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Abstract 

Background: Due to continued advances in sequencing technology, the limitation 
in understanding biological systems through an “-omics” lens is no longer the genera-
tion of data, but the ability to analyze it. Importantly, much of this rich -omics data is 
publicly available waiting to be further investigated. Although many code-based pipe-
lines exist, there is a lack of user-friendly and accessible applications that enable rapid 
analysis or visualization of data.

Results: GECO (Gene Expression Clustering Optimization; http://www.theGE COapp 
.com) is a minimalistic GUI app that utilizes non-linear reduction techniques to rapidly 
visualize expression trends in many types of biological data matrices (such as bulk 
RNA-seq or proteomics). The required input is a data matrix with samples and any type 
of expression level of genes/protein/other with a unique ID. The output is an interac-
tive t-SNE or UMAP analysis that clusters genes (or proteins/other unique IDs) based on 
their expression patterns across the multiple samples enabling visualization of expres-
sion trends. Customizable settings for dimensionality reduction, data normalization, 
along with visualization parameters including coloring and filters, ensure adaptability 
to a variety of user uploaded data.

Conclusion: This local and cloud-hosted web browser app enables investigation of 
any -omic data matrix in a rapid and code-independent manner. With the continued 
growth of available -omic data, the ability to quickly evaluate a dataset, including 
specific genes of interest, is more important than ever. GECO is intended to supple-
ment traditional statistical analysis methods and is particularly useful when visualizing 
clusters of genes with similar trajectories across many samples (ex: multiple cell types, 
time course, dose response). Users will be empowered to investigate -omic data with a 
new lens of visualization and analysis that has the potential to uncover genes of inter-
est, cohorts of co-regulated genes programs, and previously undetected patterns of 
expression.
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Background
The next generation sequencing revolution has resulted in the production of an enor-
mous amount of data [1, 2]. While much of this data is available in public repositories 
or supplementary manuscript material, there remains a bottleneck in a broader public 
analysis of the data. Thus, the ability to further our understanding of the world thru an 
-omics lens is limited not by the production of data, or even its accessibility, but by our 
ability to analyze it. Although others have developed pipelines to aid in re-analyzing 
publicly available data [3], it is important to develop analysis pipelines that enable quick, 
accessible, and easy use of already available data matrices to encourage their broad uti-
lization. Currently, there are numerous bioinformatic pipelines to statistically analyze 
-omic data, however the majority are dependent on being able to run code, an expertise 
lacking for many biologists. Thus, there is a great need for GUI (Graphical User Inter-
face) based programs that circumvent prerequisites for coding skills [4–6]. An easy-to-
use data analysis tool which also facilitates data exploration, can lead to new insights. 
Importantly, since many publications are accompanied by already processed data matri-
ces, a rapid and user-friendly method to analyze these data-matrices is informative and 
could broaden and deepen analysis of publicly available data.

Many classic differential expression analyses result in outputs of tables of genes with 
statistics, volcano plots, or heat maps showing strongly differentially expressed genes 
between samples [7–9]. Although these analyses are useful, they also make it difficult to 
visualize the data globally and identify cohorts of genes that might be behaving in a simi-
lar manner across samples. Identifying these cohorts of genes can lead to investigation 
of impacted gene programs or classes of ontology that might be overlooked when sort-
ing through list of genes by significance alone. Additionally, many of the bulk RNA-seq 
pipelines for differentially expressed genes cater to paired analysis—generally between a 
control and experimental samples. This can make comparisons across a cohort of sam-
ples such as a dose–response curve, multiple genotypes, and/or time courses very chal-
lenging. Although there have been specialized pipelines for the analysis of time courses, 
in many cases these pipelines are still outperformed by pairwise analysis [10, 11]. There 
is a need for analyses that can visualize gene patterns and trends across all samples at the 
same time.

The increased quantity of sequencing data and the rise of single cell sequencing data 
has been reliant on more complex bioinformatic analyses, which has further encouraged 
a merge of the fields of computer science and biology [2, 12, 13]. Several unsupervised 
approaches have been borrowed from machine-learning such as PCA (Principal Com-
ponent Analysis), t-SNE (t-distributed Stochastic Neighbor Embedding), and UMAP 
(Uniform Manifold Approximation and Projection). PCA is a mathematical approach 
that uses a linear dimensionality reduction method to investigate data relatedness [14, 
15]. In essence, PCA reduces the data to eigenvectors showing how related data points 
are to one another. The dominant two principal components can usually separate data 
based on the largest variance. Although PCA can rapidly reduce complex data, visu-
alizing highly dimensional data with PCA has limitations [14, 15]. Non-linear dimen-
sionality reduction using probabilistic approaches, such as t-SNE [16] and UMAP [17], 
better enable visualization of complex-multidimensional data in a low dimensional 
space. Although these techniques were developed by computer scientists for machine 
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learning applications, they have found a prominent home in analyzing the growing 
expanse of single cell -omic data [18, 19]. These non-linear dimensionality reduction 
techniques better preserve the complexity of the data and importantly, the closeness of 
data points can be used to draw conclusions on the relatedness between these points. 
Previous publications have shown the value and usefulness of non-linear over linear 
dimension reduction and the ability to customize and optimize the parameters [19–21].

Here we present GECO (Gene Expression Clustering Optimization), a minimalistic 
GUI app that utilizes non-linear reduction techniques to visualize expression trends 
in biological data matrices (such as bulk RNA-seq, single cell RNA-seq, or proteom-
ics). The required input is a data matrix with samples and any type of expression level of 
genes/protein/other unique ID. The output is an interactive t-SNE or UMAP graphical 
representation that clusters genes (or proteins/unique IDs) based on expression patterns 
across samples to enable visualization of trends. Each data point on the plot is one gene/
protein/other unique ID with the expression pattern across all samples used to deter-
mine its position and location relative to other data points. Features of GECO include:

• User-friendly Streamlit run app accessed through a cloud-hosted website (no code, 
downloading, or installation needed). (http://www.theGE COapp .com)

• Option to run Streamlit locally on user’s computer with network host capability for 
temporary sharing.

• Customizable parameters for t-SNE and UMAP generation (optional PCA initial 
reduction).

• Optional GPU driven clustering for t-SNA and UMAP generation.
• Save function for t-SNE and UMAP enabling re-opening of a saved interactive ses-

sion (important for stochastic analysis like t-SNE and UMAP where each run will 
yield variation and a different cluster shape).

• Flexible data type input.
• Optional normalization techniques, filtering, and threshold cutoff.
• Incorporation of curated marker genes, gene searching, and highlighting function.
• Autogenerated bar plot, correlation clustermap (with significance calculated), and 

heatmap expression of selected genes.
• Generation of downloadable gene list based on clustering and filtering.
• Large selection of colors, inversion and log of scale functions, and.png generation of 

plots to facilitate user flexibility based on needs/preferences.

Implementation
Architecture

All code for GECO was written in Python 3.7 and uses Streamlit (https ://www.strea mlit.
io/) and Plotly (https ://plotl y.com/) for GUI and interactive data visualization. Streamlit 
is a new open source app framework that was chosen for its relative simplicity to imple-
ment a graphical interface to the python back end code. All source code, install files, 
and install directions for GECO are available on github (https ://githu b.com/stars torms 
9/geco; and Additional file 1). GECO is intended to be used without any programming 
knowledge. A cloud-hosted website version of GECO thru Streamlit for Teams (currently 

http://www.theGECOapp.com
https://www.streamlit.io/
https://www.streamlit.io/
https://plotly.com/
https://github.com/starstorms9/geco
https://github.com/starstorms9/geco
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in beta form) can be accessed at http://www.theGE COapp .com. In order to run GECO 
locally, step-by-step installation instructions are available on github. README docu-
mentation is provided in Additional file 2, including step-by-step instructions for data 
analysis and utilization of optional features (also available on github).

User interface

The Streamlit interface utilizes three main tabs: (1) a landing page that documents usage 
(Additional file 2: README), (2) a data loading, processing, and dimensionality reduc-
tion page (Fig. 1), and (3) a reduced data visualization page (Fig. 2). On each page, the 
sidebar provides access to the majority of the controllable parameters and the main 
screen shows the results. At the top of the sidebar interface is an assigned Session ID 
number which the user should save because uploading this ID number later allows the 
user to re-access the current session including the uploaded datasets and saved plots. 
Sharing the Session ID number is also an easy way to allow collaborators to explore 
shared datasets.

In the data visualization tab, the reduced dimensionality data can be investigated with 
a variety of customizable options. The visualization options were developed by investi-
gating various datasets with known trends and features and exploring the ways to high-
light these features most clearly. This strategy facilitated identification of interesting 
trends in new and unexplored datasets. For example, normalizing to a specific control 
type and selecting entries that have a high fold change relative to the control quickly 
highlights entries that were most affected by a given condition. The visualization tab also 
allows a user to select entries of interest and generate a bar graph, a correlation cluster-
map, and a heatmap to compare the subset of entries to each other.

Data input and output

In order to readily accommodate a wide variety of input data from disparate sources, 
GECO has a system for automatic data cleaning to ensure that the data loaded into the 
dimensionality reduction algorithms are properly formatted. It is important to note 
that GECO does not perform any statistical analysis or filter for statistical significance. 
If this is important for the user’s analysis, preprocessing and filtering of the dataset 
prior to uploading is recommended. During testing, any issues encountered with load-
ing test datasets were used to develop automatic solutions. For example, it was found 
that many datasets contain a significant quantity of entries with all 0′s or entries with 
some non-numeric characters, entries that can distort the output of the processing algo-
rithms. GECO provides simple options to remove these confounding entries. Addition-
ally, because naming conventions of samples and bio reps is highly varied, a system was 
implemented to recognize and group similarly named samples into coherently labeled 
sets.

After the data has been uploaded and processed through dimensionality reduction 
algorithms, the post-processed data can be saved and then visualized. Options are also 
available to manually enter or upload a comma separated list of entries of particular 
interest which are then marked prominently on the plot. Once specific groups of inter-
est have been identified, they can then be downloaded along with their relevant reduced 
dimensionality parameters for further analysis externally.

http://www.theGECOapp.com
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Algorithms

Three core algorithms were implemented for dimensionality reduction: PCA, t-SNE, 
and UMAP. Existing implementations of these algorithms were available as open 
source python modules. Due to the generally long processing time and high degree of 

Fig. 1 GECO app interface to generate reduced date. Once a data matrix is uploaded in the main window 
and samples are identified, this side bar is used to select the desired reduction type (t-SNE or UMAP). 
Normalization options include default settings of removing entries with all zeros and row normalization. 
Normalizing to a selected type is optional. Parameter options for t-SNE include initial PCA reduction, 
perplexity, learning rate, early exaggeration, and iteration number. UMAP parameters include number of 
neighbors, minimum distance, and distance metric. Standard default settings automatically appear, but links 
to t-SNE and UMAP parameter guides are provided to aid in exploration and customization
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parallelization possible with the t-SNE algorithm in particular, a CUDA based imple-
mentation called t-SNE-CUDA [22] was used for GECO. This t-SNE implementation 
is approximately ~ 50 times faster than standard CPU based algorithms and allows for 
rapid exploration of the effects that various hyperparameters such as perplexity and 
learning rate have on the final output. However, GPU enabled implementations of 
t-SNE are currently only available on Linux based systems and so a backup CPU based 
implementation is automatically utilized when the program is run on other systems. 
PCA analysis alone was insufficient to visualize the data clearly but it is used as a pre-
processor before the t-SNE algorithm runs in order to reduce the number of variables 
and make the calculation time for the t-SNE tenable. UMAP is another popular non-
linear reduction technique and is implemented here as it captures global correlations 
and structure more accurately compared to t-SNE which primarily focuses on local 

Fig. 2 GECO app interface for plotting and investigating reduced data. This tab and interface enable 
investigation of a previously saved plot of reduced data. The data displayed and color settings can be 
adjusted and filtered. Optional gene marker lists can be uploaded or input in the Gene ID box to be 
highlighted on the plot or further investigated in bar graph, clustermap, or heatmap. A gene list from a 
region of interest can be generated using the coordinate system
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structure. UMAP performance speed also far outperforms t-SNE (when run without 
t-SNE-CUDA) and is recommended for faster dimensionality reduction times.

There are two important normalization options that can be applied to the data 
before running the dimensionality reduction algorithm: (1) normalize per row and/
or (2) normalize to type. To normalize per row, every entry is scaled down by the 
sum of that row. This strategy ensures that the algorithm focuses only on the relative 
pattern for a given entry instead of just the overall magnitude of that entry. When 
no row normalization is performed for gene expression data the resulting reduced 
dimensionality plots are often simply aligned according to the overall expression 
levels and ignore more interesting, but subtle expression patterns that are shared by 
genes that are expressed in similar ways (Additional file 3: Fig. S1). Likewise, normal-
izing every entry to a selected type (e.g. control) prior to reducing the data ensures 
that the reduction algorithm focuses on the patterns that change relative to the con-
trol instead of looking at global patterns.

Results and discussion
Example usage 1: colon crypt cell types (bulk RNA‑seq)

The inner layer of the colon contains epithelial cells in a crypt structure including prolif-
erating stem cells. These stem cells give rise to immature daughter cells which then fur-
ther differentiate into mature cells. Previously, bulk RNA-seq was performed on sorted 
epithelial crypt populations including stem cells, immediate daughter cells (AbsPro, 
SecPDG), and more mature differentiated cells (Tuft, Ent, and EEC) (Additional file 4) 
[23]. A UMAP plot generated with GECO from this dataset and colored by assigned cell 
type shows a gene expression trajectory of stem related genes which transition to those 
associated with more differentiated cell types (Fig. 3a). All cell types have assigned genes 
that are strongly expressed (Fig. 3b). Coloring the data points (genes) by expression in 
stem cells reveals the clustering of highly expressed stem-associated genes to one region 
(Fig. 3c). Further, coloring by stem enrichment shows a smaller region where the genes 
are highly expressed in stem, and less expression in other cell types (Fig. 3d). Filtering 
the genes displayed on the plot by removing those genes that have an expression below 
a minimum (500 normalized counts) further highlights the cohort of genes enriched in 
stem cells (Fig. 3e). Zooming in on a region of interest and adding a filter for a 1.5-fold 
cutoff for stem enrichment reveals clustering of stem-associated genes (Fig.  3f ). As a 
comparative, validation analysis, we displayed stem cell marker genes (n = 27) that have 
been previously identified using traditional statistical differential expression methods 
(DESeq2), and they are clustered in this region as well [23].

In this example, GECO enables visualization of genes that are enriched in different 
cell types in the colon crypt. The clustering of genes assigned to each cell type follow 
the natural trajectory of stem cells to daughter cells to differentiated cells. Previously 
identified stem markers overlap well with the genes that survive the filtering cutoff of 
enriched expression in stem cells. Although the GECO plot in Fig.  3f displays many 
genes of potential interest, additional stringent filtering could also be applied to decrease 
the data points. However, in this case GECO is able to rapidly reveal the trajectory of 
gene expression changes in these cell types and identify stem-associated genes.
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Example usage 2: infection time course of F. nucleatum (bulk RNA‑seq)

Fusobacterium nucleatum (F. nucleatum) is a pathogen that frequently contributes to 
periodontal diseases. Previous work investigated the impact of F. nucleatum infection 
on human gingival fibroblasts using a time course of bulk RNA-seq (Additional file 5) 
[24]. A GECO generated UMAP plot colored by assigned type (Fig.  4a) reveals the 
genes are clustered tightly based on expression at different time points during injec-
tion (0, 2, 6, 12, 24, and 48 h). This is further evident when the continuous color set-
ting is used and a clear trajectory from 0 h (control) to 48 h post infection emerges 
(Fig. 4b). Altering the color setting to expression fold enrichment for 0 h versus 48 h 
(Fig. 4c) highlights the genes that are most highly expressed at 0 h (top left corner of 
the plot), compared to genes that are more highly expressed at 48hrs (bottom right 
corner of the plot). Cohorts of genes can be identified that are enriched at specific 
time points or that gradually increase or decrease over the duration of the infection. 

a b

c d

e f

Fig. 3 Investigation of intestinal stem genes using GECO. UMAP generated plot of colon crypt cell types 
with the following settings: row normalization, removal of zeros, number of neighbors = 35, minimum 
distance = 0.5, distance metric = Manhattan. Data points (genes) colored by a type, b average expression 
of assigned type, c stem expression, d stem enrichment, e stem enrichment with 500 (normalized counts) 
minimum expression level with box showing zoomed in region displayed in f. f Zoomed in region 
with stem enrichment coloring and a 1.5-fold cutoff. Highlighted in red circles are 27 genes that were 
previously identified as being statistically differentially expressed and enriched in stem cells in this dataset 
[23]. Previously published bulk RNA-seq of colon crypt cell types [23] was used to generate UMAP clustering 
and this dataset (.csv file) is available in Additional file 4
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a b

fd

e

c

Fig. 4 Gene expression patterns during infection time course. UMAP generated plot of F. nucleatum infection 
at time points 0, 2, 6, 12, 24, and 48 hrs with the following settings: row normalization, removal of zeros, 
number of neighbors = 15, minimum distance = 0.10, distance metric = Cosine, minimum expression = 1. 
Data points (genes) colored by a type, b type with continuous color setting, and expression of enrichment in 
c 0 h and 48 h. d Selected genes of interest graphed using GECO. e Data points (genes) colored by expression 
of enrichment in 6 h with minimum expression = 150 and 1.5-fold cutoff filter (See Additional file 3: Fig. S2a 
for UMAPs of addition step-by-step changes in filtering). Small subset of remaining genes following filtering 
with 4 genes highlighted with a red dot (TWIST2, ICAM1, CXCL3, and NINJ1) that are enriched in 6 h and 2 h 
infection time points. f Correlation of F. nucleatum infection related genes displayed in a GECO generated 
clustermap. Dark teal boxes with an asterisk are significantly positively correlated in expression across all 
samples (ex: ICAM1 and CXCL3), whereas dark brown boxes with an asterisk are anti-correlating across all 
samples (ex: COL1A1 and SOD2). Previously published bulk RNA-seq of F. nucleatum infection time course [24] 
was used to generate UMAP clustering and this dataset (.csv file) is available in Additional file 5
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Figure  4d (and Additional file  3: Fig. S2a) shows several examples of selected genes 
graphed using GECO where each data point was a bio-replicate from the uploaded 
dataset.

To identify a small cohort of genes elevated early during F. nucleatum infection, the 
UMAP plot was colored based on enrichment at 6 h and then restricted to a minimum 
1.5-fold cutoff or greater (Additional file 3: Fig. S2b). This highlights a small region of 
genes that are elevated in the first several hours of infection compared to all other time 
points. This selection was further filtered to find ~ 25 highly expressed genes (minimum 
expression cutoff of 150) (Fig. 4e). This gene list was then printed to the screen and four 
genes with trends of interest are marked with red circles on the UMAP plot and dis-
played in GECO-generated bar graphs. The gene list includes CXCL3 and ICAM1 which 
are sharply induced at 2 h from the start of infection and then gradually decline, TWIST2 
which peaks at 6 h, and NINJ1 which is elevated at 2 and 6 h (Fig. 4e and GECO gen-
erated heatmap in Additional file 3: Fig. S2c). Displaying these genes, along with those 
displayed in Fig. 4d and Additional file 3: Fig. S2a, in a GECO generated correlation clus-
termap shows a significant correlation between this cohort of 4 genes (CXCL3, ICAM1, 
TWIST2, and NINJ1) (Fig. 4f ). COL1A1 and SOD2 show inverse trends and as expected 
the clustermap reveals they are significantly anti-correlated (Fig.  4f ). Previously pub-
lished work using standard differential expression analysis identified 22 genes that were 
significantly upregulated throughout F. nucleatum  infection, including SOD2, CXCL3, 
and ICAM1 [24]. Our analysis here confirms elevated expression of SOD2 (Fig. 4d), but 
suggests that CXCL3 and ICAM1, despite being significantly upregulated, follow a dif-
ferent pattern. CXCL3 and ICAM1 instead had a burst in expression at 2 h, and then 
gradually decrease (Fig. 4e). This comparative data analysis highlights the usefulness of 
GECO in uncovering gene expression patterns that could be overlooked by tradition dif-
ferential expression analysis but may reveal important biology.

GECO is useful to visualize gene expression changes across multiple samples such as 
a time course and can be used to define cohorts of genes with matching gene expres-
sion trends. In this dataset there is a clear trajectory of genes that are elevated in the 
0 h-control samples or at each time point (ex: TNFAIP3), whereas other genes gradually 
change over the time course and peak at one datapoint (ex: COL1A1 and SOD2). In the 
latter case, these are often genes that are difficult to uncover with traditional statistical 
differential expression analysis (particularly paired analysis), but when looking at global 
trends such as those that GECO enables, these genes can be uncovered along with other 
genes that behave in a similar pattern.

Example usage 3: pancreatic cancer metastasis (single cell RNA‑seq)

GECO can also be used to investigate gene expression patterns in single cell RNA-seq 
data, but it functions with some constraints. For example, we investigated publicly avail-
able Fluidigm data (limited number of cells) collected from a primary pancreatic ductal 
adenocarcinoma (PDAC), liver metastasis, and circulating tumor cells from a highly 
metastatic patient-derived xenograft model [25]. GECO treats each cell as a bio-replicate 
sample of the tissue of origin (primary tumor, circulating tumor cell, or liver metasta-
sis), and clusters genes based on expression across these groups (Additional file 3: Fig. 
S3a, c). Additionally, single cells could also be grouped based on identified clusters (i.e. 
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after using Seurat [26]) to investigate global expression trend differences amongst clus-
ters. Following a transformation of the data (flipping X and Y axis), GECO is able to plot 
a limited number of single cells, rather than genes, and expression of genes of interest 
can be further investigated (Additional file 3: Fig. S3b, c). Although designed and opti-
mized for bulk RNA-seq, the ability to also analyze some single cell datasets highlights 
the ingenuity and multi-purpose functions of GECO.

Conclusion
GECO is a minimalistic Streamlit GUI app that utilizes non-linear reduction techniques 
to visualize expression trends in biological data matrices. This app enables investigation 
of any -omic data matrix in a rapid and code-independent manner. With the continued 
growth of available -omic data, the ability to quickly evaluate a dataset, including spe-
cific genes of interest, is more important than ever. GECO is intended to supplement 
more traditional statistical analysis methods and is particularly useful when visualizing 
clusters of genes with similar trajectory across many samples (ex: multiple cell types, 
time course, dose response). With a variety of options for dimensionality reduction, 
normalization methods, and visualization (coloring), along with thorough step-by-step 
instructions, users will be empowered to investigate their -omic data with a new lens 
with the potential to uncover genes of interest and previously unseen patterns.

Availability and requirements

Project name: GECO.
Project home page: http://www.theGE COapp .com & https ://githu b.com/stars torms 
9/geco
Operating system(s): Linux, Windows, Mac.
Programming language: Python 3.7 + 
Other requirements: Streamlit, Plotly, Scipy, Pandas, Seaborn, Umap-Learn, t-SNE-
CUDA, numpy.
License: MIT License.
Any restrictions to use by non‑academics: None.

Supplementary Information
The online version contains supplementary material available at https ://doi.org/10.1186/s1285 9-020-03951 -2.

Additional file 1: GECO python source code.

Additional file 2: GECO README documentation and step-by-step instructions.

Additional file 3: Figures S1–S3.

Additional file 4: CSV file of colon crypt bulk RNA-seq data used for GECO UMAP generation.

Additional file 5: CSV file of bulk RNA-seq data of F. nucleatum infection time course used for GECO UMAP 
generation.

Abbreviations
GECO: Gene Expression Clustering Optimization; GUI: Graphical User Interface; PCA: Principal Component Analysis; t-SNE: 
T-distributed Stochastic Neighbor Embedding; UMAP: Uniform Manifold Approximation and Projection; RNA-seq: RNA 
sequencing.
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