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Background
Single molecule real time (SMRT) sequencing developed by Pacific Biosciences [1] and 
Oxford nanopore technologies [2] have started to replace previous short length next 
generation sequencing (NGS) technologies. These new technologies have enabled us 
to address many unsolved problems regarding genetic variations. With the increase in 
read length to around 20 KB [3], SMRT reads can be used to resolve ambiguities in read 
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mapping caused by repetitive regions. Low GC bias and the ability to detect DNA meth-
ylation [1] from native DNA made SMRT data appealing for many real life applications. 
However, the high sequencing error rate of 13-15% per base [3] poses a real challenge 
in sequence analysis. Specialized methods like BWA-MEM [4], BLASR [5], rHAT [6], 
Minimap2 [7], lordFAST [8], etc., have been designed to align noisy long reads back 
to the respective reference genomes. BLASR [5] clusters the matched words from the 
reads and genome after indexing using suffix arrays or BWT-FM [9]. It uses a probabil-
ity-based error optimization technique to find the alignment. BWA-MEM [4], originally 
designed for short read mapping, has been extended for PacBio and Oxford nanopore 
reads (with option -x pacbio and -x ont2d respectively) by efficient seeding and chain-
ing of short exact matches. However, both methods are too slow to achieve a desired 
level of sensitivity [6]. This issue was addressed by rHAT [6] using a regional hash table 
where windows from the reference genome with the highest k-mer matches are chosen 
as candidate sites for further extension using a direct acyclic graph. Unfortunately, this 
method has a large memory footprint if used with the default word length of k = 13 , and 
it fails to accommodate longer k-mers to resolve repeats. Minimap2 [7], a recently devel-
oped method, uses concave gap cost, efficient chaining and fast implementation using 
SSE or NEON instructions to align reads with high sensitivity and speed. Another new 
method lordFAST [8] has been introduced to align PacBio’s continuous long reads with 
improved accuracy. MUMmer4 [10], a versatile genome alignment system, also has an 
option for PacBio read alignment (-l 15 -c 31), although it is less sensitive and accurate 
than the specialized aligners.

However, all the above mentioned methods come with large computational costs. 
Here, time and memory consumption are dominated by the alignment overhead. On top 
of that, alignment algorithms are often unable to correctly align distant homologs in the 
“twilight zone” with 20–35% sequence identity, as such weak similarities are difficult to 
distinguish from random similarities. For these reasons, alignment-free methods have 
become popular in recent years. See [11–13] for recent review papers and [14] for a sys-
tematic evaluation of these approaches. An alignment-free method Minimap [15] has 
been developed in 2016 for mapping of reads to the appropriate positions in the refer-
ence genome. Minimap groups approximate colinear hits using single linkage cluster-
ing to map the reads. However, Minimap suffers from low specificity. In this article, a 
new alignment-free method called S-conLSH has been proposed to overcome the above 
mentioned problems. Being suitable for low conserved areas and less computationally 
expensive, S-conLSH is sensitive as well as very fast at the same time.

A large proportion of the sequencing errors in SMRT data are indels rather than mis-
matches [3]. This makes it even more complicated to differentiate genomic variations 
from sequence errors. To resolve this issue, a concept of ‘context-based’ Locality Sensi-
tive Hashing (conLSH) has been introduced by Chakraborty and Bandyopadhyay [16]. 
Locality Sensitive Hashing (LSH) [17, 18] has been successfully applied in many real life-
science applications, ranging from genome comparison [19, 20] to large scale genome 
assembly [21]. In LSH, points close to each other in the feature space are hashed into 
localized slots of the hash table. However, in practice, the neighborhood or context of 
an object plays a key role in measuring its similarity to another object. Chakraborty 
and Bandyopadhyay [16] have shown that contexts of symbols (a base in reference to 
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DNA) are important to decide the closeness of strings. They proposed conLSH to group 
sequences in localized slots of the hash table if they share a common context. However, 
a match for the entire context is a stringent criterion, considering the error profile of 
SMRT data. Even a mismatch or indel of length one, caused by a sequencing error, may 
mislead the aligner.

Therefore, to address this problem, an idea of spaced-context is introduced in this 
article. Unlike conLSH [16] which produces base-level alignments of the sequences 
using Sparse Dynamic Programming (SDP) based algorithm, the proposed method 
(S-conLSH) is an alignment-free tool. It employs multiple spaced-seeds or patterns to 
find gapped mappings of noisy SMRT reads to reference genomes. The spaced-seeds 
are strings of 0’s and 1’s where ‘1’ represents the match position and ‘0’ denotes don’t 
care position where matching in the symbols is not mandatory. The substring formed 
by extracting the symbols corresponding to the ‘1’ positions in the pattern is defined as 
the spaced-context of a sequence. Therefore, a spaced-context can minimize the effect of 
erroneous bases and, thereby, enhances the quality of mapping because it does not check 
all the bases for a match. This differentiates the proposed method from conLSH which 
looks into the entire context to compute the hash values.

A pattern-based approach was originally proposed by [22] when they developed Pat-
ternHunter, a fast and sensitive homology search tool. Later, multiple patterns or “spaced 
seeds” were proposed by the same authors [23]. Efficient algorithms to find optimal sets 
of patterns have been introduced by [24] and [25]. A fast alignment-free sequence com-
parison method using multiple spaced seeds has been described in [26], see also [27] and 
[28].

The algorithm, S-conLSH, described in this article is an alignment-free tool designed 
for mapping of noisy and long reads to the reference genome. The concept of Spaced-
context has been elaborated in the Methods section along with a description of the pro-
posed algorithm.

Results
Six different real and simulated datasets of E.coli, A.thaliana, O.sativa, S.cerevisiae and 
H.sapiens have been used to benchmark the performance of S-conLSH in comparison to 
other state-of-the art aligners, viz., Minimap2 [7], lordFAST [8], Minimap [15], conLSH 
[16] and MUMmer4 [10]. All these methods are executed in a setting designed for PacBio 
read alignment (see Table  1). The default parameter settings used for S-conLSH are 
K = 2 , context size ( 2�+ 1 ) = 7 , L = 2 and z = 5 (refer to the Methods section of this 
article for details of the S-conLSH parameters). The two patterns used in our experiment 
in the default set up of L = 2 are 11111110011111110000 and 111111100000111111100. 
The datasets used in the experiment have been summarized in Table 2. For the sake of 
simplicity, the results have been demonstrated by executing different aligners in a single 
thread. Please refer to the Tables [S-1] to [S-5] of Additional file 1: Note 1 for detailed 
review of their performance in multi-threaded mode.

The aligner, rHAT [6] has been excluded from the study, as it has been reported 
to malfunction in certain scenarios [7]. The PacBio read alignment module of BWA-
MEM [4] has been replaced by Minimap2, as it retains all the main features of BWA-
MEM, while being  50×faster and more accurate. Therefore, the results of BWA-MEM 
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are not shown separately in the tables. Moreover, BLASR [5] has also not been used in 
the comparative study, as Minimap2 and lordFAST have been found to outperform it 
in all respects.

By default, S-conLSH produces output in pairwise read mapping format (PAF) ( 
[15]). There are scripts available to convert the popular SAM [29] alignment formats 
to PAF ( [15]). If a base-to-base alignment is requested, S-conLSH provides an option 
(--align 1), where the target locations are aligned using ksw alignment library (https://​
github.​com/​attra​ctive​chaos/​klib) to produce the SAM file. The entire experiment 
has been conducted on an Intel Core i7-6200U CPU @ 2.30 GHz × 16(cores), 64-bit 
machine with 32GB RAM.

The results demonstrated in this article are organized into three categories: (1) per-
formance on simulated datasets, (2) study on real PacBio reads, and (3) Robustness of 
S-conLSH for different parameter settings.

Experiment on simulated dataset

To study the accuracy of SMRT read mapping, a total of 146,932 noisy long reads 
have been simulated from hg38 human genome using PBSIM [30] command “pbsim 
--data-type CLR --depth 1 --length-min 1 --length-max 200000 

--seed 0 --sample-fastq real.fastq hg38.fa. The error profile has 
been sampled from three real human PacBio RS II P5/C3 reads listed below, concat-
enated as real.fastq.

•	 m130929_024849_42213_c100518541*_s1_p0.1.subreads.fastq

•	 m130929_024849_42213_c100518541*_s1_p0.2.subreads.fastq

•	 m130929_024849_42213_c100518541*_s1_p0.3.subreads.fastq

The simulated reads from 5 different Human chromosomes are used to test the perfor-
mance of S-conLSH in comparison to the other standard aligners. The sensitivity and 
precision have been computed based on the ground truth as obtained from the .maf 
files of PBSIM. A read is considered to be mapped correctly (as defined by [8]) if (1) it 
gets mapped to the correct chromosome and strand; and (2) the target subsequence of 
reference genome where the read maps to, must overlap with the true mapping by at 
least 1bp. The sensitivity is measured as a fraction of correctly mapped reads out of the 

Table 2  The summary of real and simulated datasets used in the experiment along with the 
corresponding reference genome links

Dataset Type Platform # of reads Reference genome

H. sapiens-real Real PacBio RS II P5/C3 release 290,992 hg38

E. coli-real Real PacBio RS II P5/C3 release 300 Escherichia coli 
str. K-12 substr. 
MG1655

A. thaliana-real Real PacBio RS II P5/C3 release 3,448,228 TAIR10

O. sativa-real Real PacBio RS II P5/C3 release 590,268 Build 4.0

S. cerevisiae-real Real PacBio RS II P5/C3 release 594,243 S288C (assembly R64)

H. sapiens-sim Simulated PBSIM 146,932 hg38

https://github.com/attractivechaos/klib
https://github.com/attractivechaos/klib
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total number of reads. Precision is defined, in the same way, as the fraction of correctly 
mapped reads out of the total number of mapped reads.

Table 3 summarizes the number of correct mappings, sensitivity, precision, and run-
ning time by different methods, Minimap, Minimap2, lordFAST, MUMmer4, conLSH, 
and S-conLSH for a total of 146,932 reads simulated from five different human chromo-
somes. The number of reads extracted from each chromosome is listed in Table 3. The 
result shows that S-conLSH produces the highest number of correct mappings among all 
five aligners for different chromosomes of Human-sim dataset. S-conLSH maps 32,111 
reads out of total 32,290 reads of Chr#1, among which 31,964 mappings are found to be 
correct when compared with the ground truth. Minimap2 is the second highest in pro-
ducing the correct mappings in this case. A similar scenario has been generally observed 
for the four other chromosomes as well. It is clear that Minimap2 always aligns all the 

Table 3  Comparative study of the number of correct mappings, sensitivity, precision, and running 
time by different methods, Minimap, Minimap2, lordFAST, MUMmer4, conLSH, and S-conLSH, for a 
total of 146,932 reads simulated from five different human chromosomes

Italic values are the best results in each category

Chr# #Reads Mapper #Mapped 
reads

#Correct 
mapping

Sensitivity 
(%)

Precision (%) Indexing 
time (s)

Mapping 
time (s)

Chr1 32,290 Minimap 31,591 31,585 97.82 99.99 15 30

Minimap2 32,290 31,863 98.69 98.69 10 61

lordFAST 32,290 29,313 90.79 90.79 192 206

MUMmer4 31,940 31,645 98.01 99.08 - 310

conLSH 31,945 29,620 91.73 92.72 08 235

S-conLSH 32,111 31,964 99 99.55 51 38

Chr2 34,309 Minimap 33,623 33,613 97.98 99.98 16 33

Minimap2 34,309 33,864 98.71 98.71 10 64

lordFAST 34,309 31,173 90.87 90.87 170 216

MUMmer4 34,056 33,914 98.85 99.59 - 312

conLSH 34,082 31,230 91.03 91.63 10 229

S-conLSH 34,153 34,008 99.13 99.58 54 44

Chr3 28,109 Minimap 27,481 27,477 97.76 99.99 15 25

Minimap2 28,109 27,698 98.55 98.55 8 52

lordFAST 28,109 25,513 90.77 90.77 135 167

MUMmer4 27,894 27,791 98.87 99.64 - 253

conLSH 27,899 25,603 91.08 91.77 07 198

S-conLSH 27,957 27,863 99.13 99.67 45 30

Chr4 26,871 Minimap 26,307 26,301 97.88 99.98 16 23

Minimap2 26,871 26,501 98.63 98.63 8 51

lordFAST 26,871 24,403 90.82 90.82 129 158

MUMmer4 26,638 26,533 98.75 99.61 - 248

conLSH 26,650 24,449 90.98 91.74 07 180

S-conLSH 26,748 26,650 99.18 99.64 41 29

Chr5 25,353 Minimap 24,859 24,849 98.02 99.96 14 21

Minimap2 25,353 25,056 98.84 98.84 7 48

lordFAST 25,353 23,069 91 91 123 149

MUMmer4 25,126 24,951 98.42 99.31 - 234

conLSH 25,149 23,106 91.14 91.87 06 167

S-conLSH 25,242 25,155 99.22 99.66 39 23
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reads to some location in the reference genome, but produces more incorrect mappings 
when compared to S-conLSH. Evidently, S-conLSH provides the highest sensitivity for 
all the chromosomes considered. Minimap, on the other hand, exhibits higher precision 
but lower sensitivity as it leaves a large number of reads unaligned. The number of una-
ligned reads by Minimap increases for large and complicated real datasets.

As can be seen, S-conLSH takes 38 CPU seconds to map the reads of chromo-
some 1, which is slightly slower than Minimap. The speed of Minimap is achieved as 
it maps a smaller number of reads compared to other aligners. Interestingly, S-con-
LSH has been found to have smaller mapping time than all the remaining algorithms, 
while having the maximum number of correctly mapped reads. As there was no sepa-
rate indexing and aligning time available for MUMmer4, the total time is mentioned 
as “Mapping time”. MUMmer4 has been found to consume a large amount of time 
to achieve a desired level of sensitivity. It is evident from Table  3 that the indexing 
time is quite low for both Minimap and Minimap2. Indexing time for S-conLSH is 
relatively higher, though it is much smaller as compared to lordFAST. Here, it may 
be noted that indexing is performed only once for a given reference genome, while 
the read mapping will need to be performed every time a different individual is 
sequenced. The compressed and memory-efficient B-tree indexing of conLSH makes 
it the fastest in processing of reference genomes. However, the mapping time of con-
LSH is large as it performs base-to-base alignments using Sparse Dynamic Program-
ming. The stringent ungapped matching requirement of the aligner over the entire 
context of the sequences results in lower sensitivity, after lordFAST. The proposed 
alignment-free tool, S-conLSH, has been found to be useful in such cases as it obtains 
the gapped mapping of the noisy reads using spaced-contexts.

While this section reports results of single-threaded execution, the Tables [S-1]–[S-5] 
of the Additional file 1: Note 1 exhibit the performance boost-up of S-conLSH in multi-
threaded systems. S-conLSH achieves more than 50% reduction in mapping time when 
run in 4 concurrent threads over the single-threaded version of itself. The indexing time 
of S-conLSH also improves with higher degree of parallelism and becomes comparable 
with that of Minimap2 when the number of threads is equal to 8. Moreover, this perfor-
mance achievement comes with almost no additional burden of memory requirement. 
Please refer to Additional file 1: Note 1 for a detailed report.

Table 4  Comparative study of running time, percentage of reads aligned and coverage by different 
aligners for H.sapiens-real SMRT dataset of 23,235 reads

Mapper Indexing time (s) Mapping time (s) % of reads aligned Mean coverage

Minimap 140 30 94.8 NA

Minimap2 138 106 100 0.0473

lordFAST 2286 327 100 0.0566

conLSH 47 404 99 0.0579

S-conLSH 794 99 99.9 0.078
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Experiment on real PacBio datasets

This section demonstrates the performance of S-conLSH in comparison to other 
state-of-the-art aligners on five different SMRT datasets of E.coli-real, A.thaliana-
real, O.sativa-real, S.cerevisiae-real and H.sapiens-real (refer Table  2 for details). A 
comparative study of running time, percentage of reads aligned and coverage by dif-
ferent aligners has been detailed in Table  4 for real human SMRT subread named 
m130929_024849_42213_c100518541* _s1_p0.1.subreads.fastq consist-
ing of 23,235 reads . Results on MUMmer4 are excluded since it takes inordinately long.

Table 5  Comparative study of running time, percentage of reads aligned by different aligners for 
four datasets of E. coli-real, A. thaliana-real, O. sativa-real and S. cerevisiae-real 

Dataset #Reads Mapper Index time (s) Mapping time (s) % of 
reads 
aligned

E. coli-real 300 Minimap 1 1 91.6

Minimap2 2 2 100

lordFAST 3 10 100

conLSH 1 2 100

S-conLSH 2 1 98.3

A. thaliana-real 3,448,228 Minimap 7 798 88

Minimap2 6 10,562 100

lordFAST 78 24,277 100

conLSH 1 40,028 99.4

S-conLSH 27 2073 93.7

O. sativa-real 590,268 Minimap 20 487 94.3

Minimap2 20 6898 100

lordFAST 287 10,462 100

conLSH 6 18,024 97

S-conLSH 88 962 98.2

S. cerevisiae-real 594,243 Minimap 1 104 41.8

Minimap2 1 881 100

lordFAST 7 2130 100

conLSH 1 7890 99.8

S-conLSH 3 299 90.3

Table 6  Performance of conLSH with change of K, L, z, and � for real human SMRT dataset

The default setting is marked as italic

Concatenation Context size L z Indexing Mapping % of reads

Factor (K) 2× �+ 1 Time (s) Time (s) Mapped

2 7 1 5 790 80 97.7

2 7 2 5 794 99 99.9

2 7 3 5 797 122 99.9

2 7 1 7 791 82 97.7

2 7 1 11 794 80 97.7

2 5 1 5 67 11 73.4

4 3 1 5 302 107 97.2

3 5 1 5 849 85 96.8
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It can be seen that S-conLSH provides the highest coverage value among the five 
standard methods used in the experiment. Minimap does not have any coverage sta-
tistics, as it is unable to produce alignment as SAM file. The performance in terms of 
indexing and mapping time, as shown in Table 4, is similar to that has already been 
observed for simulated datasets. The percentage of read alignment is the highest by 
Minimap2 and lordFAST. This is similar to the scenario obtained on simulated data-
sets where Minimap2 and lordFAST align all the reads against the reference genome, 
even though it may contain some incorrect mappings. S-conLSH, on the other hand, 
has a mapping ratio of 99.9% , which is lower than Minimap2 and lordFAST. This is 
due to the fact that S-conLSH gives higher priority to the mapping accuracy and it 
leaves a few reads unaligned if potential target locations are not found. S-conLSH has 
a higher memory footprint of about 13GB for indexing the entire human genome.

Similar results are observed for E.coli-real, A.thaliana-real, O.sativa-real, and 
S.cerevisiae-real real PacBio datasets as can be seen in Table 5. It is clear that S-con-
LSH is among the fastest in terms of mapping time, after Minimap. However, Mini-
map fails to align a good portion of the reads for large datasets like A.thaliana and 
S.cerevisiae. The aligner, conLSH, on the other hand, requires lower indexing time but 
higher mapping time to align a reasonable amount of reads to the reference genome. 
However, the alignment quality of conLSH is often compromised as studied in pre-
vious subsections. The percentage of reads mapped by S-conLSH is generally lower 
than Minimap2 and lordFAST, as it tries to ensure the best of the mapping quality. 
It is, however, difficult to measure the quality of read mappings for real datasets, as 
there is no ground truth available for such cases.

Robustness of S‑conLSH for different parameter settings

An exhaustive experiment with different values of K, � , L, and z has been carried out to 
study the robustness of the proposed method S-conLSH.

Table 6 summarizes the study of indexing and mapping time along with the percent-
age of reads aligned for different values of S-conLSH parameters on real human SMRT 
dataset m130929_024849_42213_c100518541*_s1_p0.1.subreads.fastq. 
As can be observed the best performance (highest percentage of read mapping in mini-
mum time) is achieved with the settings K = 2 , (2�+ 1) = 7 , L = 2 and z = 5 . The map-
ping time increases with L as it directly corresponds to the number of hash tables (one 
for each of the L different spaced-seeds) used to retrieve the target locations. Therefore 
the search becomes more rigorous as it considers all spaced-contexts obtained from L 

Table 7  Performance of conLSH with change of z for chromosome  1 of H. sapiens-sim dataset 
consisting of 32,290 reads

The default parameter setting is shown in italic

Concatenation Context size L z Indexing Mapping # of correct

Factor (K) 2× �+ 1 Time (s) Time (s) Mapping

2 7 2 3 51 37 31,960

2 7 2 5 51 38 31,964

2 7 2 11 48 122 31,963

2 7 2 20 48 122 31,950
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different patterns. This is, however, useful for highly sensitive applications at the expense 
of a few more seconds of mapping time. An efficient solution could be the use of S-con-
LSH with higher values of L, distributed over multiple concurrent threads. Please refer 
to Additional file 1: Note 2 regarding the performance of S-conLSH for different values 
of L in a multi-threaded system.

Indexing time, on the other hand, is proportional to the product (2�+ 1)K  . It seems 
that z has little effect on the performance of S-conLSH as the running time and the 
percentage of reads aligned mostly stay invariant with z. However, the parameter z is 
important to enhance the sensitivity of the method. This is reflected in Table  7 when 
studied on simulated reads. The highest number of correct mappings is obtained with 
the default settings (shown in italic) when z = 5 . The zeros in the spaced-seed help to 
find the distant similarities as it encompasses a larger portion of the sequence while the 
weight ( (2�+ 1)K  ) of the pattern remains the same. However, a very large value of z may 
degrade the accuracy as it joins unrelated contexts together. It is evident from Tables 6 
and  7 that the performance of S-conLSH remains reasonably good irrespective of the 
variation of the parameter values. Therefore, it can be concluded that the algorithm 
S-conLSH is quite robust even though it requires some tuning of different parameters 
for the best performance.

Discussion and conclusions
S-conLSH is one of the first alignment-free reference genome mapping tools achiev-
ing a high level of sensitivity. Earlier, Minimap was designed to map reads against the 
reference genome without performing an actual base-to-base alignment. However, the 
low sensitivity of Minimap precluded its applications in real-life domains. Minimap2 is 
one of the best performing state-of-the-art alignment-based methods which provides an 
excellent balance of running time and sensitivity. The method described in this article, 
S-conLSH, has been observed to outperform Minimap2 in respect of sensitivity, preci-
sion, and mapping time. However, it has a longer indexing time and a higher memory 
footprint. Nevertheless, sequence indexing is a one-time affair, and memory is inexpen-
sive nowadays.

The spaced-context in S-conLSH is especially suitable for extracting distant similari-
ties. The variable-length spaced-seeds or patterns add flexibility to the proposed algo-
rithm. Multiple patterns (with higher values of L) increase the sensitivity but at the 
cost of more time. Moreover, with the introduction of don’t care positions, the patterns 
become longer, thus providing better performance in resolving conflicts that occur due 
to the repetitive regions. The provision of rehashing for chimeric read alignment and 
reverse strand mapping make S-conLSH ideal for applications in the real-life sequence 
analysis pipeline.

A memory-efficient version of the S-conLSH can be developed in the future. The algo-
rithm, at its current stage, can not conclude on the optimal selection of the patterns. A 
study on finding the optimal set of spaced-seeds can be carried out in future to improve 
the performance of the algorithm. Though the experiment demonstrated in this article is 
confined to the noisy long reads of PacBio datasets, it can be further extended on ONT 
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reads as well. Finally, we would like to conclude with a strong expectation that the pro-
posed method S-conLSH will draw the attention of the peers as one of the best perform-
ing reference mapping tools designed so far.

Fig. 1  A schematic workflow of indexing and mapping using S-conLSH
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Methods
The algorithm S-conLSH for mapping noisy long reads to the reference genome essen-
tially consists of two steps, reference genome indexing and read mapping. The complete 
workflow of S-conLSH is provided in Fig. 1 and the entire procedure is detailed below. 

1	 Reference Genome Indexing

	 The reference genome is sliced into overlapping windows, and these windows are 
hashed into hash tables using suitably designed S-conLSH functions (see Defini-
tion 5) as shown in Fig. 1. S-conLSH uses two hash tables ‘ h_index ’ and ‘Hashtab’. 
An entry in h_index has two fields (f,  n): f stores an offset to the table Hashtab, 
where sequences are clustered according to their hash values, and n is the total num-
ber of sequences hashed at a particular value. Therefore, Hashtab[h_index[x].f] to 
Hashtab[h_index[x].f + h_index[x].n] are the sequences hashed at value x.

2	 Read mapping
	 For each noisy long read, S-conLSH utilizes the same hash function for computing 

the hash values and retrieves sequences of the reference genome that are hashed in 
the same position as the read. Finally, the locations of the sequences with the highest 
hits are chained and reported as an alignment-free mapping of the query read (see 
Fig. 1).

By default, S-conLSH provides alignment-free mappings of the SMRT reads to the refer-
ence genome. If a base level alignment is required, S-conLSH provides an option (--align 
1) to generate alignment in SAM format using ksw library (https://​github.​com/​attra​ctive​
chaos/​klib). Some key aspects of S-conLSH are detailed in the following subsections.

Context based locality sensitive hashing

Locality Sensitive Hashing [17, 18] is an approximate near-neighbor search algorithm, 
where the points having a smaller distance in the feature space, will have a higher prob-
ability of making a collision. Under this assumption, a query is compared only to the 
objects having the same hash value, rather than to all the items in the database. This 
makes the algorithm work in sublinear time. In the definitions below, we use the follow-
ing notations:

For a string x of length d over some set � of symbols and 1 ≤ i ≤ j ≤ d , x[i] denotes 
the ith symbol of x, and x[i..j] denotes the (contiguous) substring of x from position 
i to position j. If H is a finite set of functions defined on some set X, for any h ∈ H , 
randomly drawn with uniform probability, and x, y ∈ X  , PrH[h(x) = h(y)] denotes the 
probability that h(x) = h(y).

The definition of Locality Sensitive Hashing as introduced in [17, 18] is given below:

Definition 1  (Locality Sensitive Hashing) [17, 18] Let (X, D) be a metric space, let H be 
a family of hash functions mapping X to some set U, and let R, c,P1,P2 be real numbers 
with c > 1 and 0 ≤ P2 < P1 ≤ 1 . H is said to be (R, cR,P1,P2)-sensitive if for any x, y ∈ X 
and h ∈ H

https://github.com/attractivechaos/klib
https://github.com/attractivechaos/klib
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•	 PrH[h(x) = h(y)] ≥ P1 whenever D(x, y) ≤ R , and
•	 PrH[h(x) = h(y)] ≤ P2 whenever D(x, y) ≥ cR.

To illustrate the concept of locality sensitive hashing for DNA sequences, let 
us consider a finite set � = {A,T ,C ,G} called the alphabet, together with an inte-
ger d > 0 . Let X be the set of all length-d words over � , endowed with the Hamming 
distance, and let U be the alphabet � . For 1 ≤ i ≤ d , let the function hi : X → U  be 
defined by hi(x) = x[i] , ∀x ∈ X  . Next, let R and cR be real numbers with c > 1 and 
0 ≤ R < cR ≤ d , and define P1 = d−R

d
 and P2 = d−cR

d
 . Then the set H = {hi : 1 ≤ i ≤ d } 

is (R, cR,P1,P2)-sensitive. To see this, observe that for any two words p, q ∈ X  , the 
probability PrH[h(p) = h(q)] is same as the fraction of positions  i with p[i] = q[i] . 
Therefore,

if D(p, q) ≤ R , and

if cR ≤ D(p, q).
Therefore, P1 > P2 as cR > R . This proves that the family of hash functions 

H = {hi : 1 ≤ i ≤ d } is locality sensitive.
In biological applications, it is often useful to consider the local context of sequence 

positions and to consider matching subwords, as shown in conLSH [16]. It groups simi-
lar sequences in the localized slots of the hash tables considering the neighborhoods or 
contexts of the data points. A context in connection to sequence analysis can be formally 
defined as:

Definition 2  (Context) Let x : (x1x2 . . . xd) be a sequence of length d. A context at the 
i-th position of x, for i ∈ {�+ 1, . . . , d − �} , is a subsequence x[i − � . . . i . . . i + �] of 
length 2�+ 1 , formed by taking � characters from each of the right and left sides of x[i]. 
Here, � is a positive constant termed the context factor.

To define context based locality sensitive hashing, the above example is general-
ized such that, for a given subword length (2�+ 1) < d , each hash function in H will 
map words containing the same length-(2�+ 1) subwords at some position to the same 
bucket in U. The subword length (2�+ 1) is called the context size, where � is the context 
factor.

Definition 3  (Context based Locality Sensitive Hashing (conLSH)) Let � be a set 
called the alphabet. Let � and d be integers with (2�+ 1) < d . Let X be the set of all 
length-d words over � and U be the set of all length-(2�+ 1) words over � . For R, cR,P1 , 
and P2 as above, a (R, cR,P1,P2)-sensitive family H of functions mapping  X to U is 
called (R, cR, �,P1,P2)-sensitive, if for each h ∈ H , there are positions ih and jh with 
�+ 1 ≤ ih, jh ≤ d − � such that for all p, q ∈ X one has h(p) = h(q) whenever

PrH[h(p) = h(q)] =
d − D(p, q)

d
≥

d − R

d
= P1

PrH[h(p) = h(q)] =
d − D(p, q)

d
≤

d − cR

d
= P2
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holds.

Gapped read mapping using spaced‑context based locality sensitive hashing

The proposed method S-conLSH, uses spaced-seeds or patterns of 0’s and 1’s in connec-
tion with S-conLSH function. For a pattern P , the spaced-context of a DNA sequence 
can be defined as:

Definition 4  (Spaced-context) Let P be a binary string or pattern of length ℓ , where 
‘1’ represents match position and ‘0’ represents don’t-care position. Let ℓw denote the 
weight of P which is equal to the number of ‘1’s in the pattern. Evidently, ℓw ≤ ℓ . Let x be 
a sequence of length d over alphabet {A,T ,G,C} such that ℓ ≤ d . Then, a string sw over 
{A,T ,G,C} of length ℓw is called a spaced-context of x with respect to P , if sw[i] = x[j] 
holds if and only if P[j] = 1 , where i ≤ j , 1 ≤ i ≤ ℓw and 1 ≤ j ≤ ℓ.

Sequences sharing a similar spaced-context with respect to a pre-defined pattern P , 
are hashed together in S-conLSH.

The concept of gap-amplification is used in locality sensitive hashing to ensure that the 
dissimilar items are well separated from the similar ones. To do this, gap between the 
probability values P1 and P2 needs to be increased. This is achieved by choosing L dif-
ferent hash functions, g1, g2, . . . , gL , such that gj is the concatenation of K randomly cho-
sen hash functions from H , i.e., gj = (h1,j , h2,j , . . . , hK ,j) , for 1 ≤ j ≤ L . This procedure is 
known as “gap amplification” and K is called the “concatenation factor” [18]. For every 
hash function gj , 1 ≤ j ≤ L , there is a pattern Pj associated with it. The spaced-context 
based Locality Sensitive Hashing is now defined as follows:

Definition 5  (Spaced-context based Locality Sensitive Hashing (S-conLSH)) Let 
swj(x) be the spaced-context of sequence x with respect to the binary pattern Pj of 
length ℓ , 1 ≤ j ≤ L . Let Pj be defined by the regular expression 

(

0∗(1)(2�+1)
)K

0∗ . 
Therefore, the weight of Pj , i.e., ℓw = (2�+ 1)K  . The maximum value of ℓ would be 
(2�+ 1)K + z(K + 1) assuming that at most z zeros are present between two succes-
sive contexts of 1’s in Pj , where z ≥ 0 is an integer parameter. Let d be an integer with 
ℓ ≤ d , X be the set of all length-d words over � and U be the set of all length-ℓw words 
over � . For R, cR,P1 , P2 , and � as introduced in Definition  3, a (R, cR, �,P1,P2)-sensi-
tive hash function gj = (h1,j , h2,j , . . . , hK ,j) , where hi,j ∈ H, 1 ≤ i ≤ K  , mapping  X to U 
is called (R, cR, �, z,P1,P2)-sensitive, if for any p, q ∈ X one has gj(p) = gj(q) whenever 
swj(p) = swj(q) holds with respect to the pattern Pj.

p[ih − � . . . ih . . . ih + �] = q[jh − � . . . jh . . . jh + �]
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a

b

c

d

Fig. 2  A schematic illustration of gapped-mapping using S-conLSH. a Multiple patterns having context 
size = 3 and K = 2 . b, c Hashing of the strings “ATT​CGG​TAA” and “TTC​TAA​GTA” respectively using different 
patterns. d Final hash table and gapped-mapping of the two strings due to the collision at “TTC​TAA​”
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Therefore, instead of restricting similarity over the (2�+ 1)K  consecutive bases as 
was done for conLSH [16], S-conLSH incorporates greater flexibility by checking only 
the positions which correspond to a 1 in the pattern. For example, the binary string 
“011100111” is a pattern for a system having K = 2 , z = 2 and context size (2�+ 1) = 3 . 
The hash value or the spaced-context of the string “ATT​CGG​TAA” for the above pat-
tern will be “TTC​TAA​” (see Fig. 2(b)). In S-conLSH, noisy long reads are hashed using 
L functions corresponding to L different patterns generated using Algorithm 1. Multi-
ple pattern based functions enable gapped-mapping of the reads as illustrated in Fig. 2. 
Consider a scenario of two patterns P1 =“011100111” and P2 =“111111” having con-
text size = 3 , L = 2 and K = 2 . The string p =“ATT​CGG​TAA” generates two hash val-
ues sw1(p) =“TTC​TAA​” and sw2(p) =“ATT​CGG​” for the patterns P1 and P2 respectively 
(see Fig. 2b). Similarly, sw1(q) =“TCT​GTA​” and sw2(q) =“TTC​TAA​” are the hash values 
for string q =“TTC​TAA​GTA” (Fig. 2c). As shown in the hash table of Fig. 2d, the two 
strings collide to the same bucket of the hash table due to the common hash value “TTC​
TAA​”. This results in mapping with three gaps or indels, corresponding to the three 0’s of 
“011100111”, in the second string. This gapped-mapping is a powerful feature of S-con-
LSH which is quite uncommon in standard spaced-seed based methods (refer Addi-
tional file 1: Note 3 for details).

To obtain an integer hash value from the Spaced-context, an encoding function 
f : S �→ {0, 1, . . . , (4K (2�+1) − 1)} , f (sw) =

∑(2�+1)K
i=1 f (sw[i])× 4(2�+1)K−i , ∀sw ∈ S , 

has been defined assuming f (A) = 0 , f (C) = 1 , f (G) = 2 and f (T ) = 3 , where 
S is the set of all spaced-contexts of length (2�+ 1)K  defined over the alphabet 
{A,T ,C ,G} . A pattern produces hash values of length equal to its weight. Keeping 
the weight same, the pattern length is increased in S-conLSH by introducing don’t 
care positions (or, zeros). This allows S-conLSH to look at a larger portion of the 
sequences without increasing the computational overhead. Consequently, S-conLSH 
is able to find distant homologs that might otherwise be overlooked. Not only that, 
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it provides better sensitivity in resolving repeats because of the consideration of the 
neighborhood (or, contexts) when measuring the similarity between the sequences. 
S-conLSH has a provision of split mapping for chimeric reads as follows. If a read fails 
to get associated with end-to-end mapping, it is split into a series of non-overlapping 
segments and re-hashed to find target location(s) for each segment.
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