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Background
The analysis of the functional capacities of microbial communities has become an impor-
tant component of microbiome-based studies, providing novel insights into associations 
between the gut microbiome and host conditions such as depression [22], autism [18], 
and type 2 diabetes [16]. Such functional profiles are generally obtained via shotgun 
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metagenomic sequencing and subsequent functional annotation. This functional anno-
tation can be performed either by assembling reads into contigs and mapping detected 
open reading frames to annotated gene sequences, or by directly mapping individual 
reads to annotated gene sequences [17]. Assembly-based approaches can provide certain 
benefits by enabling the reconstruction of metagenomic assembled genomes (MAGs), 
but this assembly process can be incredibly challenging and prohibitively time and 
memory intensive. Additionally, these efforts often result in highly fragmented assem-
blies due to factors such as uneven sequencing depth across different genomes and high 
strain-level sequence diversity [7]. By comparison, assembly-free, or read-based, annota-
tion approaches can offer a more practical and accessible option due to lower resource 
requirements and an avoidance of the assembly problem. The pipeline we present here 
utilizes this latter, read-based annotation approach.

To facilitate such read-based annotation processes, various pipelines, including 
HUMAnN2 [6], MG-RAST [10], eggNOG-mapper [8], SUPER-FOCUS [19], and YAMP 
[23], have been recently introduced. The standard workflow of these pipelines involves 
taking FASTQ or FASTA files as inputs, mapping reads to a database of microbial gene 
sequences, annotating reads with the functional capacities that have previously been 
associated with those genes, and eventually producing functional profiles at one or more 
levels of descriptive resolution. These pipelines, however, often lack one or more critical 
features essential for modern, high-throughput, complete, distributed, and computation-
ally-intensive functional annotation, such as the ability to process unfiltered sequencing 
data, native integration with distributed computing systems, and/or adequate options 
for workflow customization (Table 1).

Here, we describe MetaLAFFA, a new functional annotation pipeline that addresses 
these shortcomings. MetaLAFFA avoids requiring users to separately run common 
pre-processing steps by incorporating various quality control measures into the pipe-
line. MetaLAFFA is also designed to easily and effectively integrate with compute cluster 

Table 1  Comparison of read-based metagenomic annotation pipeline features

Feature MG-RAST SUPER-FOCUS eggNOG-
mapper

HUMAnN2 YAMP MetaLAFFA

Metagenomic functional annota-
tion

✓ ✓ ✓ ✓ ✓ ✓

Uses DIAMOND for read alignment ✓ ✓ ✓ ✓ ✓ ✓
Read pre-processing ✓ ✓ ✓
Ortholog aggregation to broader 

functional categorizations
✓ ✓ ✓ ✓ ✓ ✓

Available as a web service ✓ ✓
Native integration with distributed 

computing systems
✓ ✓

Automatic continuation from 
intermediate steps after inter-
ruption

✓ ✓ ✓

Convenient incorporation of new 
pipeline steps

✓ ✓

Universal single-copy gene-based 
abundance normalization via 
MUSiCC

✓
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management systems, allowing users to take full advantage of available computational 
resources and distributed, parallel data processing. Finally, MetaLAFFA offers a con-
venient interface for configuring pipeline operation, providing users with extensive cus-
tomization options that include the choice of which pipeline steps to perform and the 
operating parameters for individual steps.

Implementation
Default MetaLAFFA workflow

In its default configuration, MetaLAFFA performs metagenomic annotation in three 
basic phases: quality control, read mapping, and functional annotation (Fig. 1). Broadly, 
the quality control phase aims to remove unwanted or low-quality reads from the input 
shotgun metagenomic data via common pre-processing operations. Next, the read map-
ping phase aligns the quality-controlled reads to a sequence database of microbial genes 
and calculates the abundance of each gene. Finally, the functional annotation phase 
translates these gene abundances into classifications of community functional capacities 
and their abundances within the community’s metagenome. In this section, we will elab-
orate on the exact steps performed by MetaLAFFA in its default configuration, including 
the default choices for tools and databases, and possible alterations users can make to fit 
their specific use cases.

MetaLAFFA’s quality control phase (Fig. 1, highlighted in green) was inspired by the 
Human Microbiome Project (HMP) [20] protocol, though specific methodology has 
been updated to reflect current best practices. While it utilizes some component tools 
similar to KneadData, MetaLAFFA does not employ KneadData to better compartmen-
talize each step and better enable user configuration and customization of individual 
components. First, MetaLAFFA removes host reads by mapping reads to the hs37d5 
human genome reference with decoy sequences available from the 1000 genomes project 
[1] using Bowtie 2 [12] and then discarding any reads identified as human. Depending 
on the project, users can substitute alternative “host” databases to remove contaminants 
from different host organisms. Next, MetaLAFFA removes artificial duplicates by iden-
tifying duplicate reads using MarkDuplicates from the PICARD toolset [5] and then 
discarding those reads. The final step in the quality control phase is quality trimming 
and filtering, which removes low-quality bases from the ends of reads and then discards 
reads that are too short. This is performed using Trimmomatic [2] and the MAXINFO 
trimming criterion. After this quality control phase, users should be left with high-qual-
ity microbial reads that can serve as the basis for profiling community metagenomic 
content.

The read mapping phase (Fig.  1, highlighted in blue) begins with aligning reads to 
the UniRef90 database of protein sequences using DIAMOND [3], a core tool for rapid 
sequence alignment in most metagenomic annotation procedures. Other databases 
can be substituted for the UniRef90 database depending on the goals of the annota-
tion project. For example, using a database like CARD, which contains a collection of 
antibiotic resistance genes [15], can allow users to focus specifically on profiling abun-
dances of these antibiotic resistance genes within their community of interest. Similar 
to HUMAnN2 [6] and other pipelines, paired-end reads are mapped separately during 
the read mapping phase to avoid overly penalizing pairs where only one half of the pair 
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aligns to a gene. After aligning reads, MetaLAFFA scans these matches to identify the 
best match (or best matches if there are ties) for each read in the database. This best 
match strategy was shown to yield high specificity in functional profiling [4], though 
users can choose alternative strategies to increase sensitivity at the cost of specificity. 
For example, MetaLAFFA also provides the option for a best N matches strategy, where 

Fig. 1  Flowchart of the default MetaLAFFA workflow. The default MetaLAFFA workflow consists of three 
phases, quality control (top), read mapping (middle), and functional annotation (bottom). This flowchart 
outlines the individual processing steps taken in each phase (colored rectangular boxes), the intermediate 
outputs of these steps (grey rounded boxes), supporting data files required for specific steps (yellow rounded 
boxes), user-provided input to MetaLAFFA (red rounded box), and the final outputs of the pipeline (purple 
rounded boxes). Third-party tools used in the default pipeline workflow are indicated in parentheses for their 
associated processing steps. File types of all inputs, outputs, and supporting data files are indicated by file 
suffix
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a read is associated with the top N genes that the read mapped to. This strategy may be 
desirable if, for instance, the user is concerned that long reads may span adjacent genes. 
After refining matches from the alignment step, gene abundances are calculated by sum-
ming up the number of reads that mapped to each gene. If a read matches equally well 
to multiple genes, then that read contributes a fractional count distributed evenly across 
the abundances of each of those genes. This results in a gene abundance profile for each 
sample, which can be translated into more interpretable classifications of community 
functional capacities in MetaLAFFA’s third phase.

Finally, MetaLAFFA performs its functional annotation phase (Fig.  1, highlighted in 
orange). The first step in this phase is to calculate the abundances of genes with simi-
lar functional capacities, or functional orthologs. By default, these associations between 
genes and functional orthology groups come from the annotations in the UniRef90 data-
base, mapping genes to KEGG orthology groups, or KOs [9]. If users choose a different 
database to map reads against (e.g. CARD), then users will need to update the gene-to-
ortholog mapping appropriately. Similar to calculating gene abundances in the previous 
phase, MetaLAFFA does this by summing up the abundance of genes that belong to each 
group of functional orthologs. If a gene is associated with multiple orthology groups, 
its abundance is distributed evenly between the abundances of each of those orthology 
groups. The resulting functional profile is then corrected using MUSiCC [13] to convert 
read counts of orthologs into the average copy number per genome of each functional 
ortholog. Alternatively, users can set MetaLAFFA to leave functional profiles in terms 
of relative abundances. Finally, MetaLAFFA aggregates ortholog abundances into abun-
dances of broader functional classifications using EMPANADA [14]. This tool aggregates 
KO abundances into KEGG pathway (and module) abundances based on the supporting 
evidence for the presence of each pathway. Users may need to change the ortholog-to-
broader-classification mapping, or skip it all together, if they wish to use a different data-
base for mapping reads to genes. The output of the functional annotation phase, and the 
final output from MetaLAFFA are the KEGG KO-, module-, and pathway-level profiles 
of community functional capacities.

After each step in the default MetaLAFFA pipeline is completed, MetaLAFFA also 
generates a table of summary statistics for that step. For example, during the steps in 
the quality control phase, these tables summarize how many reads were discarded from 
each sample, the new average base quality of each sample, and the average read length of 
each sample post-quality trimming. For later steps, these summary statistics include how 
many reads were successfully aligned to the gene database, how many matches remained 
when reduced to best matches, and how many unique functional orthologs were present 
in each sample. Once MetaLAFFA has completed its functional annotation, these sum-
mary statistics are combined into a single table summarizing the pipeline’s operation.

Workflow management and distributed computing integration via Snakemake

MetaLAFFA is implemented in Snakemake [11], a Python-based workflow management 
framework that is specifically designed for bioinformatics analysis pipelines. Snakemake 
determines dependencies between different steps of a pipeline based on the expected 
inputs and outputs of each step, and ensures that later steps are only run once their 
inputs become available. One benefit of this approach is that Snakemake automatically 
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detects when the expected outputs of a step are missing, halts the pipeline, and allows 
the user to simply resume operation from the most recent successfully completed steps 
after they address any issues that led to the failure.

Another useful feature of Snakemake is its ability to compartmentalize pipeline opera-
tions. Snakemake can split steps in the pipeline into independent jobs where, for exam-
ple, each job processes a separate sample. MetaLAFFA takes advantage of this option 
to separate the quality control and read mapping of multiple FASTQ files into sample-
specific jobs, rather than trying to process them all as a single operation. This compart-
mentalization means that if MetaLAFFA fails when processing a single sample (e.g. host 
filtering fails because the input FASTQ was malformed), any samples that were success-
fully processed prior to the failure will be recognized as successfully processed. Con-
sequently, MetaLAFFA will avoid unnecessarily re-processing those samples once the 
cause of the failure has been addressed and the user resumes MetaLAFFA operation.

Finally, Snakemake has built-in capabilities to take advantage of parallel processing 
and distributed computing, which allows MetaLAFFA users to make the best use of their 
available computational resources. Specifically, Snakemake automatically determines 
which steps (and individual jobs when steps are split into separate jobs) are independent 
and can be run in parallel. Then Snakemake will use available cores if being run locally, 
or an available distributed computing environment (e.g. HTCondor, SGE, SLURM) to 
run independent jobs in parallel. This allows MetaLAFFA users to take full advantage of 
any available compute clusters and can enable the expedited annotation of large shotgun 
metagenomic datasets.

MetaLAFFA configuration and customization

MetaLAFFA provides convenient pipeline configuration and customization options for 
both novice and advanced users. There are two main components that define pipeline 
configuration: a text file defining the overall pipeline workflow (i.e. how each step feeds 
into one or more subsequent steps) and a Python module that organizes general pipeline 
options and step-specific settings into separate submodules.

The workflow file enables users to make several modifications to the MetaLAFFA 
workflow and should be amenable to those with little or no programming experience. 
For example, setting a later step to use user-provided data as input will cause Meta-
LAFFA to skip prior steps during operation. This may be helpful if the user has already 
used quality control tools to process their data and would prefer to skip to MetaLAF-
FA’s read mapping phase. The workflow file is also used to designate special qualities 
to steps in the pipeline, including: which steps take user-provided files as initial input, 
which steps produce important final output files, which steps generate summary statistic 
tables, and which steps produce intermediate files that can be safely deleted after they’ve 
been used. Users can also modify this configuration file to reorder steps in the pipeline 
if so desired (e.g. perform host read removal after quality trimming and filtering) by 
changing how steps feed into each other.

The Python configuration module controls the rest of MetaLAFFA operation and can 
be used by both naïve and savvy users. Specifically, users with zero programming experi-
ence can still access this module to modify basic configuration options. The step-specific 
submodule that controls the read mapping step (“map_reads_to_genes.py”) offers a good 
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example of this basic customization. For instance, this submodule sets the DIAMOND 
[3] operating parameters that will be used when mapping reads to genes, including the 
alignment method, the top percentage of best matches to keep, the E-value cutoff for 
saved matches, and the alignment sensitivity. Each of these parameters can be modified 
within the submodule by opening the file in a text editor and changing the appropriate 
value (e.g. finding where the “evalue_cutoff” variable is defined and changing its value 
from 0.001 to 1). Operating parameters for all steps in the pipeline can be modified in a 
similar manner.

Importantly, the values of parameters that can change a step’s output (e.g. different 
settings for DIAMOND’s sensitivity parameter) are tracked via output folder and file 
names. This helps users keep track of the specific MetaLAFFA configuration that pro-
duced a particular set of functional profiles. Additionally, this system leverages Snake-
make’s usage of workflow specification through input and output naming patterns to 
enable users to more quickly experiment with different operating parameters. Specifi-
cally, if MetaLAFFA is run once under a specific configuration and the user then wants 
to rerun MetaLAFFA after changing parameters in various pipeline steps, MetaLAFFA 
will begin running from the earliest step for which parameters have been changed, rather 
than from the beginning of the entire pipeline. This is supported thanks to Snakemake’s 
ability to identify, based on output folder and file names, which intermediate outputs 
need to be newly generated.

Via the Python configuration module, Python-savvy users can further customize the 
actual operations run during each step in the pipeline. Returning to the read mapping 
step as an example, users can alter the behavior of this pipeline step by modifying the 
default function for step operations. This function tells MetaLAFFA how to run DIA-
MOND on indicated input files and passes DIAMOND the specified operating param-
eters mentioned above. Users can add code to this function that will be run in addition 
to the basic read alignment performed with DIAMOND, but they can also make more 
involved modifications such as changing which aligner MetaLAFFA uses for read map-
ping. Furthermore, users can add new steps to the pipeline, with existing step submod-
ules serving as templates.

Results
For a practical example of MetaLAFFA operation, we used MetaLAFFA in its default 
configuration to functionally annotate 4 stool samples (SRS011061, SRS011134, 
SRS011239, and SRS012273) from the HMP [20]. These samples ranged in size from 90 
million reads to 130 million reads. Initial formatting of the input data and operation of 
MetaLAFFA to annotate these samples required very little effort, including:

1	 Expanding the downloaded compressed sample directories.
2	 Compressing individual read files to save disk space.
3	 Modifying the suffixes of the forward, reverse, and singleton read filenames to match 

default MetaLAFFA expectations (“R1.fastq”, “R2.fastq”, and “S.fastq” respectively).
4	 Creating a new MetaLAFFA project directory using the associated script.
5	 Moving read files into the new project’s “data/” directory.
6	 Running “./MetaLAFFA.py” from the command line
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Since these data files are post-HMP quality control, minimal reads were discarded 
from each sample during MetaLAFFA’s quality control phase. The percentage of reads 
that had a match in the UniRef90 [21] database varied from 53% to 78% across samples, 
with unique gene matches ranging from 1.5 million to 2.7 million across samples. The 
resulting functional profiles contained 3.9–5.6 thousand unique KOs, 304–367 unique 
modules, and 135–141 unique pathways in each sample. The resulting KO-, module-, 
and pathway-level profiles, as well as a full summary of operating statistics for this Meta-
LAFFA run can be found in Additional file 1: Tables S1–S4.

Conclusions
MetaLAFFA is an end-to-end functional annotation pipeline that incorporates sev-
eral important features for efficient, high-throughput functional annotation of shotgun 
metagenomic data. It makes use of standard tools for shotgun metagenome process-
ing and functional annotation to allow out-of-the-box operation for a wide audience, 
while also providing a convenient customization interface that allows users to tailor the 
pipeline to their specific needs. Implemented using Snakemake, MetaLAFFA can take 
advantage of extensive parallelization, making use of either local or distributed com-
puting resources. Taken together, this combined convenience, customizability, and 
high-throughput nature of MetaLAFFA should increase the accessibility of shotgun 
metagenome functional annotation, enabling a larger audience to participate in explor-
ing the functions of diverse microbial communities.

Availability and requirements
Project name MetaLAFFA.

Project home page http://boren​stein​lab.com/softw​are_metal​affa.html.
Operating systems Mac and Linux.
Programming language Python and Snakemake.
Other requirements Python 3.6 or greater, Conda 4.8 or greater, and Snakemake 3.13.3 

or greater.
License GNU General Public License v3.0.
Any restrictions to use by non-academics: None.

Supplementary information
Supplementary information accompanies this paper at https​://doi.org/10.1186/s1285​9-020-03815​-9.

Additional file 1: Tables S1, S2, S3 and S4. Example output tables generated by annotating 4 HMP samples using 
MetaLAFFA.

Abbreviation
HMP: Human microbiome project.
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