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Background
According to the central dogma of molecular biology, genetic information is stored in 
protein-coding genes [1]. Therefore, non-coding RNAs were considered to be transcrip-
tional noises for a long time. In the past decade, this traditional view has been chal-
lenged [2]. There is increasing evidence shows that non-coding RNAs play a key role in 
a variety of basic and important biological processes [3]. Moreover, the proportion of 
non-protein coding sequences increases with the complexity of the organism [4]. Non-
coding RNAs can be further divided into short non-coding RNAs and long non-coding 
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RNAs (lncRNAs) based on whether the length of the transcript exceeds more than 200 
nucleotides (nt).

Recently, long non-coding RNA has attracted great attention from researchers, as 
more and more research results indicate that mutations and dysregulation of these long 
non-coding RNAs are associated with the development of various complex human dis-
eases such as cancers, Alzheimer’s disease and cardiovascular diseases [5]. Therefore, 
accurate prediction of lncRNAs is very important in lncRNA studies [6–8].

Various lncRNA prediction methods have been proposed by using experimental tech-
niques and biological data. For example, the discovery of two well-known lncRNAs, 
H19 and X-inactive specific transcripts can be traced back to traditional genetic map-
ping in the early 1990s [9]. Guttman et  al. developed a functional genomics approach 
that assigns putative functions to each large intervening lncRNA [10]. Cabili et al. pro-
posed a comprehensive approach to construct large non-coding RNA catalogs of human 
intercropping, which includes more than 8000 large intervening lengths in 24 different 
human cell types and tissues [11].

However, the method of biological experiment is costly, time-consuming and labori-
ous, which is not conducive to large-scale application. In the era of bio-big data, in order 
to make better use of the existing sequence resources of lncRNA, many computational 
methods based on machine learning have been proposed by researchers.

In 2013, CPAT was implemented by L. Wang et  al., which is a potential evaluation 
tool for protein coding and includes the feature of Open Reading Frame (ORF) [12]. In 
molecular biology, ORF starts from the start codon and ends at a stop codon, is a basic 
sequence in the DNA sequence which has protein coding potential. The classification 
model of CPAT takes the Supporting Vector Machine (SVM) basis function with stand-
ard radial as kernel. In 2014, PLEK was implemented by A. M. Li et al., which analyzes 
transcripts by using k-mer scheme and sliding window [13]. The classification model of 
PLEK is an SVM with a radial kernel function.

In 2015, LncRNA-ID was implemented by Achawanantakun et  al. [14]. LncRNA-ID 
can be classified according to ORF, ribosome interaction and protein conservation. The 
use of Random forests improves the classification model of LncRNA-ID, which helps 
LncRNA-ID to efficiently process unbalanced training data.

In 2017, Hugo W. Schneider et  al. proposed an SVM-based method for the predic-
tion of lncRNAs [15]. It uses the k-mer protocol and features derived from the ORF to 
analyze the transcript. These features are divided into two groups. The first set derives 
from the four characteristics of the ORF: the first ORF length; the relative length of the 
first ORF; the longest ORF length; the longest ORF relative length. The second group is 
based on the k-mer feature extraction scheme, where k = 2, 3, 4, a total of 336 nucleo-
tide patterns of different frequencies: 16 dinucleotide pattern frequencies; 64 trinucleo-
tide mode frequencies; and 256 four nucleotide mode frequencies. The first ORF relative 
length and the frequency of the nucleotide pattern selected by PCA were used as fea-
tures for these two sets of features.

In our study, we use a lncRNA prediction method by integrating information-entropy-
based features and machine learning algorithms. We calculate generalized topologi-
cal entropy and generate 6 novel features for lncRNA sequences. By employing these 6 
features and other features such as ORF, we apply SVM, XGBoost and Random Forest 
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algorithms to distinguish human lncRNAs. We compare our method with the one which 
has more k-mer-based features. Results show that our method has higher Area Under 
the Curve (AUC) score up to 99.7905%. Our accurate and efficient method which has 
novel information entropy features and is extendable for research on the other func-
tional elements in DNA sequences.

Results
Feature selection by XGBoost

Random forest and XGBoost both belong to decision tree algorithms. The decision tree 
algorithm calculates the information entropy gain that can be obtained by dividing a cer-
tain feature before each split, and automatically selects the feature that can maximize 
the information entropy gain for division. During this process, we can also calculate 
the importance of each feature according to the division. We used the XGBoost built-
in function in Python to visualize the importance ranking for each feature. The results 
show that compared to the traditional features, the feature based on information entropy 
we proposed shows more important in the classification task. The feature importance 
ranking is shown in Fig. 1.

Figure 1 shows that the first four importance features are: length, fourth of general-
ized topological entropy, and longest ORF Relative length (lp), the length of the longest 
ORF (ll). And the two versions of human data have a certain degree of consistency in 
the selection of features. In the K-mer comparison experiment we designed, we use the 
same method for feature selection and the selected feature importance are listed in the 
additional files.

Machine learning model training results comparison

We apply SVM, XGBoost and Random Forest algorithms with 35 features to distinguish 
human lncRNAs for GRCh37 version and compare with the ones with K-mer features.

Fig. 1  a Feature importance of human GRCh37 data based on information entropy and ORF; b feature 
importance of human GRCh38 data based on information entropy and ORF
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It can be seen from Fig. 2 that the method based on the combination of information 
entropy and ORF extracts features is superior to the method based on K-mer extraction 
features in general, which are described as follows: (1) In Fig. 2a–c, the AUC value of the 
information entropy is up to 99.7905%, and the AUC value of K-mer is 96.3130% at most; 
(2) For the same training algorithm, the AUC value of the information entropy is larger 
than the AUC value of K-mer one. The maximum difference is 7.0820% and the aver-
age difference is 5.4766%; (3) In Fig. 2d–f, the AUPR value of the information entropy is 
up to 99.7792%, and the AUPR value of K-mer is 96.3035% at most; (4) In Fig. 2d–f, the 
AUPR value of information entropy is larger than the AUPR value of K-mer one, with a 
maximum difference of 5.8724% and an average difference of 4.8184%.

We also apply SVM, XGBoost and Random Forest algorithms with 35 features to dis-
tinguish human lncRNAs for GRCh38 version and do the similar comparison with the 
ones with K-mer features.

We use ROC index as an evaluation indicator, because the ROC curve can easily detect 
the influence of any threshold on the generalization performance of the learner, which 
helps to select the best threshold. The closer the ROC curve is to the upper left corner, 
the higher the accuracy of the model. By comparing the ROC curves of different learn-
ers, the pros and cons of different learners can be visually identified. Figure 3 shows that 
for the GRCh38 version of the human species, the method based on the combination of 
information entropy and ORF is better to the method based on K-mer extraction fea-
tures too: (1) In Fig. 3a–c, the AUC value of the information entropy is 99.7887% at the 
maximum, and the AUC value of K-mer is 97.3003% at the maximum; (2) In Fig. 3a–c, 
the AUC value of the information entropy method is larger than the AUC value of K-mer 
one as the maximum difference is 6.6198% and the average difference is 4.6982%; (3) In 
Fig. 3d–f, the AUPR value of the information entropy is up to 99.7606%, and the AUPR 
value of K-mer is 97.3299% at most; (4) In the Fig. 3d–f, the AUPR value of informa-
tion entropy is larger than the AUPR value of K-mer one, with a maximum difference of 
4.8293% and an average difference of 3.8553%.

Fig. 2  Experimental results based on GRCh37 version of human species: a ROC curve of svm algorithm; b 
ROC curve of random forest algorithm; c ROC curve of XGBoost algorithm; d PR curve of svm algorithm; e PR 
curve of random forest algorithm; f PR curve of XGBoost algorithm
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To further investigate our integrated features and method, we apply available methods 
PLEK and CPAT for comparison. The results are shown in Fig. 4. It demonstrates that 
XgBoost for integrated features has the best AUC and PR values. In Fig. 4a, b, the AUC 
value of PLEK is 1.0562% greater than that of K-mer RF, while it is 1.1904% less than that 
of CPAT. The PR value of PLEK is 1.3487% greater than that of CPAT. In Fig. 4c, d, the 
AUC value of PLEK is 1.0155% greater than that of K-mer RF, while it is 0.5216% less 
than that of CPAT. The PR value of PLEK is 2.27% greater than that of CPAT. It is worth 
noting that the running time of PLEK on these 35 features is 9 days and the other meth-
ods are much less time-consuming.

Fig. 3  Experimental results based on GRCh38 version of human species: a ROC curve of svm algorithm; b 
ROC curve of random forest algorithm; c ROC curve of XGBoost algorithm; d PR curve of svm algorithm; e PR 
curve of random forest algorithm; f PR curve of XGBoost algorithm

a

d

b

c
Fig. 4  a ROC curve of GRCh37; b PR curve of GRCh37; c ROC curve of GRCh38; d PR curve of GRCh38
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Conclusions
In this paper, an effective lncRNA predictor IIMLP is proposed. In order to obtain more 
accurate and realistic prediction results, we use the CD_HIT tool to perform de-redun-
dancy operations on nucleic acid sequences. Characteristics features are extracted from 
the nucleic acid sequence itself, and the topological entropy and generalized topological 
entropy are regarded as new information theoretical features. We combine 35 features 
to train the classifier. Feature selection and classifier training are performed using SVM, 
random forest and XGBoost machine learning methods. Compared with the K-mer con-
trol experiment, we use 49 fewer features and speed up the training process. One advan-
tage of our approach is that we only use features that are calculated directly from the 
sequence itself. Our method not only achieves good performance in lncRNA prediction, 
but also is extendable for research on other functional elements in DNA sequences.

Materials and methods
Data sets

We use the dataset from the Ensembl [16] database for model training: human (Homo 
sapiens) assemblies GRCh37 (release-75) and GRCh38 (release-91). These categorical 
FASTA files of transcripts contain lncRNAs and protein-encoding transcripts (PCTs) 
(shown in Table 1). In this project, we consider lncRNAs as positive samples and PCTs 
as negative samples.

Data processing with CD‑HIT

CD-HIT is a widely used program for clustering biological sequences to reduce sequence 
redundancy and improve the performance of other sequence analyses. CD-HIT was 
originally developed to clustering protein sequences to create a reduced reference 

Fig. 5  Data processing flow chart
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database [17, 18] and then extended to support clustering nucleotide sequences and 
compare two data sets [19].

Currently, the CD-HIT package has many programs: cd-hit, cd-hit-2d, cd-hit-est, cd-
hit-est-2d, cd-hit-para and so on. In this project, we use cd-hit-est to clustering nucleic 
acid sequences. The purpose is to perform de-redundancy operations on nucleic acid 
sequences to ensure the accuracy of the model for machine learning training.

Data processing is briefly described as shown in Fig. 5.
Firstly, we remove all sequences shorter than 200 nt from the original files (as shown 

in Table 1). Secondly, we use the “cd-hit-est” program in the CD-HIT package to per-
form deduplication operations, the purpose of this step is to prevent the model from 
overfitting a certain part of the sample. Thirdly, we randomly down sampled the larger 
number of the two types of sample to keep the number of samples of lncRNAs and PCTs 
consistent. This step is very important, because unbalanced samples may cause our clas-
sification model to be very biased and it cannot to be seen from some commonly used 
indicators. For example, in a positive-to-negative sample with ratio of 99:1, as long as all 
samples are judged to be positive the accuracy of classification can reach to 99%, this is 
obviously not caused by our use of better features or better models. In the fourth step, 
feature extraction is performed to obtain training data. Table 2 shows the changes in the 
number of nucleic acid sequences in the FASTA file after data processing.

Novel features extracted from modified topological entropy and modified generalized 

topological entropy

Koslicki defined topological entropy of a sequence as follows [20]:

The length of a finite sequence is ω and the length of a sub sequence is n. ω satisfies that 
4nω + nω − 1 ≤ |ω| ≤ 4nω+1 + (nω + 1)− 1 . p

w4n+n−1
1

(n) is the number of sub sequences 

with length n which are in the first 4nω + nω − 1 bp of ω. In our project, we choose the 
length of sub sequence n = 3, 4, 5 to calculate three novel features.

Our previous work shows generalized topological entropy is a complete form of topo-
logical entropy [21, 22] and it is defined as:

(1)Htop(w) =
log4

(

p
w4n+n−1
1

(n)
)

n

Table 1  Categorical original FASTA files of transcripts

Transcripts types GRCh37 ncRNAs GRCh37 PCTs GRCh38 ncRNAs GRCh38 PCTs

Number 34917 104763 37297 104817

Table 2  Categorical FASTA files of transcripts after data processing

Transcripts types GRCh37 ncRNAs GRCh37 PCTs GRCh38 ncRNAs GRCh38 PCTs

After removing short 24,513 94,830 28,628 94,527

After deduplication 21,965 41,134 24,863 41,200

After data balancing 21,965 21,965 24,863 24,863
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In Eq. 2, nω fulfils 4nω + nω − 1 ≤ |ω| ≤ 4nω+1 + (nω + 1)− 1 and k ≤ nω. And pω(i) is 
the number of sub sequences of length i within first 4nω + nω − 1 bp of ω.

We modified both topological entropy and generalized topological entropy to empha-
size repetition subsequences. In our calculation we ignored subsequences with lower 
appearance frequencies. That means, this kind of sub sequences will not be included in 
the entropy calculation if the frequency of a subsequence is smaller than 4nω/ω . From 
Eq. (2), k = 3, 4, 5 was chosen and 3 novel features based on modified generalized topo-
logical entropy are calculated.

Combination of information theoretic features

It is very difficult to perform lncRNA prediction based only on the 6 previously-
extracted features. The best approach is to combine them with other commonly used 
informational theory features and ORF-related features of lncRNAs to obtain better per-
formance classifiers. Common features based on information theory and entropy have 
been proposed in computational biology and bioinformatics to analyze and measure 
structural properties in the transcripts. Different complexity calculations reveal different 
aspects of transcript specificity. In our project, we also employ useful theoretical infor-
mation features used by Henkel et al. [23]. The features used in this article constitute a 
35-dimensional vector, which includes: 1 sequence length feature, 4 ORF features [15], 4 
Shannon entropy (SE) features [24], 3 topological entropy (TE) features [20], 3 general-
ized topology Entropy (GTE) features [21], 17 mutual information (MI) features [25] and 
3 Kullback–Leibler divergence (KLD) features [26]. In order to better illustrate the supe-
riority of our research, the K-mer feature was chosen as a comparative test. In the com-
parative experiment, there are a total of 84 nucleotide patterns with different frequencies 
when k is 1, 2 and 3. They are 4 single nucleotide pattern frequency, 16 dinucleotide pat-
tern frequencies and 64 trinucleotide pattern frequencies. Calculation of all features are 
listed in the additional files.

Support vector machine, random forest and XGBoost algorithms for classification 

procedure

SVM [27], Random Forest [28] and XGBoost [29] are widely used machine learning 
algorithms, which we use to identify lncRNAs and PCTs. The SVM algorithm is a super-
vised learning model related to the relevant learning algorithm, which can analyze data, 
identify patterns, and use for classification and regression analysis. The RF algorithm is 
an integrated learning method for classification tasks. It constructs a large number of 
decision trees when training data, and outputs the classes of each tree. The XGBoost 
algorithm predicts output variables based on various rules organized in a tree structure. 
Moreover, XGBoost’s learning method does not require linear features or linear interac-
tion between features. It is a gradient enhancement which can accelerate tree construc-
tion and propose a new tree search distributed algorithm. In our work, all samples are 
described by the 35 features. And the entire process used in our study is shown in Fig. 6.

(2)H (k)
nω

(ω) =
1

k

nω
∑

i=nω−k+1

log4(pω(i))

i
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Machine learning parameter adjustment

K-fold cross validation is used to adjust parameters. The initial sample is segmented 
into K subsamples, a single subsample is retained as data for the validation model, and 
the other K − 1 samples are used for training. Cross-validation is repeated K times, 
each sub-sample is verified once, and the average K-time results are used or other 
combinations are used. Finally get a single estimate. The advantage of this method can 
be repeated using randomly generated subsamples for training and verification. Verify 
the results each time. In order to ensure the accuracy of the model, this paper uses 
three trainers to build the classification model. The cross-validation used during the 
experiment was a fivefold cross-validation.

In order to better select the appropriate machine learning model parameters, this 
article uses the GridSearch method. For SVM, there are only two parameters that 
need to be adjusted. This article uses GridSearch directly here. For XGBoost and Ran-
domforest, there are too many parameters to adjust, and we use some GridSearch in 
order to get the appropriate parameters better and faster. The central idea is to per-
form GridSearch on some parameters. At first, a part or the parameters were fixed 
and we adjust a parameter to optimize the performance of the classifier. In this pro-
cess, we use five-fold cross-validation to evaluate the new capabilities of the model. 
Then we perform the same operations as the previous parameters until all parameters 
are optimal.
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