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Abstract
Background: Comparing the composition of microbial communities among groups
of interest (e.g., patients vs healthy individuals) is a central aspect in microbiome
research. It typically involves sequencing, data processing, statistical analysis and
graphical display. Such an analysis is normally obtained by using a set of different
applications that require specific expertise for installation, data processing and in some
cases, programming skills.

Results: Here, we present SHAMAN, an interactive web application we developed in
order to facilitate the use of (i) a bioinformatic workflow for metataxonomic analysis, (ii)
a reliable statistical modelling and (iii) to provide the largest panel of interactive
visualizations among the applications that are currently available. SHAMAN is
specifically designed for non-expert users. A strong benefit is to use an integrated
version of the different analytic steps underlying a proper metagenomic analysis. The
application is freely accessible at http://shaman.pasteur.fr/, and may also work as a
standalone application with a Docker container (aghozlane/shaman), conda and R. The
source code is written in R and is available at https://github.com/aghozlane/shaman.
Using two different datasets (a mock community sequencing and a published 16S
rRNA metagenomic data), we illustrate the strengths of SHAMAN in quickly performing
a complete metataxonomic analysis.

Conclusions: With SHAMAN, we aim at providing the scientific community with a
platform that simplifies reproducible quantitative analysis of metagenomic data.
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Background
Quantitative metagenomic techniques have been broadly deployed to identify asso-
ciations between microbiome and environmental or individual factors (e.g., disease,
geographical origin, etc.). Analyzing changes in the composition and/or in the abundance
of microbial communities yielded promising biomarkers, notably associated with liver
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cirrhosis [1], diarrhea [2], colorectal cancer [3], or associated with various pathogenic [4]
or probiotic effects [5] on the host.
In metataxonomic studies, a choice is made prior to sequencing in order to specifically

amplify one or several regions of the rRNA (usually the 16S or the 18S rRNA genes for
procaryotes/archaea and the ITS, the 23S or the 28S rRNA gene for eukaryotes) so that the
composition of microbial communities may be characterized with affordable techniques.
A typical workflow includes successive steps: (i) OTU (Operational Taxonomic Unit)

picking (dereplication, denoising, chimera filtering and clustering) [6], (ii) OTU quantifi-
cation in each sample and (iii) OTU annotating with respect to a reference taxonomic
database. This process may require substantial computational resources depending on
both the number of samples involved and the sequencing depth. Several methods are
currently available to complete these tasks, such as Mothur [7], Usearch [8], DADA2 [9]
or Vsearch [10]. The popular application Qiime [11] simplifies these tasks (i to iii) and
visualizations by providing a python-integrated environment. Schematically, once data
processing is over, both a contingency table and a taxonomic table are obtained. They
contain the abundance of OTUs in the different samples and the taxonomic annota-
tions of OTUs, respectively. The data are normally represented in the standard BIOM
format [12].
Statistical analysis is then performed to screen significant variation in microbial abun-

dance. To this purpose, several R packages were developed, such as Metastats [13] or
Metagenomeseq [14]. It is worth noticing that other approaches which were originally
designed for RNA-seq, namely DESeq2 [15] and EdgeR [16], are also commonly used
to carry out metataxonomic studies [17, 18]. They provide an R integrated environ-
ment for statistical modelling in order to test the effects of a particular factor on OTU
abundance. Nevertheless using all of these different methods requires technical skills in
Unix, R and experience in processing metagenomics data. To this end, we developed
SHAMAN in order to simplify the analysis of metataxonomic data, especially for users
who are not familiar with the technicalities of bioinformatic and statistical methods that
are commonly applied in this field.
SHAMAN is an all-inclusive approach to estimate the composition and abundance of

OTUs, based on raw sequencing data, and to perform statistical analysis of processed files.
First, the user can submit raw data in FASTQ format and define the parameters of the
bioinformatic workflow. The output returns, a BIOM file for each database used as a ref-
erence for annotation, a phylogenetic tree in Newick format as well as FASTA-formatted
sequences of all OTUs that were identified. The second step consists in performing statis-
tical analysis. The user has to provide a “target” file that associates each sample with one
or several explanatory variables. These variables are automatically detected in the target
file. An automatic filtering of the contingency matrix of OTUs may be activated in order
to remove features with low frequency. Setting up the contrasts to be compared is also
greatly simplified. It consists in filling in a form that orients the choices of users when
defining the groups of interest. Several options to visualize data are available at three
important steps of the process: quality control, bio-analysis and contrast comparison. At
each step, a number of common visual displays are implemented in SHAMAN to explore
data. In addition, SHAMAN also includes a variety of original displays that is not available
in other applications such as an abundance tree to visualize count distribution according
to the taxonomic tree and variables, or the logit plot to compare feature p-values in two
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contrasts. Figures may be tuned to emphasize particular statistical results (e.g., displaying
significant features in a given contrast only, displaying intersections between contrasts),
to be more specific (e.g. feature abundance in a given modality) or to improve the aesthet-
ics of the graph (by changing visual parameters). Figures fit publication standards and the
corresponding files can be easily downloaded.
Several web applications were developed to analyze data of metataxonomic studies,

notably, FROGS [19], ASaiM [20], Qiita [21] as well as MetaDEGalaxy [22] for bioin-
formatic data processing, Shiny-phyloseq [23] for statistical analysis, Metaviz [24] and
VAMPS2 [25] that make a particular focus on data visualization. While these interfaces
propose related functionalities, the main specificity of SHAMAN is to combine of all
these steps in a single user-friendly application. Last, SHAMAN may keep track of a
complete analysis which may be of particular interest for matters of reproducibility.

Material andmethod
SHAMAN is implemented in R using the shiny-dashboard framework. The application
is divided into three main components (Fig. 1): a bioinformatic workflow to process the
raw FASTQ-formatted sequences, a statistical workflow to normalize and further analyse
data, as well as a visualization platform. Users may run each component of the work-
flow independently or run the whole process from raw FASTQ data to visualization.
SHAMAN provides, for each component, scores and figures that summarize the quality
of data processing. When installed with Docker, SHAMAN has low computing resource
requirements with a minimum 1Ghz processor, 1Gbyte of ram memory and 3.4Gbytes of
disk.

Bioinformatic workflow in SHAMAN

The metataxonomic pipeline implemented in SHAMAN relies on the Galaxy platform
[26]. All calculations are remotely done on galaxy.pasteur.fr; this process is transparent to
the user. The pipeline flows in the following manner:

1 Optional filtering of reads. It is worth noticing that previous studies, e.g. carried
out on mosquito microbiota [27], showed that some non-annotated OTUs turned
to be sequences of the host organism. To overcome such issues, the user can
optionally filter out reads that align with the host genome and the PhiX174 genome

Fig. 1 SHAMAN workflow. SHAMAN can start from raw reads or from processed data. In this last case, it needs
at least three tables, the count matrix, the annotation table and the metadata which can either be provided
into three different files or by using the BIOM format. The user can then select the variables of interest and add
some batch effects. Then, contrast vectors can easily be defined and interactive visualizations are available
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(used as a control in Illumina sequencers). The latter task is performed with
Bowtie2 v2.2.6 [28].

2 Quality of reads is checked with AlienTrimmer [29] v0.4.0, a software for trimming
off contaminant sequences and clipping.

3 Paired-end reads are then merged with Pear [30] v0.9.10.1.
4 OTU picking, taxonomic annotation and OTU quantification are performed using

Vsearch [10] v2.3.4.0, a software that was shown to be both accurate and efficient
[6, 31]. The OTU picking process consists in five steps, i.e., dereplication, singleton
removal, chimera detection, clustering and alignment. It follows the approach and
default parameters previously described by the Uparse pipeline [8]. Input
amplicons are aligned against the set of detected OTUs to create a contingency
table that contains the number of amplicons assigned to each OTU. This step aims
at refining OTU counts by including singletons that correspond to sequences with
a reasonable amount of sequencing errors (i.e., <3%).

5 The taxonomic annotation of OTUs is performed based on various databases, i.e.,
with SILVA [32] rev. 132 SSU (for 16S, 18S rRNA genes) and LSU (for 23S and 28S
rRNA genes), Greengenes [33] (for 16S, 18S rRNA genes) and Underhill rev. 1.6.1
[34], Unite rev. 8.0 [35] and Findley [36] for ITS rRNA sequences. These databases
are kept up-to-date every two month with biomaj.pasteur.fr.

6 OTU annotations are filtered according to their identity with the reference [37].
Phylum annotations are kept when the identity between the OTU sequence and
the reference sequence is ≥ 75%, ≥ 78.5% for classes, ≥ 82% for orders, ≥ 86.5% for
families, ≥ 94.5% for genera and ≥ 98% for species. In addition, a taxonomic
inference based on a naive Bayesian approach, RDP classifier [38] v2.12, is
systematically provided. By default, RDP annotations are included whenever the
annotation probability is ≥ 0.5. All the above-mentioned thresholds may be tuned
by the user.

7 A phylogenetic analysis of OTUs is provided: multiple alignments are obtained
with Mafft [39] v7.273.1, filtering of regions that are insufficiently conserved is
made using BMGE [40] v1.12 and finally, FastTree [41] v2.1.9 is used to infer the
phylogenetic tree. Based on the latter tree, a Unifrac distance [42] may be
computed in SHAMAN to compare microbial communities.

The outcomes of the overall workflow are stored in several files: a BIOM file (per ref-
erence database), a phylogenetic tree as well as a summary file specifying the number of
elements passing the different steps of the workflow. The data are associated to a key that
is unique to a project. Such a key allows to automatically re-load all results previously
obtained within a given project.

Statistical workflow in SHAMAN

The statistical analysis in SHAMAN is based on DESeq2 which is a method to model
OTU counts with a negative binomial distribution. It is known as one of themost accurate
approach to detect differentially abundant bacteria in metagenomic data [17, 18]. Relying
on robust estimates of variation in OTUs, the DESeq2 method has suitable performances
even with datasets characterized by a relatively low number of observations per group
(together with a high number of OTUs).
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This method typically requires the following input files: a contingency table, a taxo-
nomic table and a target file describing the experimental design. These data are processed
to generate ameta-table that assign to eachOTU, a taxonomic annotation and a raw count
per sample.

Normalization

Normalization of the raw counts is one of the key issues when analyzing microbiome
experiments. The uniformity of the sequencing depth is affected by sample preparation
and dye effects [43]. Normalizing data is therefore expected to increase the accuracy of
comparisons. It is done by adjusting the abundance of OTUs across samples. Four dif-
ferent normalization methods are currently implemented in SHAMAN. For the sake of
consistency, all of these methods are applied at the OTU level.
A first method is the relative log expression (RLE) normalization and is implemented in

the DESeq2 package. It consists in calculating a size factor for each sample, i.e., a multipli-
cation factor that increases or decreases the OTU counts in samples. It is defined as the
median ratio between a given count and the geometric mean of the corresponding OTU.
Such a normalization was shown to be suited for metataxonomic studies [17]. In practice,
many OTUs are found in a few samples only, which translate into sparse count matrices
[14]. In this case, the RLE method may lead to a defective normalization - as only a few
OTU are taken into account - or might be impossible if all OTUs have a null abundance
in one sample at least. In the R package Phyloseq [44], the decision was made to calculate
a modified geometric mean by taking the n-th root of the product of the non-zero counts,
which is equivalent to replacing the null abundance by a count of 1. This approach might
impact the normalization process when the input matrix is very sparse. As a consequence,
we decided to include two new normalization methods : the non-null and the weighted
non-null normalizations. They are modified versions of the original RLE so that they bet-
ter account for matrix sparsity (number of elements with null values divided by the total
number of elements). In the non-null normalization (1) cells with null values are excluded
from the computation of the geometric mean. This method therefore takes all OTUs
into account when estimating the size factor. In the second method that we coined the
weighted non-null normalization (2), weights are introduced so that OTUs with a larger
number of occurrences have a higher influence when calculating the geometric mean.
Assume that C = (

cij
)
1≤i≤k;1≤j≤n is a contingency table where k and n are the number

of features (e.g. OTUs) and the number of samples, respectively. Here, cij represents the
abundance of the feature i in the sample j. The size factor of sample j is denoted by sj.

s(1)j = mediani
cij

(∏
k∈Si cik

)1/ni , (1)

s(2)j = w.mediani
cij

(∏
k∈Si cik

)1/ni , (2)

where Si stands for the subset of samples with non null values for the feature j and ni is
the size of this subset. The function w.median corresponds to a weighted median.
An alternative normalization technique is the total counts [45] which is convenient for

highly unbalanced OTU distribution across samples.
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Using a simulation-based approach, we addressed the question of the performance of
the non-null and the weighted non-null normalization techniques when the matrix spar-
sity and the number of observations increase. We compared these new methods to those
normally performed with DESeq2 and Phyloseq. To do so, we normalized 500 simulated
matrices using the function makeExampleDESeqDataSet of DESeq2 with varied sparsity
levels (i.e., 0.28, 0.64 and 0.82) and different numbers of observations (i.e., n = 4, 10 and
30). We calculated the average coefficient of variation (CVmean) [46] for each normal-
ization method (Fig. S1). Considering that these OTUs are assumed to have relatively
constant abundance within the simulations, the coefficient of variation is expected to be
lower when the normalization is more efficient. In this simulation-based comparison,
the non-null and the weighted non-null normalization methods exhibited a lower coeffi-
cient of variation as compared to the other methods, when sparsity in the count matrix
is high and the number of observations is increased. These differences were clear espe-
cially when comparing the normalization methods used in DESeq2 and Phyloseq to the
weighted non-null normalization (sparsity ratio of 0.28, 0.64 and 0.82, with 30 samples;
t-tests p < 0.001) (Fig. S1).

Contingency table filtering

In metataxonomic studies, contingency tables are often very sparse and after statistical
analysis, some differences associated with p-values < 0.05 are not necessarily of great rel-
evance, due to violated assumptions. This may arise when a feature, distributed in many
samples with a low abundance, is slightly more abundant in one group of comparison.
These artifacts are generally excluded by DESeq2 with an independent filtering. Further-
more, if a feature is found in high abundance in a few samples only (and count is 0 in
the other samples), it may lead to non-reliable results. Such distributions may also affect
the normalization process as well as the dispersion estimates. In order to avoid misinter-
pretation of results, we propose an optional extra-step of filtering, by excluding features
characterized by a low abundance and/or a low number of occurrence in samples (e.g.
features occurring in less than 20% of the samples). To set a by-default abundance thresh-
old, SHAMAN searches for an inflection point at which the curve between the number
of observations and the abundance of features changes from being linear to concave. This
process is performed with linear regression in the following manner:

1 We define I the interval
[
minj

(∑
i cij

)
;

∑
ij cij
k

]
.

2 For each x ∈ I, we compute h(x) defined as the number of observations with a total
abundance higher than x.

3 We compute the linear regression between h(x) and x.
4 The intercept is set as the default threshold.

(see Appendix 1 for more information). This extra-filtering is more stringent than the
DESeq2 process and normally results in decreased computation time. The impact of fil-
tering steps may be visually assessed with plots displaying features that will be included
in the analysis and those that will be discarded.

Statistical modelling

The statistical model relies on the variables that are loaded in the file of experimental
design. By default, all variables are included in the model but the end-user can edit this
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selection and further add interactions between variables of interest. In addition, other
variables such as batches or clinical data (e.g., age, sex, etc.) may be used as covari-
ates. SHAMAN then automatically checks whether the model is statistically suitable (i.e.,
whether the parameters may be estimated properly). When it is not the case, a warn-
ing message appears and a “how to” box proposes a practical way to solve the issue. In
SHAMAN, statistical models may be fitted at any taxonomic levels: normalized counts
are summed up within a given taxonomic level.
To extract features that exhibit significant differential abundance (between two groups),

the user must define a contrast vector. Both a guided mode and an expert mode are avail-
able in SHAMAN. In the guided mode, the user specifies the groups to be compared
using a dropdown menu. This mode is only available for DESeq2 v1.6.3 which is imple-
mented in the DESeq2shaman package (https://github.com/aghozlane/DESeq2shaman).
In advanced comparisons, the user may define a contrast vector by specifying coefficients
(e.g., -1, 0, 1) assigned to each variable.

Visualization in SHAMAN

After running a statistical analysis, many displays are available:

(i) Diagnostic plots (such as barplots, boxplots, PCA, PCoA, NMDS and hierarchical
clustering) help the user examine both raw and normalized data. For instance, these
plots may reveal clusters, sample mislabelling and/or batch effects. Scatterplots of size
factors and dispersion estimates (i.e., estimates that are specific to DESeq2) are useful
when assessing both the relevance and robustness of statistical models. PCA- and
PCoA-plots associated with a PERMANOVA test may be used as preliminary results
in the differential analysis as they may reveal global effects among groups of interest.

(ii) All significant features are gathered in a table including, the base mean (mean of the
normalized counts), the fold change (i.e., the factor by which the average abundance
changes from one group to the other), as well as the corresponding adjusted p-values.
The user may view tables for any contrasts and can export them into several formats.
Volcano plots and bar charts of p-values and log2 fold change are also available in
this section.

(iii) A global visualization section provides a choice of 9 interactive plots such as barplots,
heatmaps and boxplots to represent differences in abundance across groups of
interest. Diversity plots display the distribution of various diversity indices: alpha,
beta, gamma, Shannon, Simpson and inverse Simpson. Scatterplots and network
plots may reveal associations between feature abundance and other variables from
the target file. To explore variations of abundance across the taxonomic
classification, we included an interactive abundance tree and a Krona plot [47].
Rarefaction curves are of great use to further consider the number of features in
samples with respect to the sequencing depth.

(iv) In the comparison section, plots of comparisons among contrasts may be created.
Several options are available such as, Venn diagram or upsetR graph [48] (displaying
subsets of common features across contrast), heatmap, a logit plot [49] (showing the
log2 fold-change values in each feature), a density plot and a multiple Venn diagram
to summarize the number of features captured by each contrast. All these graphs can
be exported into four format (eps, png, pdf and svg).

https://github.com/aghozlane/DESeq2shaman
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User case datasets

To illustrate how SHAMAN operates, we analysed two datasets. The first dataset orig-
inates from a mock sequencing we performed on purpose (a standard practice when
assessing metagenomics methods). The second dataset is publicly available and originates
from a published study (the afribiota dataset, [50]). The latter dataset was collected to
perform a typical differential analysis (i.e., a very common approach in metagenomics).
In both analyses, we submitted the raw FASTQ files and provided a target file containing
sample information (needed for statistical analysis).

Zymomock dataset

The mock sequencing (EBI ENA code PRJEB33737) of the ZymoBIOMICSTMMicrobial
Community DNA was performed with an Illumina MiSeq resulting in 12 samples of
257,000±85,000 (mean± SD) sequences of 300-base-long paired-end reads. The compo-
sition of the Zymo mock community is known and is composed with 8 phylogenetically
distant bacterial strains, 3 of which are gram-negative and 5 of which are gram-positive.
DNA of two yeast strains that are normally present in this community were not amplified.
Genomic DNA from each bacterial strain was mixed in equimolar proportions (https://
www.zymoresearch.com/zymobiomics-community-standard). We compared the impact
of both the number of amplification cycles (25 and 30 cycles) and the amount of DNA
loaded in the flow cell (0.5ng and 1ng), on the observed microbial abundance. Each sam-
ple was sequenced 3 times (experimental plan provided in supplementary materials).
Sequencing report provided by the sequencing facility indicated the presence of contam-
inants. To handle this issue, we filtered out the genera occurring in less than 12 samples
and outliers with a reduced log abundance as compared to the other genera (Fig. S2).

Afribiota dataset

The second dataset included 541 samples of microbial communities in stunted children
aged 2-5y living in sub-Saharan Africa (EBI ENA code PRJEB27868) [50]. Three groups
(nutritional status) of individuals were considered: NN=non stunted, MCM=moderately
stunted,MCS=severely stunted. samples originated from the small intestine fluids (gastric
and duodenal) and feces. The authors performed the bioinformatic treatment withQIIME
framework and the statistical analysis with several R packages including Phyloseq for the
normalization and DESeq2 for the differential analysis. Using SHAMAN, raw reads were
filtered against Human HG38 and PhiX174 genomes. A total of 2386 OTUs were calcu-
lated and 76% were annotated with SILVA database at genus level. The sparsity rate of
the contingency table was high with 0.84. In consequence, we used the weighted non-null
normalization which is particularly efficient when the matrix is highly sparse (Fig. S1).
Two analyses were performed, a global analysis that included duodenal, gastric as well as
feces samples and a more specific analysis including fecal samples only. Statistical models
included the following variables, age, gender, country of origin and nutritional status.

Benchmarking

Last, we compared the running time performance of SHAMAN with five other web
applications for metataxonomy studies (ASaiM, FROGS, MetaDEGalaxy and Qiita). For
each web interface, we submitted the raw sequencing reads of the Zymo mock dataset
and estimated the time to generate a BIOM containing the contingency matrix and
OTU annotation. Qiita and MetaDEGalaxy were used remotely, FROGS was installed on

https://www.zymoresearch.com/zymobiomics-community-standard
https://www.zymoresearch.com/zymobiomics-community-standard
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galaxy.pasteur.fr and ASAIM was installed on Mac book pro with a core i7 6cpu with
32Gbytes of ram.

Results and discussion
User cases

Data analysis in SHAMAN may easily be done by users who are not familiar with
command-line analyses. In this paper we analyzed two datasets.
In the analysis of the Zymo mock dataset the 8 bacterial strains present in the samples

were suitably detected (Fig. 2).We then defined a statistical model to test the effects of the
two varying experimental factors: the amount of DNA and the number of amplification
cycles and the interaction between th ese variables. The statistical comparison showed
a stronger impact of the number of amplification cycles as compared to the amount of
DNA. While we found no differential features between 0.5 ng and 1 ng DNA for each
group of number of cycle (25 and 30 cycles), the comparison of the number of ampli-
fication cycles within each group of DNA amount revealed a significant impact on the
observed abundance of mock bacteria (Tables S1, S2). These results are in agreement with
previous studies that presented the PCR-induced bias on similar mixtures [51, 52].
Regarding the analysis of the second dataset with SHAMAN, overall our results were

highly consistent with those of Vonaesch et al. [50]. We detected a significant change in
the community composition between gastric and duodenal samples as compared to feces
samples at Genus level (Fig. 3a) (PERMANOVA, P=0.001). The most abundant genera
were reported in Fig. S3. α-Diversity was not affected by stunting (Fig. 3b). We looked
for a distinct signature of stunting in the feces. In the volcano plot (Fig. 3c), we repre-
sent genera with differential abundance between stunt samples as compared to non-stunt
(complete list available in Table S3). Twelve microbial taxa, corresponding to members
of the oropharyngeal core microbiota, were over-represented in feces samples of stunted
children as compared to non-stunted children. More particularly Porphyromonas,
Neisseira and Lactobacillus (Fig. 3d) appeared more abundant. All those findings were in

a b

Fig. 2 Taxonomic composition of the Zymo mock community as analyzed in SHAMAN. Samples were
processed in the lab under two different type of treatment: varying amount of DNA (0.5 and 1 ng) and
varying the number of PCR cycles (25 and 30 cycles). a Barplot of proportion of taxa in the different
conditions. b Heatmap of log2 fold changes obtained in the different contrasts. ** indicates 0.001 < p-value
<0.01; *, 0.01 < p-value <0.05
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a b

c d

Fig. 3 Afribiota study of small intestine fluids and feces from stunt children compared to non stunt. a PCoA
plot the Bray-Curtis dissimilarity index of the samples. Duodenal samples are colored in blue, light blue for
Gastric and orange for Feces. PERMANOVA test based on the sample type yielded a p-value of 0.001. b Alpha
diversity analysis of non-stunt (NN), moderately stunted (MCM) and severely stunted (MCS). Overlapping
confidence interval indicates that the diversity are not different between NN, MCM and MCS in duodenal,
gastric and feces samples. c Volcano plot of differentially abundant genera in the feces of stunt children
compared to non-stunt. We plot the log2 fold change against the -log 10 adjusted p-value. Microbial taxa in
red correspond to an increase of abundance and in blue to a decrease abundance. Labeled dots correspond
to taxa from oropharyngeal core microbiota. d Log 2 abundance of differential abundant taxa from
oropharyngeal core microbiota in stunt and non-stunt children feces

agreement with the conclusions of the Afribiota consortium while being obtained within
a few minutes of interaction with the SHAMAN interface.

Mapping SHAMAN among the other existing tools

To date, several tools have been developed for the analysis of metagenomic data. Relative
to these existing tools, SHAMAN presents a number of interesting features and novelties.
We made a brief qualitative assessment of the strengths and limits of SHAMAN, in com-
parison with other web interfaces designed for metataxonomic analyses (see Table 1). We
first defined a list of important considerations that have practical implications for the user
such as the possibility to process raw sequencing data, the existence of a statistical work-
flow and/or a visualization platform, possibility to store data and accessibility. For each
web interface, we then evaluated whether it met those criteria. We believe that a nested
solution, such as SHAMAN, is highly suited for producing robust and reliable results.
Any results in SHAMAN may be cross-checked with a quantification or an annotation
performed at an earlier stage.
Comparison of computation time revealed that SHAMAN was faster than the other

five web application to process the data of Zymo mock dataset. FROGS and QIITA
are also convenient solutions for data processing since the whole OTU processing was
performed in few hours. In both case, they provided an accurate description of the com-
munity as the 8 main communities composing the mock were correctly detected. On
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the other side, the computation time obtained with ASaiM and MetaDEGalaxy appeared
much longer as we could not obtain a BIOM file after several days of calculation. Results
obtained with Frogs and Qiita are reported on figshare (10.6084/m9.figshare.11815860).
Furthermore several applications (as presented in Table 1), impose the burden of import-
ing/exporting R objects which requires skills in R programming. This may also represent
a source of reproducibility issues, notably in terms of compatibility of the packages
over time.

Conclusions
SHAMAN enables users to lead most of the classical metagenomics approaches. It also
makes use of statistical analyses to provide support to each data visualization. The possi-
bility to deploy SHAMAN locally constitutes an important feature when the data cannot
be submitted on servers for privacy issues or because of insufficient internet access.
SHAMAN also simplifies the access to open computational facilities, making a careful
use of the dedicated server, galaxy.pasteur.fr.
Currently SHAMAN is limited to metataxonomic analyses. In a close future, we plan to

extend our application to whole genome analysis, notably by using of microbial gene cata-
logs. Several catalogs are currently available to study human, mouse, cow, as well as ocean
microbial diversity. A perspective will be to combine these results with metataxonomic
data, and to perform integrative analyses.
During the development of SHAMAN, we felt a strong interest of the metagenomics

community in our application. We recorded 82 active users per month in 2019 (535
unique visitors in total) and 800 downloads of the docker application. We expect that
SHAMAN will help researcher perform a quantitative analysis of metagenomics data.
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