shall denote the
comb with 7 leaves by Kj,. A rooted star is a tree of depth
1: cf. Fig. 1c. We shall denote the rooted star with # leaves
by RS;,.
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A k-fan of a tree is a rooted subtree of it that is a rooted
star with k leaves; see Fig. 3. A cherry is a 2-fan. To simplify
the language, we shall often identify a k-fan (or a cherry)
with its leaves.

Phylogenetic trees

A phylogenetic tree on a set X is a (rooted) tree with its
leaves bijectively labeled in X. We shall usually identify the
leaves of a phylogenetic tree with their labels. A phyloge-
netic tree is bifurcating when its underlying tree is bifur-
cating. We shall denote by 7(X) and B7 (X) the spaces
of (isomorphism classes of) multifurcating and bifurcat-
ing phylogenetic trees on X, respectively. If | X| = n, there
exists a forgetful mapping = : 7(X) — 7, that sends
every phylogenetic tree T on X to its underlying tree: we
shall call 7 (T) the shape of T. Notice that 7 maps BT (X)
onto BT . When the specific set of labels X is irrelevant
and only its cardinality |X| = n matters, we shall identify
X with the set [n] = {1,...,n} and then we shall write 7,
and BT, instead of 7 (X) and BT (X), respectively; in this
case, we shall speak about phylogenetic trees with n leaves.
Every bijection X <«>[n] induces bijections 7 (X) <« T,
and BT (X) <> BT, that preserve the shapes of the trees.

Balance indices
Let T € 7.} Its Sackin index S(T) is the sum of the depths
of its leaves [39, 41]:

S(T) = Z S7(%).

xeL(T)

We shall denote the mean depth of the leaves of T’ by§( T):

~ 1
S(T)=; Z ST (%).

xeL(T)

Given two different leaves x,y € L(T), their cophenetic
value ¢1(x,y) is the depth of their lowest common ances-
tor [43]. The total cophenetic index of T, ®(T), is then
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the sum of the cophenetic values of its pairs of different
leaves [31]:

O(T)= Y ¢rxy).
xy€L(T)
x#Ey

Probabilistic models of bifurcating phylogenetic trees

A probabilistic model of bifurcating phylogenetic trees Py,
n > 1, is a family of probability mappings P, : BT, —
[0, 1], each one sending each phylogenetic tree in BT, to
its probability under this model. Later in this paper we
shall be concerned with two popular probabilistic models
of bifurcating phylogenetic trees arising from stochas-
tic models of phylogenetic trees’ growth: the Yule model
[22, 46] and the uniform model [7, 38].

The Yule, or Equal-Rate Markov, model produces bifur-
cating phylogenetic trees on [n] through the following
stochastic process: starting with a single node, at every
step a leaf is chosen randomly and uniformly and it is
replaced by a cherry; when the desired number # of leaves
is reached, the labels are assigned randomly and uni-
formly to these leaves. This stochastic model defines a
probabilistic model of phylogenetic trees by assigning to
each T € BT, the probability Py ,(T) of being obtained
through this process. This probability is (see, for instance,
(45, Prop. 3.2])

n—1 1

2
n! H

ve€Vin (T)

Py (T) =

1)

kr() =1’

where Vj;,;(T) denotes the set of internal nodes of T and,
for every internal node v, k7(v) denotes its number of
descendant leaves.

With respect to the uniform, or Proportional to Distin-
guishable Arrangements, model, it produces bifurcating
phylogenetic trees on [n] through the following stochas-
tic process: starting with a node labeled 1, at the k-th step
a new arc ending in the leaf labeled k + 1 is added either
to a new root (whose other child will be, then, the origi-
nal root) or to some arc, with all possible locations of this

Fig. 3 A cherry (left) and a k-fan (right)




Coronado et al. BMC Bioinformatics (2020) 21:154

new pendant arc equiprobable. It turns out that all phylo-

genetic trees T in 37, are obtained through this process

with the same probability. Then, since for every n > 1,

IBT 4| = 21— 3)!1= 21 — 3)(21n — 5) ---3 - 1 (with the

convention (—1)!!= 1) [14, Ch. 3], this probability is
1

@2n -3

Given a mapping I : | J,»; BT » — R, we shall denote
by I, the random variable that takes a phylogenetic tree
T € BT, and gives I(T), and we shall denote by Ey(l,)
and Ey;(I,,) the expected value of I,, under the Yule and the
uniform models, respectively; i.e.

Pyu(T) = (2)

Ey(I) = Y I(T)-Pyu(T),

TeBT,

Eu(y) = Y IT)-Puu(T).
TeBT,

Results

This paper’s main focus is the variance of the depths of the
leaves of a tree T € 7., which we denote henceforth by
V(T):

1 —~
v =~ 3 (5 - S(D)°.

xeL(T)
Setting
ST = ) sr@?
xeL(T)

we have that
1 ~ 1 1
V(T) = =SP(T)—S(T)* = =SP(T)— - S(T)*. (3)
n n n

If T € 7T, is a phylogenetic tree, V(T) is defined as
V(r(T)).

Example 1 Let K, be the comb with n leaves. The depths
of its leaves are

A(I<}’l) = {1,2,3,...,1’1—2,}'1— l,l’l— 1}
and therefore

SUK,) = (n— 1)2(}'1 +2) ’

(n—1(n—2)(n*+3n—-6)

VK = 1212

Extremal values of the variance of the leaves’ depths

We have the following theorem for the maximum of V,
which roughly says that the combs are the most unbal-
anced multifurcating trees according to V.

Theorem 1 The maximum value of V on T, is reached
exactly at the comb K.

So, the maximum value of V on 7, is
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(n—1)(n—2) (n*+ 3n—6)

V(K,) = 122

Since K}, is bifurcating, this is also the maximum value of
Von BT?.

Theorem 1 is proved by induction on #, using a series of
lemmas that describe the behaviour of V when we remove
a deepest leaf from a rooted tree. We provide these lem-
mas, with their proofs, and the proof of this theorem in
Section SN-5 of the Additional file 1.

Let us consider now the minimum V value problem.
The trees in 7, with minimum V value are very easy
to characterize. Indeed, V being a variance, its minimum
possible value is 0, and it is achieved exactly at the rooted
trees with all their leaves at the same depth. Such trees
are often called taxonomic trees, by analogy with the usual
taxonomies with a fixed set of taxonomic ranks, and they
include the fully symmetric bifurcating trees. In particular,
the rooted star RS, with 7 leaves, all of them of depth 1,
has V(RS,) = 0. So, the multifurcating case being com-
pletely solved, we shall restrict ourselves henceforth to
bifurcating trees.

With respect to the bifurcating trees, as we have already
mentioned in the “Background” section, we had several
reasons to expect that the minimum value of V on BT,
would be achieved at the maximally balanced tree B, (see
Definition 1 in the “Methods” section). These trees were
already known to yield the minimum values —among
the bifurcating trees with their number of leaves— of
the Sackin index [15], the Colless index [10], and the
total cophenetic index [31], and the maximum value of
the rooted quartets index [11]; for the first two balance
indices, this minimum value may also be reached at other
trees, while for the last two indices the corresponding
extremal value is achieved only at the maximally balanced
trees. Recall also that when # is a power of 2, B, is fully
symmetric.

As a matter of fact, since the variance of the leaves’
depths is invariant under depth-equivalence, we expected
this minimum to be achieved at the trees that are depth-
equivalent to maximally balanced trees. We provide in
Proposition 5 in the “Methods” section several alterna-
tive characterizations of these trees. This proposition
offers two more reasons for the educated guess that they
should have the minimum variance of the leaves’ depths
among the bifurcating trees with their number of leaves.
Indeed, on the one hand, it turns out that the trees depth-
equivalent to B, are exactly the trees in BT}, containing
leaves of at most two different depths differing at most
by 1 unit, thus being intuitively good candidates for the
trees with the least variation in their leaves’ depths. On
the other hand, these trees are exactly the bifurcating trees
with minimum Sackin index, which we call of type F,, (see
Definition 2 in the “Methods” section).
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It turns out that this educated guess holds for # up to
183, but not beyond that. (The minimum value of V on
every BT with n < 220 and the types of trees where
they are achieved are available at the GitHub repository
https://github.com/biocom-uib/var_depths.) When n =
184 there is at least one bifurcating tree with smaller V'
value than Bjgs. Indeed, consider the tree T depicted in
Fig. 2. It has 174 leaves of depth 8, 9 leaves of depth 7
and one leaf of depth 2 and hence V(T) ~ 0.2379, while
V(B1ga) =~ 0.2382.

So, we establish now two results on the trees T € BT,
that achieve the minimum V value. On the one hand, the
next theorem provides a set of necessary conditions for
the trees that yield the minimum V value in BT, for
n > 5. The proof, split into a series of lemmas, is given in
Section SN-6 of the Additional file 1.

Theorem 2 If T € BT} has the minimum value of 'V,
then it is of some type Ty, A (see Definition 3 in the
“Methods” section) with 5 < Iy < --- < [; < §(T) — 2.

On the other hand, the next theorem states that the
maximally balanced trees almost never achieve the min-
imum V value on BT. We provide its proof in Section
SN-7 of the Additional file 1.

Theorem 3 As m grows to 0o, the fraction of values n €
(2,2™] such that V (By,) is minimum on BT, tends to 0.

Theorem 2 implies the correctness of Algorithm 1 for
the computation of the minimum value of V on BT,
(the equations (10) and (11) used in it are given after
Lemma 2 in the “Methods” section). The implementa-
tion of this algorithm in R and in Python is also available
at the GitHub repository https://github.com/biocom-uib/
var_depths.

This algorithm runs in time O(nlog(n)). Indeed, for
everyj > 1, the set

(...

has (mj—4) elements (where m = [log,(n)]) and for each

sequence (I1,...,/;) in this set, Algorithm 1 performs O())
operations, and therefore the total number of operations
isin

,lj)GNj|5§ll<---<lj§Wl}

m—4

—4
o> (m], )j = 0 (2" °m) = O(nlog(n)).

j=1

Expected value of V under the yule model

Let V}, be the random variable that chooses a phylogenetic
tree T € BT, and computes V(7). Its expected value
under the Yule model is given by the following result. In
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Algorithm 1: MinVarDelta
Data: n
Result: Min := minimum value of V on BT };
L := set of vectors (11, o l,') such that

V (Tn;l1 ,,,,, Z/) is minimum
1 Compute m := Llogz(n)J and k:=n — 2";

2 if k = 0 then

3 ‘ Min = 0and L = {#}}

4 else

5 | Min=2k@" —k)/n*and L = ;

6 for (I1,...,0;) € N, withj > 1 and
5<h<---<lj<mdo

7 if (), (24— 1) 2" —kand [y < m—1)

or ]:_ 2li=1 _ 1) > 2" _ k) then
<Zz_1 (

8 Compute Vo =V (T,,;l1 ,,,,, A using
equations (10) and (11);

9 if Vy < Min then

10 ‘ Min:Voansz{(ll,...,lj)}

11 else

12 if Vo = Min then

13 ‘ LZLU{(h,...,lj)}

14 end

15 end

16 end

17 end

18 end

19 Return Min and L;

it, and henceforth, H,, denotes the n-th harmonic number,
H, = Zle 1/i.

Theorem 4 For everyn > 1,

2(n+ 1) 1
n

Ey (V) = Hy o+~ = 5.

To prove this formula, notice that, by equation (3),

if we denote by S? and S2 the random variables that
choose a tree T € BT, and compute S (T) and S(T)?,
respectively, then

1 1
Ev(Va) = —Ey () = Ev (). @)
Now, the expected value Ey (S2) was computed in Theorem 2
in [6]:
Ey (53)=4n* (H2=H{® ~2H, ) ~2nH, + 111> —n_ (5)
where H? = S 1/i% As to Ey< )

given by the next proposition, whose proof we provide in
Section SN-8 of the Additional file 1.

), its value is
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Proposition 1 For every n > 1,
Ey (5,52)) = (2H3 — 3H, —2H® + 3) .

Theorem 4 is then deduced from (4), (5), and this propo-
sition as follows:

1 1
Ey(Vi) = SEy (S?) = —Ev (S7)

= 4H? — 4H? — 6H, + 6 — 4H?> + 4H?

2 1
+8H, + —H, — 11+ —
n n

2 1
=<2+>Hn+—5.
n n

Remark 1 Using that H, = In(n) + O(1) (see, for
instance, [20, p. 264]) and that Ey(S,) = 2n(H, — 1)
[27, Appendix], we have that

Ey (Sy) = 2H, — 2 ~ 2In(n)

2(n+1)
n

1
Ey(Vy) = H, + - — 5~ 2In(n)

and therefore the expected values under the Yule model of
both the mean and the variance of the leaves’ depths of a
bifurcating rooted tree grow asymptotically as 2 In(n).

Expected value of V under the uniform model
The expected value under the uniform model of the ran-
dom variable V, is given by the following result.

Theorem 5 Foreveryn > 1,

2n—1)(n—-1) n—-1 (2n-—-2!
3n 2 @2un=3)r

Ey(Vy) =

To obtain this formula, we shall use the following iden-
tity, which is implied again by Eq. (3):

1 1
Eu(Vy) = ~Eu (55,2)) — —Eu(S}). ®)

Now, Ef ( 5,2)
rences, which we shall solve using Proposition 6.

) and Ey; (S2) satisfy the following recur-

Proposition 2 For every n > 2,

n—1

@Y\ _ (2) (2}’1 — 2)!!
k=1

Proposition 3 For every n > 2,

Page 8 of 17
n—1
Eu(Sp) = 2) ConiEu (S7)
k=1
502 (2n— 2!
— . _u(5n—2).
2 (2n-3)!

The proofs of these propositions are provided in Sections
SN-9 and SN-10 of the Additional file 1, respectively.

Proposition 4 For everyn > 1,

O\ a o Q=2
Eu (sn ) = @n—Dn—3n o
2 _ —
Ey (531) _ n(10n 1) B n(bn+1) . 2n —2)!!
3 2 (21— 3)!I!

Proof By Proposition 2, the sequence Eu< 2 ) is the
solution of the recurrence

n—1
Xu=2)  CipiXx—3n+2n-
k=1

@n— 2!
2n —3)!!

with initial condition X1 = Ey; <S§2)> = 0. By Proposition 6,
this solution is

@\ _ of" _ .(271—2)!!
EU(S,,)—8<2)—|—3V1 3n @30
2n — 2)!!
:4n2—n—3n-g.
2n —3)!!

As for the sequence Eyy (Sﬁ), by Proposition 3 it is the
solution of the recurrence

n—1
n
Xy =2 ConiXi — 10 <2>

k=1
3 +(5<n>+5 )(2}1—2)!!
" 2) 2" ) @an—3)n

with initial condition X; = E; (S%) = 0. By Proposition 6,
this solution is

20(")+20 ">+3 (5(" +3>L_2)”
3 <2 " 2) ") an—3n

101 —n 5n:+n Q2u—2)N
3 2 2n — 3"

Eu (S)

O

Combining identity (6) with Proposition 4, we finally
obtain the closed formula for E;;(V},) given in Theorem 5.
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Remark 2 Using Stirling’s approximation for large facto-
rials we have that
@i-21 (2 (m-11)°

@n=3)! 2n —2)!

(21 2x(n = D(n — 1)~ Le~ D)
2 (2n — 2)(2n — 2)21—2e—(2n-2)

7n (7)

Then, using the following expression for E;(S,,) established
in [31, Thm. 22]

_(Cn=2)N
we have that
2n — 2)!!
Fu (51)= (n 3;' 1~ Jmn
Eu(V)= (2n Din—-D n—-1 @n=2!" gn
31 21 (2n—3)!1 3

So, against what happened with the Yule model (see
Remark 1), the expected values under the uniform model
of the mean depth and the variance of the depths have
different asymptotic orders.

Bonus results

As a by-product of our computations, we have been able
to obtain also closed formulas for the variance of the
Sackin index and the total cophenetic index under the
uniform model as well as of their covariance.

Theorem 6 Let S, and ®,, be, respectively, the random
variables that take a phylogenetic tree T € BT, and com-
pute its Sackin index S(T) and its total cophenetic index
O (T). Then, foreveryn > 1,

1. The variance of S,, under the uniform model is
n(10n?® — 3n — 1)

3
n+1\ Qun-2)N!
_< 2 ) (2n —3)!!

5 [(2n—2)1\?
B it
(21— 3
2. The variance of ®,, under the uniform model is

5 _(n\ @n—1)(7n* —3n—2)
ou(®n) = (2) 30

n\5m2—n—2 (2n—2)!!
2 32 2n —3)!!

1(n>2((2n—2)!!>2
a\2) \@n-3n

05(Sy) =
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3. The covariance of S,, and ®,, under the uniform
model is

Coviy (S, By) — n\ 26n* —5n—4  3n+2(n\ 2n—2)!!
ovutom Tn) =\ o 15 8 \2)an—_3n

_n(n) @n—2)11\?
2\2 ((2n—3)!!>
The value of O’LZI(SM) can be obtained directly from

Proposition 4 and the expression for E¢;(S,,) recalled in (8)
as follows:

05 (Sw) = Eu (S2) — Eu(Su)?
10, 1 nGrt1) Q-2 2((2;1—2)!! )2
= —n —-n— —n -1
3 3 2 @i—3) 2n—3)1
S0, 1, (2n—2)!!)2 A+ 1) (2n— 2
=3t ot o <(2n—3)!! T T2 -3

The proofs of (2) and (3) are longer, and they consist in
finding recurrences for O‘LZI(CD;,,) and Covy(S,, ®,) of the
same type as those given in Propositions 2 or 3 and then
solving them using Proposition 6. We give these proofs
in Sections SN-11 and SN-12 of the Additional file 1,
respectively.

Using the limit behaviour (27 — 2)!1/(2n — 3)!!'~ /7n
(see (7)) it is straightforward to check that the formula for
crf[ (Sy) given in the last theorem is in agreement with its
asymptotic behaviour established in [4, Rem. 3]. Indeed,

10 — 3.
il N C)

n(10n2 —3n — 1) <n+1

2
S,) ~
Uu( ) 3 9

)W —nlan~
For the asymptotic behaviour of ULZI(CD,,) and
COV%I(S,,, ®,,), similar computations show that

56 — 157 5 52 — 157w 4
——n’, Covy(Py, Sp) ~ ne.

2
o ~
o1 (Pn) 240 60

From these expressions we obtain that the limit
behaviour of Pearson’s correlation coefficient of S,, and ®,,
under the uniform model is

52—15m

60
pu(Sn, Pp) ~ ————r=
10—37 _ 56—157
3 240

~ 0.965.

It should be mentioned that, under the Yule model, the
limit of Pearson’s correlation coefficient of S,, and ®,, is
around 0.89 [6].

To double-check our formulas, we have computed
the values of Ey(Vy), Ey(Vy,), GLZI(SH), oLZI(CD,,), and
Covy (S, ®,),forn = 3,...,8, from the values of V, S and
® on all trees in the corresponding BT, and they agree
with the figures given by our formulas: these values are
given in Table 1. The R script used in these computations
is available on the GitHub repository https://github.com/
biocom-uib/var_depths.
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Table 1 £/(Vy), Ey(Vn), 05 (Sp), 07 (@n), and Coviy(Sn, @) for

n=3...,8

n 3 4 5 6 7 8

Ey(Vn) 02222 04583 0.6800 0.8833 1.0694 1.2402
Ey(Vn) 02222 05500 0.9371 13624 1.8145 22864
05(.5”) 0 0.1600 0.7755 22358  4.9991 9.5765
05(<I>n) 0 0.6400 4.7755 19.5828 589752 146.2314
Covy(Sn, ®n) O 03200 19184 65805 17.0441 37.0899

Discussion

When the number # of leaves is smaller than 184, V classi-
fies the maximally balanced trees B, (as well as those trees
depth-equivalent to them) as the most balanced bifur-
cating rooted trees with n leaves. But this last property
fails for almost all numbers #n of leaves larger than 184.
So, we have provided a quasilinear time algorithm that
produces, for any given #, the minimum V value on the
space BT, of bifurcating rooted trees with » leaves and
the type Tyy,....l of trees achieving it. We have run our
algorithm for every # up to 22°. The results are available
at the GitHub repository https://github.com/biocom-uib/
var_depths companion to this paper. Figure 4 depicts the
minimum V values for # = 27 to 21°. In this scatter plot,
the red dots correspond to values of # for which V'(B,)) is
minimum.

The computations carried out show that the trees with
minimum V value present several curious regularities. For
instance, Fig. 4 seems to hint a fractal structure in the
sequence of minimum values of V, as well as a tendency to
decrease with . Let us mention some other such observed
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regularities, of which we have only been able to prove one,
leaving the verification of the rest as open problems:

e For all tested n, the minimum value of V on BT, is
achieved at only one type of trees Ty, and hence
the tree in BT}, with minimum V value is unique up
to depth-equivalence. We have not been able to
prove this uniqueness in general, but we conjecture
that it holds for every n.

e For all tested n > 28, the values of n for which the
minimum value of V on BT, is reached at the
maximally balanced tree form small intervals around
2" of the form [ 2" — xg, 2™ + ky,] (see the red
patches in Fig. 4).

We have been able to prove that, in the left-hand side
end of these intervals, xp is always 29. More
specifically, if n €[ 2" — 29, 2], the minimum value
of V on BT, is always reached at B, but when
n=2" —30and m > 9, the minimum value of V on
BT, is always reached exactly at the trees of type
Ty;6, which are not of type F,,. We provide a proof of
this property in Section SN-13 of the Additional file 1.
As far as the right-hand side end 2" 4 &, of these
intervals goes, for the range of values of m that we
have tested we have obtained that &, ~ 0.1015m311;
see Fig. 5. Since in the proof of Theorem 3 (see
Section SN-7 of the Additional file 1) we have
obtained, for large enough m, an upper bound ~ %m3
for k;,,, we conjecture that &, is actually in © (mB)

e Forall tested n, if /1,. ..,/ are such that (with the
notations m = |_log2 (n)J and k = n — 2™ used

Fig. 4 Scatter plot of the minimum V values on BT, for n between 27 and 2'°. The values of n for which the minimum of V is achieved at B, are

drawn in red
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Fig. 5 Scatter plot of the points (m, k), form =9,...,25.In red, the curve y = 0.1042x>", which gives the best fit of k, as a function of m

20 25

n

throughout this paper) j > 1 and

k <2m — ]i=1 (211' — 1), and if Toy,...; has
minimum V value on BT, then Tyt131,...; has also
minimum V value on BT}, ;. Again, we have not
been able to prove this fact, but we conjecture that it
also holds for every n. We should mention here that
when j = 0, we have that k < 2 — Y”._ (24 — 1),
but it may happen that T;;,— has minimum V value on
BT, and T),;1,— does not on BT, ;. So, the premise
j = 1is necessary for the implication to be valid.

e In relation to this last point, for all tested intervals
[27,2™+1) the sequence formed by the lengths of
segments of consecutive numbers n of leaves such
that the trees Ty, achieving the minimum V'
value on BT} have the same [, . . ., lj values presents
some intriguing regularities. Take for instance the
sequence corresponding to m = 12, presented in
Table 2 in reversed order. The figures in this table
mean that, when n descends from 213 — 1 to 22, for
the first 29 values the trees T,,....J achieving the
minimum V value on BT}, have the same /1, ..., ;
(actually, as we have mentioned above, they have
j = 0); then, the same happens with the next 2 values
of n; then, the same happens with the next 25 values
of n; and so on. As we can see, the sequence ends in
52 each two lines, in 88 each four lines, and in 132
each eight lines. And, as m increases, the different
sequences associated with it present the same pattern

with practically the same numbers: see, for instance,
the sequence associated to m = 13, presented in
Table 3.

Conclusion

In his seminal paper on the shape of phylogenetic trees
[39], Sackin postulated the existence of a direct associa-
tion between the degree of imbalance of a rooted bifur-
cating tree and the variation of its leaves’ depths. This led
several authors to use the variance V(T) of the depths
of the leaves of a phylogenetic tree T as a measure of its
imbalance [25-27]. But this shape index based on Sackin’s
original proposal seems not to have prospered and the
phylogenetics community favoured instead what we call
nowadays the Sackin index S(T), the sum of the depths
of the leaves of T, which, despite its name, was actually
introduced by Sokal [41, 42]. In this paper we have investi-
gated some properties of V as a balance index: the trees on
which it achieves its extremal values for any given number
of leaves and its expected value under the Yule and the
uniform models for bifurcating phylogenetic trees.

With respect to the extremal values of V, its maximum
value on the space BT, of bifurcating trees with # leaves
is always reached at the comb, and when the number of
leaves 7 is smaller than 184, its minimum value on BT,
is achieved at the maximally balanced tree (together with
those trees depth-equivalent to it). But from n = 184 on,
this last property fails for almost all numbers # of leaves.
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Table 2 Sequence, in reverse order, of the numbers of consecutive values n €[ 2'?,2'3) such that the trees Ty, ..., achieving the
minimum V value on BT}, have the same /, ..., J;

29 2 25 12 29 2 18 28 29 2 25 12 29 2 7 52
29 2 25 12 29 2 18 28 29 2 25 12 21 88

29 2 25 12 29 2 18 28 29 2 25 12 29 2 7 52
29 2 25 12 29 2 18 28 29 2 25 12 132

29 2 25 12 29 2 18 28 29 2 25 12 29 2 7 52
29 2 25 12 29 2 18 28 29 2 25 12 21 88

29 2 25 12 29 2 18 28 29 2 25 12 29 2 7 52
29 2 25 12 29 2 18 28 27 206

29 2 25 12 29 2 18 28 29 2 25 12 29 2 7 52
29 2 25 12 29 2 18 28 29 2 25 12 21 88

29 2 25 12 29 2 18 28 29 2 25 12 29 2 7 52
29 2 25 12 29 2 18 28 29 2 25 12 132

29 2 25 12 29 2 18 28 29 2 25 12 29 2 7 52
29 2 25 12 29 2 18 28 29 2 25 12 21 88

29 2 25 12 29 2 18 28 29 2 25 12 29 2 7 52
29 2 7 442

Since the maximally balanced trees were considered “the
most balanced trees” by Shao and Sokal [41] and they are
classified (sometimes tied with other trees) as most bal-
anced by many other balance indices, including the Sackin
index S, this hints that V is not suitable as a balance index
for bifurcating phylogenetic trees with large numbers of
leaves, although it can still be of interest as a shape index.

We have then provided a quasilinear algorithm that pro-
duces, for every n, the minimum V value on the space
BT, of rooted bifurcating trees with # leaves and the trees
achieving it. This algorithm simply searches for these min-
imal trees in a suitably small set of candidate tree types
Tyyy,..;; (Withj > 0and 5 <1 < -+ < f; < |_log2(n)J),
defined as those bifurcating trees containing leaves only
of maximal depth § and submaximal depth, § — 1, plus
a single leaf of each depth 6 — [;, for i = 1,...,j. The
trees depth-equivalent to maximally balanced trees are
exactly those of type T,,_. Implementations both in R and
Python of this algorithm are available at the GitHub repos-
itory https://github.com/biocom-uib/var_depths. Unfor-
tunately, we have not been able to find a closed formula
that, given n, gives the type of trees Ty, 4 in BT, with
minimum V value or even such minimum value, without
resorting to a search procedure.

The second main contribution of this paper are the
closed formulas for the expected value of V under the Yule
and the uniform models, as well as for the variance under
the uniform model of the Sackin index S and the total
cophenetic index @, and for their covariance (Theorems
4 to 6). These formulas are explicit and hold on spaces
BT, of bifurcating phylogenetic trees with any number n

of leaves, and therefore they can be meaningfully used in
tests involving trees of any size. Additionally, the formu-
las for the variances of S and & can be used to properly
standardize them in each BT, relative to the uniform
model. Recall that the standardization of a shape index
relative to a probabilistic model of phylogenetic trees is
performed, in principle, by subtracting to the index its
expected value and dividing the result by its standard
deviation. But, for instance, because it lacks of a closed
formula for o7;(S;), the current version of the R package
apTreeshape standardizes the Sackin index relative to
the uniform model by dividing by the square root of the
asymptotic approximation (9) of GLZI(S,,) [5].

Methods

Trees depth-equivalent to maximally balanced trees

An internal node v of a bifurcating tree T is said to be
balanced when the numbers of descendant leaves of its
two children are as similar as possible: equal if v has an
even number of descendant leaves, and differing by 1 if
the number of descendant leaves of v is odd. In other
words, a node v with k descendant leaves is balanced if
its two children have |k/2] and [k/2] descendant leaves,
respectively.

Definition 1 A bifurcating tree T is maximally balanced
when all its internal nodes are balanced.

Recurrently, a bifurcating tree is maximally balanced
when its root is balanced and both subtrees rooted at the
children of the root are maximally balanced. This easily
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Table 3 Sequence, in reverse order, of the numbers of consecutive values n €[ 2'3,2') such that the trees Toih .. achieving the

minimum V value on BT}, have the same Iy, ..., ;

29 2 25 12 29 2 18 28
29 2 25 12 29 2 18 28
29 2 25 12 29 2 18 28
29 2 25 12 29 2 18 28
29 2 25 12 29 2 18 28
29 2 25 12 29 2 18 28
29 2 25 12 29 2 18 28
29 2 25 12 29 2 18 28
29 2 25 12 29 2 18 28
29 2 25 12 29 2 18 28
29 2 25 12 29 2 18 28
29 2 25 12 29 2 18 28
29 2 25 12 29 2 18 28
29 2 25 12 29 2 18 28
29 2 25 12 29 2 18 28
29 2 25 12 29 2 13 302
29 2 25 12 29 2 18 28
29 2 25 12 29 2 18 28
29 2 25 12 29 2 18 28
29 2 25 12 29 2 18 28
29 2 25 12 29 2 18 28
29 2 25 12 29 2 18 28
29 2 25 12 29 2 18 28
29 2 25 12 29 2 18 28
29 2 25 12 29 2 18 28
29 2 25 12 29 2 18 28
29 2 25 12 29 2 18 28
29 2 25 12 29 2 18 28
29 2 25 12 29 2 18 28
29 2 25 12 29 2 18 28
29 2 25 12 29 2 18 28

29 2 25 12 29 2 7 52
29 2 25 12 21 88

29 2 25 12 29 2 7 52
29 2 25 12 1 130

29 2 25 12 29 2 7 52
29 2 25 12 21 88

29 2 25 12 29 2 7 52
28 204

29 2 25 12 29 2 7 52
29 2 25 12 21 88

29 2 25 12 29 2 7 52
29 2 25 12 1 130

29 2 25 12 29 2 7 52
29 2 25 12 21 88

29 2 25 12 29 2 7 52
29 2 25 12 29 2 7 52
29 2 25 12 21 88

29 2 25 12 29 2 7 52
29 2 25 12 1 130

29 2 25 12 29 2 7 52
29 2 25 12 21 88

29 2 25 12 29 2 7 52
28 204

29 2 25 12 29 2 7 52
29 2 25 12 21 88

29 2 25 12 29 2 7 52
29 2 25 12 1 130

29 2 25 12 29 2 7 52
29 2 25 12 21 88

29 2 25 12 26 598

implies that, for every number # of nodes, there is only
one maximally balanced tree with # leaves. Indeed, in a
maximally balanced tree, the numbers of leaves of the sub-
trees rooted at the children of the root are fixed, because
the root is balanced, and then, since these subtrees are
maximally balanced, by recurrence they are unique. We
shall denote by B,, the maximally balanced bifurcating tree
with #n leaves. Figure 6 depicts the trees B, with n =
6,7,8 leaves. Notice that Bg is fully symmetric: for each
internal node, the pair of subtrees rooted at its children
are isomorphic. In fact, it is straightforward to prove by
induction that, for every m € N, the maximally balanced
tree By is the fully symmetric bifurcating tree with 2™
leaves, all of them of depth m.

We provide in Proposition 5 below several alternative
characterizations of the trees that are depth-equivalent
to maximally balanced trees. One of these characteri-
zations says that they are exactly the bifurcating trees
with minimum Sackin index, characterized recently by M.
Fischer in [15]. Let us recall Fischer’s construction of her
minimal Sackin trees.

Definition 2 For everyn = 2" + k, with m = Llog2 (n)J
and 0 < k < 2™, atree T € BT, is of type F, when
it is obtained from the fully symmetric bifurcating tree
Bym+1 by removing from it 2™ — k cherries and replacing
them by their roots, which become leaves of depth m; cf.

Fig 7.
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Fig. 6 Three maximally balanced trees. The tree with 8 leaves is fully symmetric

Equivalently, each tree T € BT, of type F,, with n =
2" 4+ kand 0 < k < 2™, is obtained from the fully sym-
metric bifurcating tree By by replacing k leaves in it (of
depth m) by cherries.

Remark 3 By construction, any tree of type Fom . has 2k
leaves of depth m + 1 and the remaining 2 — k leaves of
depth m. Therefore, all trees of type F,, for any given n, are
depth-equivalent, and in particular they all have the same
Vvalue, which can be easily seen to be

2k2" — k)

V (Fymyx) = e

Notice also that if n is a power of 2, then the only tree of
type F, is the corresponding fully symmetric tree B,,.

Proposition 5 For every T € BT, the following condi-
tions are equivalent:

~

T is of type Fy,.

2. There exists adgy € N such that §7(x) € {dy,do + 1}
for everyx € L(T).

. 187 (x) —S(T)| < 1 for everyx € L(T).

T is depth-equivalent to B,,.

W

The proof of this proposition is given in Section SN-2 in
the Additional file 1.

Fig. 7 The only two trees in BT ¢ of type g as obtained from the fully symmetric tree Bg by removing 2 cherries: in the left-hand side tree, the
cherries (3,4) and (7,8) are replaced by single leaves 3 and 7, respectively, while in the right-hand side tree the cherries replaced by single leaves are
(5,6) and (7,8). The left-hand side tree is the maximally balanced tree Bg, the other is only depth-equivalent to it
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A family of trees that generalize those depth-equivalent to
maximally balanced

In our study of the bifurcating trees achieving the min-
imum V value we have encountered the family of trees
introduced in the next definition.

Definition 3 A tree T € BT, is of type T4 With
j=20and2 <l <--- <lj <8(T)— 2, when it has a
single leaf of depth 8(T) — I;, foreachi =1, ...,j, and the
rest of its leaves have depths 5(T) or §(T) — 1.

Let us emphasize the fact that this definition implies
that if 7" is of type Tyy,, 4 with j > 1, then §(T) > 4
and therefore that if # > 4, the trees of type T, J
do not have leaves of depth 1. Also notice that the trees
of type F, are those of type Ty,_ (i.e, of type Ty, i
with j = 0), because by Proposition 5, a tree T is of
type F, if, and only if, all its leaves have depths §(T) or
8(T) — 1.

For every tree T € BT, we shall denote henceforth
its numbers of leaves of depths 6(7) and §(T) — 1 by
po(T) and p;1(T), respectively. The next lemma gives the
value of p1(T) in a tree T of type Tyy,, . as a function
of n,l,...,l; we provide its proof in Section SN-3 in
the Additional file 1. Since if T is of type T}y, then
po(T) + p1(T) + j = n, this lemma implies that the mul-
tiset of depths of a tree of type Ty,...; depends only
on n,11,...,l; and therefore that these types of trees are
depth-equivalence classes.

Lemma l Let n = 2™ + k with m = Llogz(n)J and k =
n — 2. For every tree T of type Toy,....1» with j > 0 and
2<lh<--- <lj§5(T)—2.‘

1. Itk +Y)_, (25 — 1) = 0, then p; (T) = 0 and the
tree is fully symmetric.
2. If0 < k+Y"_; (24 — 1) < 2™, then
pi(T) =2"—k—3"_ (24 — 1) and 8(T) = m+1.
3. Ifk+ 5 Y (27 —2) > 27, then
(1) =3-2"—k-3_; (2"~ 1) and
8(T) = m + 2. '
4. Ifk+ 33 (2" —2) <2m <k+ Y, (2" —1),
then there does not exist any tree T of type Tuy,....1;-

The V value of a tree of type Toy,....; is given by the fol-
lowing formula, whose easy proof we also give in Section
SN-3 in the Additional file 1.

Lemma 2 If T is a tree of type Ty, .., Iy then

2

1 J j
VID=— | n|pM+ 3 1 || oD+ )k
i=1 i=1
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Combining the last two lemmas, we obtain that, if n =
2" 4 k with m = [log,(n)], then, for every tree T of type
T}’l;ll ..... l]':

o 1Y) (2i—1)<2m—k

; 2
J J :
2" — k=3 (24 - 12 -1) <2m—k—2(2lz—li—1))
v = lzln B "2 ‘

o« X (25 -1) > 2"k

i=1
2

. 2
J J :
3.2 —k—Y (21 - 12-1) (3~2’”—k—2(211—1,.—1)>
i=1
n - .

V(T) =
n

(11)

In particular, when j = 0, the formula (10) applies and
we obtain

2" —k

2" )2 2k —k
V) = V(Ty) = — _ ¢ )? _ 2k( )

2 2

n n

in agreement with Remark 3.

A general solution for a family of recurrences
For everyn > 2 and forevery 1 < k <m — 1, set

c _1(1/1) 2k — 311 (201 — k) — 3)!!
kon=k =35\ k (21— 311 '

n

Notice that, since (}) = (,”;), Cin—k = Cr—ion-

It is straightforward to deduce from (2) that, for every
T € BT, withn > 2,if Tp € BT(Xy) and T),_, €
BT (X,i) (where X C[n], with [Xx| = k, and X =
[ n] \Xy) are its subtrees rooted at the children of its root,
then

2Ckn—k
()
This will entail that the expected values under the uni-

form model appearing in this paper turn out to satisfy
recurrences of the form

Pyn(T) =

Pu,k(Tk)PU,n—k (Tylsz) :

n—1

Xy =2 Cu X+ p(m) +q(n) -
k=1

2n—=2)!!
2n —3)!!
with p(x),q(x) € R[x] polynomials without an inde-
pendent term. The next proposition solves this kind of

equation. We provide its proof in Section SN-4 in the
Additional file 1.

Proposition 6 The solution X, of the equation

el Lon\ @Qn—2l <~ (n
Xn:zl;Ck’nka+lZ;al<l)+(2n—3)!!Zbl(l>

=1
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(Where r,s > 1 and ay,...,a,,b1,...,bs € R) with given

initial condition X7 is

s+1 r
_(n (2n —2)!! ~(n
Xn = Z“‘(z) BTN Zb‘(z)

=1 =1
with
a=X1—a
A [- 2L —=2)!! (b b4
=—|—-—+——=), [=2,...,
NCYRENE <l+l—1 s
o+
T T as—nn
~ @ -3)
bl—( ) a, l=1,...,r

e
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