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Background
The advances in sequencing technologies enable the discovery of the vast amount of 
Long non-coding RNAs (lncRNAs). lncRNAs can serve as signals, decoys, guides, and 
scaffolds to carry out functions like chromatin states modulation and gene expression 
regulation. They act via the interactions with DNA, protein, and other RNA, in the way 
of coordinating regulatory proteins, localizing to target loci, shaping three-dimensional 
(3D) nuclear organization [1–3], etc.
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One way for lncRNA to interact with DNA is to form triplex structures [4]. Triplex 
is a kind of direct RNA–DNA interaction mechanism, it is formed through the bind-
ing of RNA sites and purine rich strand of duplex DNA under the forward or reverse 
Hoogsteen base-pairing rule. Some lncRNAs are proved to execute functions via form-
ing DNA:RNA triplexes, for example, promoter associated lncRNA interacts with TTF-I 
to repress transcription of rRNA [5], FENDRR increases PRC2 occupancy at the triplex 
formation sites [6], MEG3 forms DNA-lncRNA triplex with TGF-β gene to modulate the 
gene activity [7], PARTICLE binds to MAT2A promoter CpG island as triplex to con-
tribute to gene-silencing machineries [8], KHPS1 interacts with SPHK1 to anchor the 
lncRNA and associated effector proteins to the gene promoter [9], HOTAIR forms tri-
plex with PCDH7 and HOXB2 to regulate adipogenic differentiation [10], MIR100HG 
acts via triplex formation to regulate p27 [11], and promoter and pre-rRNA antisense 
guides associated CHD4/NuRD to the rDNA promoter [12].

Although the recent development of high throughput techniques, such as Chromatin 
Isolation by RNA Purification (ChIRP-seq) [13], capture hybridization analysis of RNA 
targets (CHART-seq) [14], RNA Antisense Purification (RAP-seq) [15], and chromatin 
oligo affinity precipitation (ChOP-seq) [7], has helped to generate the genome-wide map 
of lncRNA chromatin interactions for specific lncRNAs via deciphering their binding 
sites, most of them are implemented in crosslinked chromatin which contain RNA asso-
ciated to DNA binding proteins. Therefore, they cannot provide reliable references for 
the studying of DNA:RNA triplex formation. To reveal the existence of the DNA:RNA 
triplex interactions in vivo, Cetin et  al. [16] developed a method to map the genome-
wide DNA:RNA triplexes by excluding the chromatin crosslinking . This method proved 
the physiological relevance of DNA:RNA triplex structures.

Currently, the prediction of DNA:RNA triplex mainly relies on the base paring rules-
related mathematic statistics. Triplexator is proposed to systematically identify the 
potential triplex forming sites of RNA and the targeting sites on DNA by taking the 
Hoogsteen and reverse-Hoogsteen base-pairing into account [17], Triplex-Inspector is 
designed to select sequence-specific ligands and targets by considering the gene loca-
tion and genomic architecture [18], LongTarget is presented to detect motifs and bind-
ing sites in forming triplex by considering non-canonical rules [19], and Triplex Domain 
Finder (TDF) is developed to predict triplexes and characterize lncRNA and the corre-
sponding DNA targets [20].

Although the above methods can identify potential triplexes according to the canoni-
cal rules, they predict a large population of lncRNAs with triplex forming potential. 
However, the limited number of experimentally identified triplex-forming lncRNAs 
indicates that maybe not all of them can form triplex in practice. Besides, the computa-
tional methods only calculate the theoretical triplex potential, while do not consider any 
in vivo or in vitro assays verified data.

In this work, we have the following two aims: (1) predicting the most likely triplex-
forming lncRNAs in practice from the lncRNAs owning triplex forming capabilities 
calculated by the computational methods, and (2) predicting the potential of DNA 
sites in forming triplex based on the experimentally verified data. For these purposes, 
we develop TriplexFPP (Triplex Forming Potential Prediction). It is the first machine 
learning program in DNA:RNA triplex forming potential prediction according to our 
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knowledge. In triplex lncRNA prediction, the average values of Area Under the ROC 
(AUROC) and Area Under the PRC (AUPRC) for fivefold cross validation on removed 
redundancy dataset with threshold 0.8 are 0.9649 and 0.9996 separately. Besides, the 
average cross-validation AUROC and AUPRC values for the triplex DNA sites poten-
tial prediction are 0.8705 and 0.9671 separately. The general good performances of Tri-
plexFPP illustrate its effectiveness in triplex forming potential prediction, and could 
provide references to the lncRNA function exploration. Furthermore, we also briefly 
summarize the cis and trans targeting of triplexes lncRNAs, which may provide some 
insights to the exploration of lncRNA binding mechanisms.

Implementation
Dataset

Triplex lncRNA prediction dataset

The positive data for triplex lncRNA prediction is collected in 2 ways. On one hand, we 
extracted the lncRNAs according to the TriplexRNA regions (DNA:RNA triplex forming 
peaks in RNA) reported in the work of Sentürk et al. [16] by considering both Solid Phase 
Reversible Immobilization-based paramagnetic bead size selection and immunopurifi-
cation with anti-DNA antibody RNA separation in Hela S3 cell. We used GENCODE 
release 33 lncRNA annotation [21] to extract the lncRNAs that cover the TriplexRNA 
regions and obtained 476 unique samples in this way. We named these lncRNAs as tri-
plexlncRNA. On the other hand, we also collected lncRNAs that are verified by either 
in vivo or in vitro assays to from triplexes with DNA from the peer-viewed publications. 
These lncRNAs are named as reported triplex lncRNA, including MEG3 [7], PARTICL 
[8], MIR100HG [11], FENDRR [22], and HOTAIR [10]. All the variants of the reported 
triplex lncRNA were taken into consideration. The total number of reported triplex 
lncRNA is 159.

Since our goal is to predict the most likely triplex-forming lncRNAs in practice from 
the lncRNAs owning triplex forming capacities predicted by computational methods, we 
used TDF [20] to further filter the data. When evaluating the triplex forming potential of 
the above 635 lncRNAs with the whole gene promoters (except for chromosome Y and 
M) with TDF (default parameters), 104 of them do not contain DNA Binding Domains 
(DBDs) with powerful Triplex Forming Oligonucleotide (TFO) support. There are two 
possible explanations for the phenomenon of low triplex forming capacity obtained from 
TDF in collected positive data: i) for reported triplex lncRNA, each lncRNA gene may 
have multiple transcripts with splice variants, but maybe not all of their variants have 
the abilities to form the triplex with DNA, and ii) for triplexlncRNA, the overlap regions 
between R-Loop and TriplexRNA regions cannot be confirmed as triplex forming or not 
[16]. To assure the data reliability, we deleted the 104 lncRNAs with low triplex forming 
capacity and finally got 531 samples in the positive dataset.

The negative samples are collected following the same filter rules as that of positive. 
After removing the lncRNAs in our original positive dataset from GENCODE annota-
tion, we evaluated the triplex forming potential of all remaining lncRNAs with the whole 
gene promoters (except for chrY and chrM) by TDF. We only kept the lncRNAs with 
at least one powerful TFO supported DBD and at least 123 DNA Binding Sites (DBSs) 
(the smallest number of DBSs is 123 in positive data). From the qualified lncRNAs, we 
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further removed one lncRNA with letter ‘N’ in its sequence and the variants of lncRNA 
MALAT1 which is reported to form RNA-RNA triplex [23]. Finally, the negative dataset 
contains 36,021 lncRNAs which have comparable triplex forming abilities as the positive 
data.

We also prepared two more datasets with removed redundancies. We used the CD-
HIT [24] to remove the redundancy in each class of the original dataset with threshold 
of 0.9 and 0.8 separately. The positive and negative data amounts in two removed redun-
dancy datasets are 384 and 28,012, and 286 and 22,681, respectively.

Triplex DNA sites potential prediction dataset

To predict triplex-forming sites in DNA on the basis of experimental data, we adopted 
the TriplexDNA regions (DNA:RNA triplex forming peaks in DNA) obtained from [16] 
as positive data. These RNA-associated DNAs are enriched by an unbiased approach. 
After removing 5 samples containing the letter ’N’ in their sequences, the final positive 
dataset size is 2542. The negative data is selected as the random regions in promoters. 
We downloaded all ensembl annotated promoters [25], from which we generated 12,735 
regions (5 times amount of originally positive data). These regions were obtained by ran-
domly selecting chromosomes (except chrY and chrM) and DNA regions with the same 
lengths as TriplexDNA. The sequence data for both positive and negative is extracted 
from the DNA minus strand.

Feature extraction

Two types of sequence-related feature extraction strategies are considered here: k-mer 
and kmerscore. Both two types of strategies have been successfully applied to classifi-
cation problems in RNA [26, 27]. K-mer is a popular method to transform a sequence 
into a vector, it counts the frequencies of single or multiple nucleotide compositions in a 
sequence and represents the sequence into a 4 k dimensional vector. K-mer features can 
be calculated as

where kmer(i) is the frequency of the i th nucleotide composition in all 4 k possibilities, 
and the denominator n− k + 1 represents the total number of all possible k neighbor-
ing nucleic acids in a sequence with length n . For example, in the 3-mer circumstance, 
k = 3 , considering sequence S = AAAAC , whose n = 5 , its frequencies under the nucle-
otide composition of AAA and AAC are 2/3 and 1/3 separately, while the frequencies for 
other 3-mer compositions like AAG , et al. are 0.

kmerscore is an overall measure of the k-mer nucleotide composition bias in a 
sequence, it is obtained from k-mer features. To calculate it, firstly, the k-mer features for 
all sequences need to be calculated, then the mean k-mer vectors from the positive and 
negative dataset are obtained from the corresponding k-mer features separately, which 
are represented as Mpos(hi) and Mneg (hi) , where i = 1, 2, . . . , 4k . Finally, for a nucleotide 
sequence S = s1s2 . . . sn with k-mer sequence S = h1h2 . . . hn−k+1 , the kmerscore can be 
represented as

(1)kmer(i) =
Total number of k neighboring nucleic acids (i)

n− k + 1



Page 5 of 13Zhang et al. BMC Bioinformatics          (2020) 21:522 	

Model construction

We developed an integrated machine learning program called TriplexFPP (Triplex Forming 
Potential Prediction) in triplex forming potential prediction. It consists of two individual 
models, including triplex lncRNA prediction model and triplex DNA sites potential predic-
tion model.

We adopted the 2-layer Convolutional Neural Network to construct the models, which 
can effectively learn the high-level features. The detailed description of the structure and 
parameters of the model can be found at section of Initial training of TriplexFPP below. 
As the positive dataset sizes and negative dataset sizes in triplex lncRNA prediction and 
triplex DNA sites prediction are imbalanced with ratios around 1:68 and 1:5 separately, to 
avoid the model bias, we applied the random down-sampling technique during the training 
process. The negative training data were randomly selected as the same amount as positive 
training data. Due to the extremely small positive dataset size in triplex lncRNA prediction, 
i.e. 531, we also applied oversampling on this dataset. Because the positive data in triplex 
lncRNA prediction are collected from two sources whose amounts are in a ratio around 
2.5 to 1 (triplexlncRNA to reported triplex lncRNA), to force the model to learn the global 
features for all positive data rather than the common features for the data from the major-
ity type, i.e. triplexlncRNA, we assigned more weights to the weak type data, i.e. reported 
triplex lncRNA, during augmenting the positive data in the training process, and we named 
this practice as the weighted bagging strategy.

Model evaluation

To demonstrate the model performances, the evaluation criteria of accuracy (Acc), sensi-
tivity (Sn), specificity (Sp), and AUROC are used. Besides, criteria in evaluating imbalance 
data are also adopted, including AUPRC, F1-score, and harmonic mean (Hm). The equa-
tions for calculating the above criteria are listed below.

(2)kmerscore =
1

n− k + 1

n−k+1∑

i=1

log
Mneg (hi)

Mpos(hi)

(3)Accuracy (Acc) =
TP + TN

TP + TN + FP + FN

(4)Sensitivity (Sn) =
TP

TP + FN

(5)Specificity (Sp) =
TN

TN + FP

(6)Harmonic mean of Sn and Sp (Hm) =
2× Sn× Sp

Sn+ Sp

(7)F1-score =
2× PRE × Sn

PRE + Sn
, where PRE =

TP

TP + FP
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where FN, FP, TN, and TP denote the number of false negative, false positive, true nega-
tive, and true positive, respectively.

Results
Initial training of TriplexFPP

Each input sequence is represented into a fix-length 90-dim vector by con-
sidering both k-mer ( k = 1, 2, 3, number of feature = 84 ) and kmerscore 
( k = 1− 6, number of feature = 6 ) features. The influences of the k-mer and kmerscore 
features to TriplexFPP can be found at Additional file 1: Fig. S1. We use the mean k-mer 
feature values from training data to calculate the kmerscore features of both training and 
test data in the corresponding split to exclude any information from test data.

The parameters in TriplexFPP, such as the number of convolutional layer, the kernel 
size, the activation function, etc. are determined according to the corresponding random 
split datasets in two individual models. Each time we change the value of one parameter 
while keeping other parameters fixed, and then select the one that achieves the highest 
value of Sn as the final choice for that parameter. The setting of the parameters and the 
corresponding performances for triplex lncRNA prediction model and triplex DNA sites 
prediction model are shown in Additional file 1: Figs S2 and S3 separately. The detailed 
architectures and parameters for TriplexFPP can be found in Fig. 1.

Evaluation of triplex lncRNA prediction

In this section, we evaluate the triplex lncRNA prediction model in TriplexFPP regard to 
its ability in predicting the most likely triplex-forming lncRNA from the lncRNAs own-
ing triplex forming capability predicted by the computation methods.

We first visualize the nucleotide compositions of lncRNA sequences in our positive 
dataset (triplexlncRNA and reported triplex lncRNA) and negative dataset (Additional 
file 1: Fig. S4). The nucleotide compositions for the reported triplex lncRNAs and the 
negative lncRNAs are more consistent, from which nucleotide A and T taking up heavier 
percentages; whereas the triplexlncRNA follows a different pattern, whose sequences are 

Fig. 1  The architecture of TriplexFPP. TriplexFPP is composed of two models, the corresponding model 
architecture and parameters are shown
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mainly CG rich. Because the amount of triplexlncRNA is larger than that of reported tri-
plex lncRNA in our positive dataset, to ensure the model to learn the high-level features 
for all positive data rather than the sequence composition features of triplexlncRNA, 
we assign more weights to the reported triplex lncRNA when augmenting the positive 
data in the training process. We triple the positive training data with the weighted bag-
ging strategy, where two-thirds of them is bagged from the original positive training 
data directly and one-third of them is extra bagged from the reported triplex lncRNA. 
We compare our method with baseline models like Deep Neural Network (NN), Sup-
port Vector Machine (SVM), Random Forest (RF), and Gradient Boosting. The param-
eters for the NN model are determined as the ones with the best Sn value among several 
choices on random split training and test datasets, and the parameters for other baseline 
models are determined as the optimal ones by cross-validated grid-search over a param-
eter grid based on the criteria of Recall. The candidate parameters and the final deter-
mined parameters for each baseline model are recorded in Additional file 1: Table S1. 
The box and whisker plots for fivefold cross validation are demonstrated for all models 
in Fig. 2a, where the negative training data are randomly selected as the same amount of 
augmented positive training data from the 4 training folds in each validation.

With the mission of finding the most likely triplex-forming lncRNAs in practice, 
although Gradient Boosting method realizes the best Acc and F1-score values, its Sn 
values mainly concentrate between 87.74 and 92.45%. Conversely, the Sn values for CNN 
model range from 93.40 to 97.17%, concentrating at a high-value region, which indicates 
its superiority to baseline models on the model performance. Besides, the overall high 
values of other evaluation metrices in CNN model, e.g. 98.35% of average Acc, 0.9926 
of average AUROC, 0.9999 of average AUPRC, 0.992 of average F1-score, and 0.969 of 
average Hm, further illustrate the effectiveness of our CNN model in TriplexFPP in the 
lncRNA triplex forming potential prediction.

Fig. 2  Evaluation of lncRNA triplex prediction model in TriplexFPP. a The box and whisker plot of the fivefold 
cross validation for CNN and 4 baseline modes (SVM, RF, Gradient Boosting, and NN). b The comparisons of 
the fivefold cross validation performances among data without removing redundancy, removing redundancy 
with threshold 0.9, and removing redundancy with threshold 0.8
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However, one issue for the above fivefold cross validation is that the high perfor-
mance may be caused by the high data similarity between training and test. In our posi-
tive dataset, the 531 samples relate to 135 genes (Additional file 1: Figure S5), where 57 
genes owning two or more variants. The different variants from the same lncRNA gene 
can share high sequence composition similarities, thereby leading to a good prediction 
result. To evaluate whether the model is powerful enough in predicting lncRNA tri-
plex forming potential, we further execute fivefold cross validation on the datasets with 
removed redundancy and carry out the leave-out validation.

We compare the performances of CNN model on datasets without removing redun-
dancy, removing redundancy with threshold of 0.9, and removing redundancy with 
threshold of 0.8. The results are demonstrated in Fig. 2b. Although the average perfor-
mances on the data with removed redundancy are slightly lower than that of without 
removing redundancy, the values in evaluation matrices on the removed redundancy 
datasets remain at high levels. For example, in removed redundancy datasets with 
threshold of 0.9, the AUROC and AUPRC values range from 0.9637 to 0.9880 and 0.9993 
to 0.9998 separately; in removed redundancy datasets with threshold of 0.8, the AUROC 
and AUPRC values range from 0.9497 to 0.9809 and 0. 9994 to 0.9998 separately.

For the leave-out validation, we select four lncRNAs with the most amounts of vari-
ants as the test data, including MIR100HG, PVT1, LINC00963, and MEG3. Their vari-
ants amounts are 87, 73, 52, and 46, respectively. The four lncRNAs follow different data 
sources, PVT1 and LINC00963 belong to triplexlncRNA, and MIR100HG and MEG3 
belong to reported triplex lncRNA. In each leave-out validation, we select one lncRNA 
and use all of its variants as positive test data, while using all the remaining positive 
lncRNAs as the training data. The training and test process are repeated 5 times, each 
time the negative training data are randomly selected as the same amount with positive 
training data from one of the fivefold cross validation split above, and the negative test 
data are the above fivefold cross validation test data.

When leaving lncRNA PVT1 and LINC00963 out, our model predicts all their variants 
correctly as positive. The average AUROC values for PVT1 and LINC00963 are 0.9996 
and 0.9968 separately. However, when leaving lncRNA MIR100HG and MEG3 out, their 
average AUROC values are 0.6594 and 0.3220 separately, which are a bit low. One pos-
sible reason for the different performances between triplexlncRNA and reported triplex 
lncRNAs is that, in triplexlncRNA, we adopt the variants which are overlapped with 
experimentally verified triplex forming regions; whereas in the reported triplex lncRNA, 
we adopt all the variants of that gene, however, maybe not all of these variants could 
form triplex in practice. Interestingly, when we only use six kmerscore features to train 
leave-out model for MEG3, its average AUROC value could increase to 0.7610, but this 
phenomenon is not found when leaving MIR100HG out.

Evaluation of triplex DNA sites potential prediction

We use the fivefold cross validation to evaluate the performance of triplex DNA sites 
potential prediction model in TriplexFPP, and compare it with other baseline models 
(Fig.  3a). The determination of the parameters for baseline models in predicting tri-
plex DNA sites follows the same procedure as that of triplex lncRNA prediction. The 
candidate parameters and the final determined parameters for each baseline model 



Page 9 of 13Zhang et al. BMC Bioinformatics          (2020) 21:522 	

are recorded in Additional file  1: Table  S2. The overall performance of CNN is better 
than that of baseline models, whose average AUROC and AUPRC values are 0.8705 and 
0.9671 separately; whereas for baselines methods, the average values of AUROC located 
in the scope of 0.8635 to 0.8667, and the average values of AUPRC are from 0.9642 to 
0.9660, respectively. We then visualize the predicted probability scores of CNN model 
in each fold (Fig. 3b and Additional file 1: Fig. S6). Although some samples are wrongly 
predicted, the predicted probability scores for most positive data concentrate at around 
value of 1. This phenomenon indicates that our model can predict most data correctly 
with high confidence.

Besides, the region of 649–708 in HOTAIR sequence is verified to form DNA:RNA tri-
plex [10], our model correctly predicts this site as the triplex forming type. Overall, with 
the limited data, our results demonstrate that TriplexFPP can effectively distinguish the 
in vivo assay defined triplex-forming DNA sites from those background sites with only 
nucleotide sequence features as the input.

TriplexFPP model interpretation

Take the first fold validation in two models in TriplexFPP as examples, we plot the 
average feature values for each class in the format of heatmap before training (original 
features), trained after one CNN layer, and trained after two CNN layers in Fig. 4 and 
Additional file 1: Fig. S7. The kmerscore features (the first six features in original fea-
tures) show obvious differences in two classes, which indicate that the nucleotide com-
positions have different preferences with regard to the positions in positive and negative 
data. The kmerscore features also lead to different convolution values after trained with 
only one CNN layer. However, for the remaining features, the differences of their convo-
lutional values between two classes do not show noticeable differences until trained after 
2 CNN layers.

In cis/in trans triplex‑forming lncRNA: an exploration

The lncRNA can form triplex structures with DNA both in cis and in trans, but if differ-
ences exist between cis and trans targeting of triplexes lncRNAs remains unknown [28]. 
In this work, we explore the cis and trans targeting of triplexes lncRNAs following two 
data sources.

Fig. 3  Evaluation of triplex DNA sites potential prediction model in TriplexFPP. a The box and whisker plot 
of fivefold cross validation for CNN and baseline models. b The visualization of the distribution for predicted 
probability score of the first fold validation data
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From the TDF results between each triplexlncRNA and TriplexDNA, 238 lncRNAs in 
triplexlncRNAs show both in cis and in trans interactions with DNA, whose in cis bind-
ing numbers range from 1 to 2450; whereas the other 141 lncRNAs only show in trans 
interactions with DNA (Additional file 1: Fig. S8). Moreover, for a certain lncRNA gene, 
its variants may show different binding patterns. Among all 130 genes related to triplexl-
ncRNAs, 26 genes contain variants either belong to the type of in cis and in trans inter-
actions or only in trans interactions (Additional file 1: Figs. S9 and S10).

Besides, for those reported triplex lncRNA, we collect their binding information from 
the published work in Additional file 1: Table S3 [7, 8, 10, 11, 23, 29]. According to the 

Fig. 4  The average feature values in each class of triplex lncRNA prediction model. Top: original features (the 
90-dim features are reshaped to 9*10), middle: features after trained with one CNN layer (x-axis: filter, y-axis: 
convolution values the 1st to the 15th), and bottom: features after trained with two CNN layers (x-axis: filter, 
y-axis: convolution values the 1st to the 15th); left: positive data, right: negative data
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corresponding experiments, the lncRNA HOTAIR, MEG3, and MIR100HG show in 
trans binding, and PARTICLE and FENDRR show in cis binding.

Discussion
LncRNA can exert functions via interacting with DNA. Among all kinds of interactions, 
DNA:RNA triplex formation is still less understood to us due to the limited number of 
validation assays. Although varieties of canonical rule-based computational methods 
have been developed to predict the triplex forming potential for lncRNA and DNA sites, 
they identify a large number of lncRNAs which can form triplex. However, the limited 
number of experimentally verified data indicates that maybe not all of them can form 
triplex in practice. Besides, those computational methods only theoretically calculate the 
triplex potential, while do not consider any in vivo and in vitro verified data.

Trained with the data obtained from in vitro and in vivo assays, our newly developed 
program, namely TriplexFPP, exhibits good prediction performances. Its triplex lncRNA 
prediction model works effectively by achieving high average scores of evaluation matri-
ces in the fivefold cross validation. For example, in the removed redundancy datasets 
with threshold 0.8, the average cross fold validation value of Acc, AUROC, AUPRC, 
f1-score, and Hm are 95.28%, 0.9649, 0.9996, 0.976, and 0.904, respectively. Besides, the 
triplex DNA sites potential prediction model in TriplexFPP also works effectively. In the 
fivefold cross validation, its average AUROC and AUPRC values are 0.8705 and 0.9671 
separately. And most data are predicted correctly with high confidences.

We also summarized the cis and trans targeting of triplexes lncRNAs following the dif-
ferent data sources collected in this work, which may provide some insights to the explo-
ration of lncRNA cis and trans binding mechanisms.

However, one limitation for this work is that the positive data amount is small. And 
also, some data in our negative class may belong to the positive but are not yet verified. 
Therefore, we expect more data to be explored to help implementing this tool. Besides, 
a small fraction lncRNA in our collected data may belong to the R-Loop forming type, 
which may influence the results somehow.

Conclusion
We proposed a deep learning based program in DNA:RNA triplex formation prediction, 
namely TriplexFPP. TriplexFPP predicts the most likely triplex-forming lncRNAs from 
all the lncRNAs with computationally defined triplex forming capacities, and it also pre-
dicts the potential of a DNA site to become a triplex. TriplexFPP narrows the scope of 
possible lncRNAs in forming triplex compared to those mathematic statistic methods. 
We expect the TriplexFPP can provide insights and references to help to decipher the 
codes of the lncRNA functions.
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