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Background
Modern gene-set analysis (GSA) [1] are standard tools aimed to provide biological 
insights derived from the list of genes associated with a trait of interest. Tools such as 
Ingenuity Pathway Analysis (IPA) [2], GREAT [3], GSEA [4], among others, make use 
of curated collections of gene-sets such as Gene Ontology [5] or KEGG [6] to identify 
those relevant (statistically significant) gene-sets associated with the trait of interest. 

Abstract 

Background:  Gene-set analysis tools, which make use of curated sets of molecules 
grouped based on their shared functions, aim to identify which gene-sets are over-
represented in the set of features that have been associated with a given trait of 
interest. Such tools are frequently used in gene-centric approaches derived from RNA-
sequencing or microarrays such as Ingenuity or GSEA, but they have also been adapted 
for interval-based analysis derived from DNA methylation or ChIP/ATAC-sequencing. 
Gene-set analysis tools return, as a result, a list of significant gene-sets. However, 
while these results are useful for the researcher in the identification of major biologi‑
cal insights, they may be complex to interpret because many gene-sets have largely 
overlapping gene contents. Additionally, in many cases the result of gene-set analysis 
consists of a large number of gene-sets making it complicated to identify the major 
biological insights.

Results:  We present GeneSetCluster, a novel approach which allows clustering of 
identified gene-sets, from one or multiple experiments and/or tools, based on shared 
genes. GeneSetCluster calculates a distance score based on overlapping gene content, 
which is then used to cluster them together and as a result, GeneSetCluster identi‑
fies groups of gene-sets with similar gene-set definitions (i.e. gene content). These 
groups of gene-sets can aid the researcher to focus on such groups for biological 
interpretations.

Conclusions:  GeneSetCluster is a novel approach for grouping together post gene-set 
analysis results based on overlapping gene content. GeneSetCluster is implemented 
as a package in R. The package and the vignette can be downloaded at https​://githu​
b.com/Trans​latio​nalBi​oinfo​rmati​csUni​t
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However, GSA outcomes may become challenging to interpret when the number of 
gene-sets identified is very large or if the results from different collections of gene-sets, 
i.e. different experiments, are combined. An additional challenge appears when identi-
fied gene-sets have a high gene content overlap, which could result in nearly identical 
gene-sets with different functional labels.

Therefore, interpreting the output of gene-set enrichment can be challenging, multi-
ple tools have tried to make the output easier to interpret (Additional file  1: Table 1). 
The currently available tools utilize gene-sets from specific tools, e.g. David [7] or Go 
terms, while the output files of custom-curated databases, e.g. IPA and Metacore, are 
currently not easily compatible with the functionality of the tools. Some tools, like 
LEGO [8] or GScluster [9] use networking information to elucidate essential informa-
tion, which requires prior information such as a PPi network, which might not always 
be available. FGNet [10] establishes links between genes annotated to similar functional 
terms. Revigo [11] uses semantic based similarities between GO terms. Another major 
downside of current tools is the focus on a single list of gene-sets, instead of comparing 
the overlap of gene-sets between several experiments or conditions at the same time. 
This makes it impossible, or at least cumbersome, to combine results from multiple data 
sets or tools. Therefore, the current limitations of post GSA analysis are: a lack of unbi-
ased, tools that allow from multiple GSA tools or experiments.

To overcome such limitations, we present GeneSetCluster, a tool that consists of 
three parts. Firstly, GeneSetCluster tool harmonizes, making them comparable, out-
comes from different gene-set analysis. Secondly, it computes a distance between gene-
sets by using the overlap of the content genes. Finally, GeneSetCluster uses the distance 
to cluster the gene-sets with high similarity together into clusters. Those clusters provide 
the user requires with the reduced set of entities to characterize and these highly similar 
clusters can be applied to gain insights in the biological information. Because GeneSet-
Cluster uses harmonized information of genes directly, this makes GeneSetCluster able 
to use information from any database, across species, and include any custom databases 
and, we have designed GeneSetCluster in a way that enables simple simultaneous anal-
ysis of multiple experimental conditions, settings, databases and/or tools.

Briefly, with GeneSetCluster, implemented as an R package, we provide an efficient 
pipeline to process GSA derived gene-sets into clusters of similar gene-sets to facilitate 
the interpretation of GSA-derived biological insights from one or more experimental 
conditions and/or tools.

Implementation
In GeneSetCluster, the gene-set analysis outcomes derived from one or several GSA 
analysis are combined for a more accurate biological interpretation. GeneSetCluster is 
implemented in R and can be run on any platform with an existing R (version 3.4.4 and 
above). The package generates a PathwayObject, which houses all the information neces-
sary to run the package which gets updated as the analysis progresses. The pipeline starts 
by loading pathway data into R (Fig.  1) in order to create a PathwayObject. For tools 
such as IPA and GREAT, automatic loading functions have been added (LoadGeneSets). 
Additionally, there is an object creator (ObjectCreator), which allows the generation of 
PathwayObjects derived from any GSA analysis or tool, with only minimal information 
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required. This pipeline allows merging several objects, such as loading of data from mul-
tiple experiments or data from different tools (MergeObjects). If a large number of path-
way categories gets loaded, e.g. GREAT output, manageGeneSets can help to reduce the 
number of categories to reduce computational time.

Processing the gene‑sets
Harmonizing

The first step in the pipeline is to harmonize the data into a common vocabulary and 
reduce redundancy. This is important for data from different tools, different annotations 
(gene annotations and/or set annotations) and different experiments. After loading and 
filtering, the pipeline uses Bitr from the Clusterprofiler package [12] to translate between 
different biological IDs, e.g. Gene symbols and Ensembl IDs. It uses species informa-
tion for this conversion, making it possible to compare and/or integrate e.g. mouse and 
human GSA-derived results.

Distances

The pipeline then calculates the distance between gene-sets using CombineGeneSets. 
The pipeline default setting is the relative risk (RR), taken from comorbidity statistics 
[13], using the formula RRij =

Cij/N

(PiPj−Cij)/N
=

CijN

PiPj−Cij
 . Where Cij is the overlap between 

molecules of pathway 1 and pathway 2, N  is the total number of genes in the 
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Fig. 1  Pipeline of the package. Overview of the standard GeneSetCluster pipeline. A PathwayObject is 
created using LoadGeneSets or ObjectCreator. This is followed by harmonizing and distance calculation 
(CombineGeneSets), deteremine the optimal number of clusters (OptimalGeneSets) and clustering 
(ClusterGeneSets). Data is then visualized (PlotGeneSets), exported (WriteGeneSets) or used for functional 
interpretations (ORAperGeneSets/GetSTRINGdbPerGeneSets)
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experiments, Pi is the molecules of pathway 1 and Pj is the molecules of pathway 2. The 
other options available are the Jaccard index, which represents percentage overlap, and 
Cohen’s Kappa, which represents the level of agreement between the gene sets. Moreo-
ver, the pipeline allows the user to supply their own distancing function if desired.

Clustering

To cluster the gene-sets into groups based on the calculated distance, ClusterGeneSets 
allows for two different methodologies: kmeans clustering [14] or hierarchical clustering 
[15], though custom clustering functions can also be supplied. To determine the optimal 
number of clusters there is OptimalGeneSets, which determines the optimal number of 
clusters using the elbow, gap or silhouette method. After computing the gene-set clus-
ters, it is possible to highlight clusters for their abundance of genes from a user supplied 
gene subset, e.g. genes related to reactive oxygen signaling (ROS). This creates a high-
lighted score. The genes that are in every cluster or unique to the cluster can be explored 
using GenesPerGeneSet.

Visualization

Following clustering the pipeline can visualize the distance score. Visualization can 
be either as a network plot using PlotGeneNetworks (Fig.  2a), as a dendrogram using 
PlotDendrogram and as a heatmap using PlotGeneSets (Fig. 2b). The heatmap uses the 
pheatmap function and can include the highlighted score as well as overlap of specific 
molecular signatures in multiple gene-set groups.

Interpretation

The clusters can be interpreted based on the different labels in the cluster but the pack-
age also provides plugins to WebgestaltR (ORAperGeneSet) and StringDB (GetSTRING-
dbPerGeneSets and plotSTRINGdbPerGeneSets), which can easily analyze the clusters for 
either unique or all genes present, which can aid in the biological interpretation.

Exporting results

After clustering and visualization, the pipeline allows for exporting of all the data, the 
pathways, the distances calculated and the clusters.

Practical examples
We have applied this tool in several of our publications. We first used the tool in our 
EBioMedicine paper in 2019 [16], here we looked for changes in DNA methylation 
between cases with differing stages of Multiple Sclerosis (MS) and control from 4 dif-
ferent cell types at once, and we clustered our combined into groups of genes. We ended 
with three major clusters of genes, which we wanted to compare using pathway analysis. 
After analysing the genes using IPA we found that different clusters displayed gene-sets 
with similar names, but with different genes enriched, making it difficult to elucidate the 
different functions between cases and controls. It was only after we compared the differ-
ent gene-sets using GeneSetCluster, that we could elucidate several clusters of function-
ally distinct gene-sets between the different disease stages and controls.
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We also applied GeneSetCluster in our Nature Communications paper in 2019 [17] 
where we investigate the effect of dimethylfumurate (DMF) treatment at baseline and 
6 months on CD4 and CD14 in the context of MS. Here we found in both cell types 
different clusters of gene-sets with varying enrichment of Reactive Oxygen Species 
(ROS) genes, which we hypothesized was related to the effects of the drug. The differ-
ent clusters with varying levels of ROS has distinct cellular functioning.
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Fig. 2  Plotting example data. Output of the PlotGeneSets used on IPA canonical pathways clustered with 
Kmeans into 7 clusters. Data taken from Lund et al. [18]. a Networks plot with edges for gene-sets with a 
distance above 15. b Heatmap of the distance scores between them with the RR upper limit set at 70
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Conclusion
Gene-set analyses are useful tools to summarize major biological trends in a study, however 
the large number of annotated gene-sets and often a large overlap between them can make 
it difficult to interpret the results or to compare experiments. We have addressed the need 
for a method to assess similarity of gene-sets within and between tools and conditions and 
to cluster them together in an unbiased manner by developing GeneSetCluster. GeneSet-
Cluster harmonizes different gene-sets and calculates the distance between them to facili-
tate the functional analysis of gene-set data. GeneSetCluster is publically available at https​
://githu​b.com/Trans​latio​nalBi​oinfo​rmati​csUni​t/. More information, including a user guide, 
example script and an extensive wiki, can be found on the github. Furthermore, the github 
has a link to a step-by-step user guide video on YouTube.

Supplementary information
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