
MetaLAFFA: a flexible, end‑to‑end,
distributed computing‑compatible
metagenomic functional annotation pipeline
Alexander Eng1, Adrian J. Verster1,2 and Elhanan Borenstein3,4,5*

Background
The analysis of the functional capacities of microbial communities has become an impor-
tant component of microbiome-based studies, providing novel insights into associations
between the gut microbiome and host conditions such as depression [22], autism [18],
and type 2 diabetes [16]. Such functional profiles are generally obtained via shotgun

Abstract 

Background:  Microbial communities have become an important subject of research
across multiple disciplines in recent years. These communities are often examined via
shotgun metagenomic sequencing, a technology which can offer unique insights into
the genomic content of a microbial community. Functional annotation of shotgun
metagenomic data has become an increasingly popular method for identifying the
aggregate functional capacities encoded by the community’s constituent microbes.
Currently available metagenomic functional annotation pipelines, however, suffer from
several shortcomings, including limited pipeline customization options, lack of stand-
ard raw sequence data pre-processing, and insufficient capabilities for integration with
distributed computing systems.

Results:  Here we introduce MetaLAFFA, a functional annotation pipeline designed to
take unfiltered shotgun metagenomic data as input and generate functional profiles.
MetaLAFFA is implemented as a Snakemake pipeline, which enables convenient inte-
gration with distributed computing clusters, allowing users to take full advantage of
available computing resources. Default pipeline settings allow new users to run Meta-
LAFFA according to common practices while a Python module-based configuration
system provides advanced users with a flexible interface for pipeline customization.
MetaLAFFA also generates summary statistics for each step in the pipeline so that users
can better understand pre-processing and annotation quality.

Conclusions:  MetaLAFFA is a new end-to-end metagenomic functional annotation
pipeline with distributed computing compatibility and flexible customization options.
MetaLAFFA source code is available at https​://githu​b.com/boren​stein​-lab/MetaL​AFFA
and can be installed via Conda as described in the accompanying documentation.

Keywords:  Metagenomics, Functional annotation, Pipeline, Distributed computing

Open Access

© The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat​iveco​mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​
cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Eng et al. BMC Bioinformatics (2020) 21:471
https://doi.org/10.1186/s12859-020-03815-9

*Correspondence:
elbo@tauex.tau.ac.il
3 Blavatnik School
of Computer Science, Tel
Aviv University, 6997801 Tel
Aviv, Israel
Full list of author information
is available at the end of the
article

https://github.com/borenstein-lab/MetaLAFFA
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-03815-9&domain=pdf

Page 2 of 9Eng et al. BMC Bioinformatics (2020) 21:471

metagenomic sequencing and subsequent functional annotation. This functional anno-
tation can be performed either by assembling reads into contigs and mapping detected
open reading frames to annotated gene sequences, or by directly mapping individual
reads to annotated gene sequences [17]. Assembly-based approaches can provide certain
benefits by enabling the reconstruction of metagenomic assembled genomes (MAGs),
but this assembly process can be incredibly challenging and prohibitively time and
memory intensive. Additionally, these efforts often result in highly fragmented assem-
blies due to factors such as uneven sequencing depth across different genomes and high
strain-level sequence diversity [7]. By comparison, assembly-free, or read-based, annota-
tion approaches can offer a more practical and accessible option due to lower resource
requirements and an avoidance of the assembly problem. The pipeline we present here
utilizes this latter, read-based annotation approach.

To facilitate such read-based annotation processes, various pipelines, including
HUMAnN2 [6], MG-RAST [10], eggNOG-mapper [8], SUPER-FOCUS [19], and YAMP
[23], have been recently introduced. The standard workflow of these pipelines involves
taking FASTQ or FASTA files as inputs, mapping reads to a database of microbial gene
sequences, annotating reads with the functional capacities that have previously been
associated with those genes, and eventually producing functional profiles at one or more
levels of descriptive resolution. These pipelines, however, often lack one or more critical
features essential for modern, high-throughput, complete, distributed, and computation-
ally-intensive functional annotation, such as the ability to process unfiltered sequencing
data, native integration with distributed computing systems, and/or adequate options
for workflow customization (Table 1).

Here, we describe MetaLAFFA, a new functional annotation pipeline that addresses
these shortcomings. MetaLAFFA avoids requiring users to separately run common
pre-processing steps by incorporating various quality control measures into the pipe-
line. MetaLAFFA is also designed to easily and effectively integrate with compute cluster

Table 1  Comparison of read-based metagenomic annotation pipeline features

Feature MG-RAST SUPER-FOCUS eggNOG-
mapper

HUMAnN2 YAMP MetaLAFFA

Metagenomic functional annota-
tion

✓ ✓ ✓ ✓ ✓ ✓

Uses DIAMOND for read alignment ✓ ✓ ✓ ✓ ✓ ✓
Read pre-processing ✓ ✓ ✓
Ortholog aggregation to broader

functional categorizations
✓ ✓ ✓ ✓ ✓ ✓

Available as a web service ✓ ✓
Native integration with distributed

computing systems
✓ ✓

Automatic continuation from
intermediate steps after inter-
ruption

✓ ✓ ✓

Convenient incorporation of new
pipeline steps

✓ ✓

Universal single-copy gene-based
abundance normalization via
MUSiCC

✓

Page 3 of 9Eng et al. BMC Bioinformatics (2020) 21:471 	

management systems, allowing users to take full advantage of available computational
resources and distributed, parallel data processing. Finally, MetaLAFFA offers a con-
venient interface for configuring pipeline operation, providing users with extensive cus-
tomization options that include the choice of which pipeline steps to perform and the
operating parameters for individual steps.

Implementation
Default MetaLAFFA workflow

In its default configuration, MetaLAFFA performs metagenomic annotation in three
basic phases: quality control, read mapping, and functional annotation (Fig. 1). Broadly,
the quality control phase aims to remove unwanted or low-quality reads from the input
shotgun metagenomic data via common pre-processing operations. Next, the read map-
ping phase aligns the quality-controlled reads to a sequence database of microbial genes
and calculates the abundance of each gene. Finally, the functional annotation phase
translates these gene abundances into classifications of community functional capacities
and their abundances within the community’s metagenome. In this section, we will elab-
orate on the exact steps performed by MetaLAFFA in its default configuration, including
the default choices for tools and databases, and possible alterations users can make to fit
their specific use cases.

MetaLAFFA’s quality control phase (Fig. 1, highlighted in green) was inspired by the
Human Microbiome Project (HMP) [20] protocol, though specific methodology has
been updated to reflect current best practices. While it utilizes some component tools
similar to KneadData, MetaLAFFA does not employ KneadData to better compartmen-
talize each step and better enable user configuration and customization of individual
components. First, MetaLAFFA removes host reads by mapping reads to the hs37d5
human genome reference with decoy sequences available from the 1000 genomes project
[1] using Bowtie 2 [12] and then discarding any reads identified as human. Depending
on the project, users can substitute alternative “host” databases to remove contaminants
from different host organisms. Next, MetaLAFFA removes artificial duplicates by iden-
tifying duplicate reads using MarkDuplicates from the PICARD toolset [5] and then
discarding those reads. The final step in the quality control phase is quality trimming
and filtering, which removes low-quality bases from the ends of reads and then discards
reads that are too short. This is performed using Trimmomatic [2] and the MAXINFO
trimming criterion. After this quality control phase, users should be left with high-qual-
ity microbial reads that can serve as the basis for profiling community metagenomic
content.

The read mapping phase (Fig. 1, highlighted in blue) begins with aligning reads to
the UniRef90 database of protein sequences using DIAMOND [3], a core tool for rapid
sequence alignment in most metagenomic annotation procedures. Other databases
can be substituted for the UniRef90 database depending on the goals of the annota-
tion project. For example, using a database like CARD, which contains a collection of
antibiotic resistance genes [15], can allow users to focus specifically on profiling abun-
dances of these antibiotic resistance genes within their community of interest. Similar
to HUMAnN2 [6] and other pipelines, paired-end reads are mapped separately during
the read mapping phase to avoid overly penalizing pairs where only one half of the pair

Page 4 of 9Eng et al. BMC Bioinformatics (2020) 21:471

aligns to a gene. After aligning reads, MetaLAFFA scans these matches to identify the
best match (or best matches if there are ties) for each read in the database. This best
match strategy was shown to yield high specificity in functional profiling [4], though
users can choose alternative strategies to increase sensitivity at the cost of specificity.
For example, MetaLAFFA also provides the option for a best N matches strategy, where

Fig. 1  Flowchart of the default MetaLAFFA workflow. The default MetaLAFFA workflow consists of three
phases, quality control (top), read mapping (middle), and functional annotation (bottom). This flowchart
outlines the individual processing steps taken in each phase (colored rectangular boxes), the intermediate
outputs of these steps (grey rounded boxes), supporting data files required for specific steps (yellow rounded
boxes), user-provided input to MetaLAFFA (red rounded box), and the final outputs of the pipeline (purple
rounded boxes). Third-party tools used in the default pipeline workflow are indicated in parentheses for their
associated processing steps. File types of all inputs, outputs, and supporting data files are indicated by file
suffix

Page 5 of 9Eng et al. BMC Bioinformatics (2020) 21:471 	

a read is associated with the top N genes that the read mapped to. This strategy may be
desirable if, for instance, the user is concerned that long reads may span adjacent genes.
After refining matches from the alignment step, gene abundances are calculated by sum-
ming up the number of reads that mapped to each gene. If a read matches equally well
to multiple genes, then that read contributes a fractional count distributed evenly across
the abundances of each of those genes. This results in a gene abundance profile for each
sample, which can be translated into more interpretable classifications of community
functional capacities in MetaLAFFA’s third phase.

Finally, MetaLAFFA performs its functional annotation phase (Fig. 1, highlighted in
orange). The first step in this phase is to calculate the abundances of genes with simi-
lar functional capacities, or functional orthologs. By default, these associations between
genes and functional orthology groups come from the annotations in the UniRef90 data-
base, mapping genes to KEGG orthology groups, or KOs [9]. If users choose a different
database to map reads against (e.g. CARD), then users will need to update the gene-to-
ortholog mapping appropriately. Similar to calculating gene abundances in the previous
phase, MetaLAFFA does this by summing up the abundance of genes that belong to each
group of functional orthologs. If a gene is associated with multiple orthology groups,
its abundance is distributed evenly between the abundances of each of those orthology
groups. The resulting functional profile is then corrected using MUSiCC [13] to convert
read counts of orthologs into the average copy number per genome of each functional
ortholog. Alternatively, users can set MetaLAFFA to leave functional profiles in terms
of relative abundances. Finally, MetaLAFFA aggregates ortholog abundances into abun-
dances of broader functional classifications using EMPANADA [14]. This tool aggregates
KO abundances into KEGG pathway (and module) abundances based on the supporting
evidence for the presence of each pathway. Users may need to change the ortholog-to-
broader-classification mapping, or skip it all together, if they wish to use a different data-
base for mapping reads to genes. The output of the functional annotation phase, and the
final output from MetaLAFFA are the KEGG KO-, module-, and pathway-level profiles
of community functional capacities.

After each step in the default MetaLAFFA pipeline is completed, MetaLAFFA also
generates a table of summary statistics for that step. For example, during the steps in
the quality control phase, these tables summarize how many reads were discarded from
each sample, the new average base quality of each sample, and the average read length of
each sample post-quality trimming. For later steps, these summary statistics include how
many reads were successfully aligned to the gene database, how many matches remained
when reduced to best matches, and how many unique functional orthologs were present
in each sample. Once MetaLAFFA has completed its functional annotation, these sum-
mary statistics are combined into a single table summarizing the pipeline’s operation.

Workflow management and distributed computing integration via Snakemake

MetaLAFFA is implemented in Snakemake [11], a Python-based workflow management
framework that is specifically designed for bioinformatics analysis pipelines. Snakemake
determines dependencies between different steps of a pipeline based on the expected
inputs and outputs of each step, and ensures that later steps are only run once their
inputs become available. One benefit of this approach is that Snakemake automatically

Page 6 of 9Eng et al. BMC Bioinformatics (2020) 21:471

detects when the expected outputs of a step are missing, halts the pipeline, and allows
the user to simply resume operation from the most recent successfully completed steps
after they address any issues that led to the failure.

Another useful feature of Snakemake is its ability to compartmentalize pipeline opera-
tions. Snakemake can split steps in the pipeline into independent jobs where, for exam-
ple, each job processes a separate sample. MetaLAFFA takes advantage of this option
to separate the quality control and read mapping of multiple FASTQ files into sample-
specific jobs, rather than trying to process them all as a single operation. This compart-
mentalization means that if MetaLAFFA fails when processing a single sample (e.g. host
filtering fails because the input FASTQ was malformed), any samples that were success-
fully processed prior to the failure will be recognized as successfully processed. Con-
sequently, MetaLAFFA will avoid unnecessarily re-processing those samples once the
cause of the failure has been addressed and the user resumes MetaLAFFA operation.

Finally, Snakemake has built-in capabilities to take advantage of parallel processing
and distributed computing, which allows MetaLAFFA users to make the best use of their
available computational resources. Specifically, Snakemake automatically determines
which steps (and individual jobs when steps are split into separate jobs) are independent
and can be run in parallel. Then Snakemake will use available cores if being run locally,
or an available distributed computing environment (e.g. HTCondor, SGE, SLURM) to
run independent jobs in parallel. This allows MetaLAFFA users to take full advantage of
any available compute clusters and can enable the expedited annotation of large shotgun
metagenomic datasets.

MetaLAFFA configuration and customization

MetaLAFFA provides convenient pipeline configuration and customization options for
both novice and advanced users. There are two main components that define pipeline
configuration: a text file defining the overall pipeline workflow (i.e. how each step feeds
into one or more subsequent steps) and a Python module that organizes general pipeline
options and step-specific settings into separate submodules.

The workflow file enables users to make several modifications to the MetaLAFFA
workflow and should be amenable to those with little or no programming experience.
For example, setting a later step to use user-provided data as input will cause Meta-
LAFFA to skip prior steps during operation. This may be helpful if the user has already
used quality control tools to process their data and would prefer to skip to MetaLAF-
FA’s read mapping phase. The workflow file is also used to designate special qualities
to steps in the pipeline, including: which steps take user-provided files as initial input,
which steps produce important final output files, which steps generate summary statistic
tables, and which steps produce intermediate files that can be safely deleted after they’ve
been used. Users can also modify this configuration file to reorder steps in the pipeline
if so desired (e.g. perform host read removal after quality trimming and filtering) by
changing how steps feed into each other.

The Python configuration module controls the rest of MetaLAFFA operation and can
be used by both naïve and savvy users. Specifically, users with zero programming experi-
ence can still access this module to modify basic configuration options. The step-specific
submodule that controls the read mapping step (“map_reads_to_genes.py”) offers a good

Page 7 of 9Eng et al. BMC Bioinformatics (2020) 21:471 	

example of this basic customization. For instance, this submodule sets the DIAMOND
[3] operating parameters that will be used when mapping reads to genes, including the
alignment method, the top percentage of best matches to keep, the E-value cutoff for
saved matches, and the alignment sensitivity. Each of these parameters can be modified
within the submodule by opening the file in a text editor and changing the appropriate
value (e.g. finding where the “evalue_cutoff” variable is defined and changing its value
from 0.001 to 1). Operating parameters for all steps in the pipeline can be modified in a
similar manner.

Importantly, the values of parameters that can change a step’s output (e.g. different
settings for DIAMOND’s sensitivity parameter) are tracked via output folder and file
names. This helps users keep track of the specific MetaLAFFA configuration that pro-
duced a particular set of functional profiles. Additionally, this system leverages Snake-
make’s usage of workflow specification through input and output naming patterns to
enable users to more quickly experiment with different operating parameters. Specifi-
cally, if MetaLAFFA is run once under a specific configuration and the user then wants
to rerun MetaLAFFA after changing parameters in various pipeline steps, MetaLAFFA
will begin running from the earliest step for which parameters have been changed, rather
than from the beginning of the entire pipeline. This is supported thanks to Snakemake’s
ability to identify, based on output folder and file names, which intermediate outputs
need to be newly generated.

Via the Python configuration module, Python-savvy users can further customize the
actual operations run during each step in the pipeline. Returning to the read mapping
step as an example, users can alter the behavior of this pipeline step by modifying the
default function for step operations. This function tells MetaLAFFA how to run DIA-
MOND on indicated input files and passes DIAMOND the specified operating param-
eters mentioned above. Users can add code to this function that will be run in addition
to the basic read alignment performed with DIAMOND, but they can also make more
involved modifications such as changing which aligner MetaLAFFA uses for read map-
ping. Furthermore, users can add new steps to the pipeline, with existing step submod-
ules serving as templates.

Results
For a practical example of MetaLAFFA operation, we used MetaLAFFA in its default
configuration to functionally annotate 4 stool samples (SRS011061, SRS011134,
SRS011239, and SRS012273) from the HMP [20]. These samples ranged in size from 90
million reads to 130 million reads. Initial formatting of the input data and operation of
MetaLAFFA to annotate these samples required very little effort, including:

1	 Expanding the downloaded compressed sample directories.
2	 Compressing individual read files to save disk space.
3	 Modifying the suffixes of the forward, reverse, and singleton read filenames to match

default MetaLAFFA expectations (“R1.fastq”, “R2.fastq”, and “S.fastq” respectively).
4	 Creating a new MetaLAFFA project directory using the associated script.
5	 Moving read files into the new project’s “data/” directory.
6	 Running “./MetaLAFFA.py” from the command line

Page 8 of 9Eng et al. BMC Bioinformatics (2020) 21:471

Since these data files are post-HMP quality control, minimal reads were discarded
from each sample during MetaLAFFA’s quality control phase. The percentage of reads
that had a match in the UniRef90 [21] database varied from 53% to 78% across samples,
with unique gene matches ranging from 1.5 million to 2.7 million across samples. The
resulting functional profiles contained 3.9–5.6 thousand unique KOs, 304–367 unique
modules, and 135–141 unique pathways in each sample. The resulting KO-, module-,
and pathway-level profiles, as well as a full summary of operating statistics for this Meta-
LAFFA run can be found in Additional file 1: Tables S1–S4.

Conclusions
MetaLAFFA is an end-to-end functional annotation pipeline that incorporates sev-
eral important features for efficient, high-throughput functional annotation of shotgun
metagenomic data. It makes use of standard tools for shotgun metagenome process-
ing and functional annotation to allow out-of-the-box operation for a wide audience,
while also providing a convenient customization interface that allows users to tailor the
pipeline to their specific needs. Implemented using Snakemake, MetaLAFFA can take
advantage of extensive parallelization, making use of either local or distributed com-
puting resources. Taken together, this combined convenience, customizability, and
high-throughput nature of MetaLAFFA should increase the accessibility of shotgun
metagenome functional annotation, enabling a larger audience to participate in explor-
ing the functions of diverse microbial communities.

Availability and requirements
Project name MetaLAFFA.

Project home page http://boren​stein​lab.com/softw​are_metal​affa.html.
Operating systems Mac and Linux.
Programming language Python and Snakemake.
Other requirements Python 3.6 or greater, Conda 4.8 or greater, and Snakemake 3.13.3

or greater.
License GNU General Public License v3.0.
Any restrictions to use by non-academics: None.

Supplementary information
Supplementary information accompanies this paper at https​://doi.org/10.1186/s1285​9-020-03815​-9.

Additional file 1: Tables S1, S2, S3 and S4. Example output tables generated by annotating 4 HMP samples using
MetaLAFFA.

Abbreviation
HMP: Human microbiome project.

Acknowledgements
We would like to thank Efrat Muller, Yotam Cohen, Or Segal, and Ran Armoni for testing MetaLAFFA and providing helpful
feedback. We would also like to thank the University of Washington Genome Sciences IT team and the Tel Aviv University
Computer Science IT team for their technical support during development.

Authors’ contributions
AE, AJV, and EB conceived and designed the MetaLAFFA pipeline. AE and AJV implemented the initial version of
MetaLAFFA. AE refactored MetaLAFFA and implemented the configuration system. AE and EB wrote the manuscript. All
authors have read and approved the manuscript.

http://borensteinlab.com/software_metalaffa.html
https://doi.org/10.1186/s12859-020-03815-9

Page 9 of 9Eng et al. BMC Bioinformatics (2020) 21:471 	

Funding
This project was supported in part by NIH Grant 1R01GM124312 to EB, NIH Grant R01DK095869, NIH Grant U19AG057377,
and ISF Grant 2435/19 to EB. EB is a Faculty Fellow of the Edmond J. Safra Center for Bioinformatics at Tel Aviv University. The
funder had no role in collection, analysis, or interpretation of data, study design, or in writing the manuscript included in this
submission.

Availability of data and materials
The MetaLAFFA homepage can be found at http://boren​stein​lab.com/softw​are_metal​affa.html. The code and documenta-
tion are both available on GitHub at https​://githu​b.com/boren​stein​-lab/MetaL​AFFA. MetaLAFFA is available for installation via
Conda. Example HMP data can be downloaded from https​://hmpda​cc.org/hmp/HMASM​/.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA. 2 Present Address: Bureau of Food
Surveillance and Science Integration, Food Directorate, Health Canada, Ottawa, ON K1A 0K9, Canada. 3 Blavatnik School
of Computer Science, Tel Aviv University, 6997801 Tel Aviv, Israel. 4 Sackler Faculty of Medicine, Tel Aviv University, 6997801 Tel
Aviv, Israel. 5 Santa Fe Institute, Santa Fe, NM 87501, USA.

Received: 1 July 2020 Accepted: 13 October 2020

References
	1.	 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature. 2015;526(7571):68–74.
	2.	 Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics.

2014;30(15):2114–20.
	3.	 Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2014;12(1):59–60.
	4.	 Carr R, Borenstein E. Comparative analysis of functional metagenomic annotation and the mappability of short reads.

PLoS ONE. 2014;9(8):e105776.
	5.	 Fennel, T. et al. 2009. Picard. https​://Broad​insti​tute.Githu​b.Io/Picar​d.
	6.	 Franzosa EA, et al. Species-level functional profiling of metagenomes and metatranscriptomes. Nat Methods.

2018;15(11):962–8.
	7.	 Ghurye JS, Cepeda-Espinoza V, Pop M. Metagenomic assembly: overview, challenges and applications. Yale J Biol Med.

2016;89(3):353–62.
	8.	 Huerta-Cepas J, et al. Fast genome-wide functional annotation through orthology assignment by EggNOG-mapper. Mol

Biol Evol. 2017;34(8):2115–22.
	9.	 Kanehisa M, et al. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res.

2015;44(D1):D457–62.
	10.	 Keegan KP, Glass EM, Meyer F. MG-RAST, a metagenomics service for analysis of microbial community structure and

function. In: Martin F, Uroz S, editors. Microbial environmental genomics (MEG). Methods in molecular biology. New
York: Humana Press; 2016. p. 207–33.

	11.	 Koster J, Rahmann S. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics. 2012;28(19):2520–2.
	12.	 Langmead B, et al. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9(4):357–9.
	13.	 Manor O, Borenstein E. MUSiCC: a marker genes based framework for metagenomic normalization and accurate profil-

ing of gene abundances in the microbiome. Genome Biol. 2015;16(1):53.
	14.	 Manor O, Borenstein E. Revised computational metagenomic processing uncovers hidden and biologically meaningful

functional variation in the human microbiome. Microbiome. 2017;5(1):19.
	15.	 McArthur AG, et al. The comprehensive antibiotic resistance database. Antimicrob Agents Chemother.

2013;57(7):3348–57.
	16.	 Qin J, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60.
	17.	 Quince C, et al. Shotgun metagenomics, from sampling to analysis. Nat Biotechnol. 2017;35(9):833–44.
	18.	 Sharon G, et al. Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell.

2019;177(6):1600-1618.e17.
	19.	 Silva GGZ, Green KT, Dutilh BE, Edwards RA. SUPER-FOCUS: a tool for agile functional analysis of shotgun metagenomic

data. Bioinformatics. 2015;32(3):btv584.
	20.	 The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome.

Nature. 2012;486(7402):207–14.
	21.	 The UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47(D1):D506–15.
	22.	 Valles-Colomer M, et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat

Microbiol. 2019;1:623–32.
	23.	 Visconti A, Martin TC, Falchi M. YAMP: a containerized workflow enabling reproducibility in metagenomics research.

GigaScience. 2018;7(7):giy072.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://borensteinlab.com/software_metalaffa.html
https://github.com/borenstein-lab/MetaLAFFA
https://hmpdacc.org/hmp/HMASM/
http://Broadinstitute.Github.Io/Picard

	MetaLAFFA: a flexible, end-to-end, distributed computing-compatible metagenomic functional annotation pipeline
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Implementation
	Default MetaLAFFA workflow
	Workflow management and distributed computing integration via Snakemake
	MetaLAFFA configuration and customization

	Results
	Conclusions
	Availability and requirements
	Acknowledgements
	References

