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Abstract

Background: Cryo-electron tomography is an important and powerful technique to
explore the structure, abundance, and location of ultrastructure in a near-native state. It
contains detailed information of all macromolecular complexes in a sample cell.
However, due to the compact and crowded status, the missing edge effect, and low
signal to noise ratio (SNR), it is extremely challenging to recover such information with
existing image processing methods. Cryo-electron tomogram simulation is an effective
solution to test and optimize the performance of the above image processing
methods. The simulated images could be regarded as the labeled data which covers a
wide range of macromolecular complexes and ultrastructure. To approximate the
crowded cellular environment, it is very important to pack these heterogeneous
structures as tightly as possible. Besides, simulating non-deformable and deformable
components under a unified framework also need to be achieved.

Result: In this paper, we proposed a unified framework for simulating crowded
cryo-electron tomogram images including non-deformable macromolecular
complexes and deformable ultrastructures. A macromolecule was approximated using
multiple balls with fixed relative positions to reduce the vacuum volume. A
ultrastructure, such as membrane and filament, was approximated using multiple balls
with flexible relative positions so that this structure could deform under force field. In
the experiment, 400 macromolecules of 20 representative types were packed into
simulated cytoplasm by our framework, and numerical verification proved
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that our method has a smaller volume and higher compression ratio than the baseline
single-ball model. We also packed filaments, membranes and macromolecules
together, to obtain a simulated cryo-electron tomogram image with deformable
structures. The simulated results are closer to the real Cryo-ET, making the analysis
more difficult. The DOG particle picking method and the image segmentation method
are tested on our simulation data, and the experimental results show that these
methods still have much room for improvement.

Conclusion: The proposed multi-ball model can achieve more crowded packaging
results and contains richer elements with different properties to obtain more realistic
cryo-electron tomogram simulation. This enables users to simulate cryo-electron
tomogram images with non-deformable macromolecular complexes and deformable
ultrastructures under a unified framework. To illustrate the advantages of our
framework in improving the compression ratio, we calculated the volume of simulated
macromolecular under our multi-ball method and traditional single-ball method. We
also performed the packing experiment of filaments and membranes to demonstrate
the simulation ability of deformable structures. Our method can be used to do a
benchmark by generating large labeled cryo-ET dataset and evaluating existing image
processing methods. Since the content of the simulated cryo-ET is more complex and
crowded compared with previous ones, it will pose a greater challenge to existing
image processing methods.

Keywords: Cryo-electron tomography, Unified packing, Coarse-graining, Molecular
dynamics

Background

Cryo-electron tomography (Cryo-ET), which was first proposed in 1970s, is now a pop-
ular and powerful imaging technique in the fields of life and medical sciences [1-3]. A
series of two-dimensional images recorded by electron microscopes are collected to gen-
erate 3D reconstruction of macromolecules and then used to analyze the architecture
of these structures. In traditional sample preparation process, due to the incompatibility
with vacuum, water in sample cells tends to boil out and leads to unacceptable explo-
sions. This seriously effected the efficiency of the sample preparation process and the
accuracy of result data. In order to extract the cellular structure more accurately with
higher resolution, cryo-electron tomography has emerged, which prepares samples at low
temperatures and is able to record the cellular structure in a natural state [4].

In the fields of protein visualization and structural biology, various machine learning
methods are applied to the analyse the structure of macromolecules and ultrastructures
[5-7]. These methods can resolve the structure of macromolecules to a large extent,
but the accuracy still need to be improved. On one hand, due to the lack of training
data, only unsupervised methods could be introduced. These models often fail to obtain
credible results and can only make fuzzy estimates. On the other hand, the parameter
adjustment process is very time consuming, and it is extremely difficult to verify whether
these specific parameters can obtain the best results [8, 9]. Therefore, generating simu-
lated cryo-ET is very important. To make the simulation result more realistic, Molecular
Dynamics(MD) is introduced. The label of simulated cryo-ET data is known which is very
helpful in training machine learning algorithms and improving the performance. It is also
of great help to adjust parameters and find the optimal ones.
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There are many studies on the simulation of the interaction and movement of subcel-
luar structures. Some studies focus on the simplified modeling of these structures [10-13]
and the generation of topology file [14]. Others tend to explore the interaction between a
pair of structures [15, 16]. In this field, the study of macromolecular crowding is of great
importance[17]. In 2015, Pei et al. [18] proposed to simulate cryo-ET of macromolec-
ular crowding. This method modeled macromolecules with single ball, and squeezed
them into a limited space. This method can simulate crowded cell cytoplasm at varying
crowding levels by a score function. Random noise is used to achieve varying SNR levels.
However, representing a macromolecule with only one sphere can not obtain the tightest
packing results.

In general, traditional packing methods tend to model a single structure with a sin-
gle cubic, sphere, cylinder, or other three-dimensional box. A specific macromolecule is
placed in the smallest box that can hold it, which successfully simplified the complex into
an alternative with regular boundaries. Although these models are easier to operate for
the experimenter, only rough results can be obtained due to the huge waste of space. For
example, when modeling a stick-like substance, the radius of the minimum boundary ball
is extremely large due to its large height to thickness ratio. This means a large area of
vacuum is present inside the sphere. This kind of model cannot represent the stick-like
substance and its surrounding environment accurately during the simulation process. In
contrast, a cuboid may be more suitable for simulating this type of structure. Besides, the
scale of the minimum boundary is fixed, so it cannot exhibit the deformation and stretch-
ing of structures. The packing result is not tight enough because it is limited by the space
waste issue. The result of the simulation is not rich enough because it lacks the dynamic
features. These inherent problems with existing methods lead to the inaccurate repre-
sentation of the cytoplasmic environment, and it hardly provides adequate assistance to
subsequent image process methods. To this end, a new scheme to simulate deformable
ultrastructure, such as filaments and membranes, and non-deformable macromolecules,
like proteins, in a unified framework is of great significance. It is also very important to
achieve the result of crowded packing, which is based on the movement and interaction
of the above structure according to molecular dynamics. This method is not only a sup-
plement and development of traditional biological structure modeling, but also a great
challenge in computer graphics, expecially physics-based simulation [19-21].

In the field of protein visualization, many basic methods have been proposed to sim-
plify a macromolecule which composed of thousands of atoms based on their structural
information. These methods are collectively referred to as coarse-grained methods, which
include the efficient and feasible clustering methods. Classical clustering methods include
hierarchical methods [22], partition-based methods [23], density-based methods [24],
grid-based methods [25], and model-based methods [26]. Specifically, partition-based
methods are simple and efficient for large data sets. This type of methods has a low space
complexity which means it requires less time than other methods. The k-means method
[27], as a representative partition-based method, allows the user to freely set the number
of clusters and divides the data according to the similarity between discrete points. When
used with macromolecules, the clustered atoms are close in distance, and the positions of
the atoms can be used effectively as the basis for dividing the atoms into clusters.

In this paper, we proposed a unified simulation framework for packing deformable and
non-deformable structures together under a rather crowded status. The non-deformable
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macromolecules are coarse-grained by the k-means clustering method. A limited number
of fixed-position spheres with different radii are used to represent a single macro-
molecule. Deformable filament and membrane are modeled by multiple balls with flexible
relative positions. Generally speaking, filaments and membranes are relatively larger than
ordinary maceomolecules, and they are more flexible in interactions and movement
modes. The number of balls in a specific structure is depending on its atom number. Next,
the deformability of various structures is achieved by designing different typologies. For
example, balls in a macromolecule will be fully connected to each other and the length
of bonds is hard to change. This will make the relative position of the balls relatively
fixed, and the macromolecule will reflect the rigid body characteristics. The filaments and
membranes may have relatively few bonds which by using a not fully connected topology.
The angle between two bonds is changeable to achieve deformable properties. Then, cer-
tain number of macromolecules, filaments, and membranes are placed in a given space,
and be moved towards the center by applying a external force pointing to the center. After
a certain period of time, the system reaches a sufficient crowding level. The movement
process under bonded forces, non-bonded forces, and external forces follows molecular
dynamics and conforms to physical laws.

Method

The simulation of Cryo-electron tomogram with rigid macromolecules and deformable
ultrastructure contains three parts: the modeling of macromolecules and ultrastructure,
molecular dynamics simulation, and generating simulated cryo-electron tomograms. In
this section, we will demonstrate the above three parts respectively.

Modeling of macromolecules and ultrastructure

To simulate the inter-cellular environment realistically, the modeling of intercellular ultra-
structures and macromolecule complexes is required. Traditional simulation methods
tend to model a structure with single-element model, and do not take into account the
deformable filament or membrane. This greatly reduces the richness of simulation results,
and cannot represent the compact Cryo-electron tomography properly.

Therefore, we proposed to represent a macromolecule or ultrastructure with multiple-
ball model which is able to describe deformable and non-deformable body in a unified
framework, and could also save the space. This process is also called “coarse graining” A
high-resolution structure consisting of thousands of atoms is represented at a low res-
olution by limited number of balls. A topology file is also required to describe how a
structure is organized, including the atomic mass and bond configurations. In this paper,
the macromolecule, which is non-deformable, is approximated using multiple balls with
fixed relative positions; while the deformable ultrastructure, like membranes and fila-
ments,are approximated using multiple balls with flexible relative positions. This feature
is achieved by setting different force fields for balls, and setting the chemical bond angle
to have different elasticity.

Coarse graining of macromolecule

There are thousands of atoms in one macromolecule, which makes it extremely difficult
to accurately represent a macromolecule with a limited number of balls. In this paper, we
start with the coordinates of atoms and use the k-means method, a classical clustering
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algorithm in machine learning, to realize the coarse granulation of macromolecules. The
algorithm of k-means method could be found in supplementary document, Section S2.

To improve the richness and accuracy of simulation, 20 macromolecules with different
scales and shapes were selected from the Protein Data Bank (PDB) [28]. These PDB files
contain abundant information about the complex such as the source, structure, sequence,
etc. In a PDB file, the most important value that we are focused on is the spatial position
of each atom, called the coordinates.

Clustering methods are unsupervised learning methods which is used to devide the
data into several groups. It group objects with similar properties into the same cluster.
It has a wide range of applications and can be applied to almost all objects. In k-means
clustering method, k denotes that we want k clusters, and mean represents that we calcu-
late the center of the cluster using the mean value of the attribute values in each cluster.
In a word, the cluster is described by the centroid of each cluster. The more similar the
objects in the same cluster are, the better the clustering accuracy is. Cluster analysis
attempts to find the similarity between different objects, which is usually represented by
their Euclidean distance, cosine distance, or Hamming distance. Obviously, for a macro-
molecule the Euclidean distance is a simple and effective way to group atoms which are
close to each other into one cluster. In this paper, the clustering process was implement
based on the k-means program in scikit-learn package [29].

In this paper, the k-means method is used to divide the atoms in a
macromolecule into k& clusters. First, the coordinates of all #n atoms is
extracted from the PDB file: atoms = {coord;, coordy, .., coord,}, where
coord; = {(xi,yi,zi) | %5, i, zi € R}. Then k atoms is randomly selected as
the  initial cluster  center:  centerss,, = {centery, centers, ..centery},  where
center; = {(xi,yi,zi) | (x1,9i,2i) € atoms}. Secondly, for each atom i in the macro-
molecule, the distance to all k centers dist; = {dist;_,1, dist;_9, ..., dist;_;} is calculated
by Euclidean Distance formula:

dist;_j=|| coor; — center; ||
= %)+ Gi—3)" +e—2)” )

Next, each atom is assigned to the nearest cluster by finding the minimum value in its

distant list dist;,,, = min (dist;). Then, the centroid of each cluster is recalculated, and &
new cluster centers is obtained by the arithmetic mean:

N
1
center; = N Z coord (2)
k=1

where i denotes the number of center, coordy = (xk, v, zx) is the coordinate of the ky,
atom in cluster i. Then repeat the second and third steps to redistribute the atoms into
different clusters until the cluster center no longer changes. Finally, in coarse graining
process, the center of the k small balls is represented by the coordinates of the cluster
center, and the radius is the maximum distance dist;,,,, = max(dist;) from the cluster
center to the atom in this cluster. The radius of the small balls in a macromolecule is in the
range of 20-65 ;1, most of which are concentrated between 35-55 ;1 The overall size of the

macromolecule is around 60-250 A, most of which is concentrated between 120-160 A.
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Due to the variety of macromolecule sizes,the number of atoms contained in each
macromolecule is also different. Therefore, a uniformed cluster number k can not meet
the need of reasonable coarse granulation. In this paper, the original number of cluster
clusters kg, is set base on the scale of the macromolecule by the following formula:

Natom
ko —
o = 15000

where Ny, refers to the atom number of a macromolecule. This means that every five

1 3)

thousand atoms will be represented by one ball. When there are less than 5,000 remaining
atoms, one ball will still be added to ensure that all particles are represented. It is impor-
tant to make sure that each macromolecule is divided into at least three clusters to get
three cluster centers. This means that each macromolecule can form at least two linearly
independent vectors to determine the rotation angle of the macromolecule in space dur-
ing subsequent molecular dynamics simulation step. Eq. 4 is used to limit the range of k:

3 ktmp <3
ktmp ktmp >3

k=

(4)
The process of coarse graining is shown in Fig. 1, its algorithm is shown in Algorithm 1.

Model of filaments and membrane
The single ball/cylindrical model is difficult to properly simulate a large-scale filament or
membrane. In contrast, the multi-ball model can not only decrease the vacuum volume,
but also flexibly represent the shape change of the above structure by changing the relative
position of the balls. In order to reduce the complexity of the model, the filament and
membrane was initialized by the simplest model with a rule layout.

For the filament, its initial state was set to a straight line, arranged by m balls. The model
is shown in Fig. 2a. For the membrane, its initial state was set to a rectangular mesh,

arranged by m * n balls. The model is shown in Fig. 2c.

Topological structure

The deformability of a specific macromolecules or ultrastructure is determined by its
topology structure. For macromolecules, we set the structure to be in-deformable. k
spheres that make up the macromolecule are connected in pairs (see Fig. 1d), and the

(a) PDB view (b) Cluster result of all atoms (c) Multiple-ball model (d) Ball-stick model

Fig. 1 The coarse graining process of a macromolecule (macromolecule 1F1B). Subfigure (@) shows all atoms
in macromolecule 1F1B. As shown in (b), all of the atoms in 1F1B are separated into 3 clusters using k-means
clustering method. Three cluster centers are represented by red triangles, and the atoms in different clusters
are marked by different colors. Our methods represent each macromolecule with several balls, and the 3D
visualization result of our multiple-ball model on 1F1B is shown in subfigure (c). All the balls in a
macromolecule are connected with each other. This fully connected topology guarantees its
non-deformable nature. The topological structure of 1F1B is shown in (d) with a ball-stick model
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Algorithm 1: Coarse Graining of Macromolecule
Input: PDB files of macromolecule

Output: center and radius of k balls that represent the macromolecule
Step 1: Initialization;
atoms < atoms in pdb files;
centersyyy < Radomly select k atoms from atoms;
centers < zero([ k, 3] );
Step 2: Clustering;
while centersy,, # centers do
center <— centerSyyp;
for each atom in atoms do
calculate the Euler distant dist(Equ.(1));
calculate the minimum distant dist,,,;, < min(dist);
distribute atom into the nearest cluster;

calculate new cluster centers centerss, (Equ.(2)) ;

Step 3: Coarse Graining;

for each cluster in clusters do
calculate the maximum distant: dis,,,, < max(dis) ;
the ball’s center < center j,ster;
the ball’s radius < dis;uy;

angles of the chemical bonds are fixed. For filament and membrane, we set the structure
to be deformable. The angles of the chemical bonds is able to change elastically.

In a filament, inside balls are sequentially connected to the nearest neighbors of the left
and right by the serial number. As shown in Fig. 2b, only balls at both ends are bound by
one chemical bond, while the other balls are bound by two chemical bonds.

(a) multiple-ball model of fila-  (b) structure of filament  (c) multiple-ball model of sur- (d) structure of surface
ment face

Fig. 2 The initial multiple-ball model and topological structure of deformable structure (filament and
surface/membrane). The initial model of a deformable structure is its simplest status. As shown in (@) and (c),
all the balls are collinear in filament, while are coplanar in membrane. In our model, all balls in the same
structure have the same radius. In order to represent deformable property, the topography of filaments and
membranes are no longer similar to the fully connected macromolecule structure. As shown in (b), the balls
in a filament is connected to its left and right neighbors in turn, and each ball is constrained by at most two
chemical bonds. As shown in (d), balls in a membrane are connected to its surrounding four neighbors and
form a mesh-like structure. For the above topology, as long as the bond length of the chemical bond not

change, the structure will not stretch. Deformation such as bending can occur, when the bond angle
changes elastically
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In a membrane, balls are in a mesh structure, and each ball is connected to the neighbors
in the four directions of the upper, lower, left, and right directions. It is also connected to
the neighbors of the four diagonal directions. The structure of a membrane is shown in
Fig. 2d, the balls at the apex are bound by three chemical bonds, the balls at the boundary
are bound by five chemical bonds, and the inner balls are bound by eight chemical bonds.

Molecular dynamics simulation
The setting of the biomolecules force field is the most important part of dynamics simu-
lation process. In this paper, force field could be divided into three types: bonded force,
non-bonded force and external force. In each time step, all the particles move under the
above forces. As for a specific structure, if the relative position of inner particles change
significantly, this macromolecular complex will deform. For each ball i in the force field,
its acceleration a; at time ¢ is described by the following formula:

1

— - Fi(t)

m
1

= — (R0 +F"® +F©) 5)
m

ai(t) =

where m denodes the mass of each ball, ¢ is the time, F;(¢) is the resultant force, F2(¢),
F(t) and F&*(t) represent the bonded force, non-bonded force and external force
respectively. Since each ball represents 5,000 atoms, the mass m in our experiment was set
to 5000. Then the velocity and position of each ball is describe by the following foluma:

vi(t) = a;(t) - 8t and x;(t) = v;(t) - 6t (6)

where 8¢ is the time step, and it was set to 1 ns in this paper.

In biomelecules system, the force is calculated by negative gradient of the scalar poten-
tial function. The force from particle j at position x; to particle i at position x; is
F (x,'j) =-VU (x,;), where x;; = x; — %; is the position vector. Then Eq. 5 can be written
as:

ai(t) = % : (—v (u}’(t) n u;”’(t)) n fot(t)> @)

where Uf’ (¢) is the bonded potential function, L[i”h (¢) is the nonbonded potential func-
tion. The calculation of the above functions is implemented by NAnoscale Molecular
Dynamics(NAMD) [30].

External force field

Our packing method considers external force which is a force field toward the center of
simulation scene. The external forces is applied directly to the particles without the use
of potential function. This force field lead all particles to move toward the center of the
scene and squeeze together, which plays a major role in the packing operation.

In order to speed up the simulation process while maintaining the stability of the calcu-
lation in the crowded area, a force field action radius is set. Outside this radius, balls move
toward the center under a uniform constant max force action. In order to avoid instabil-
ity, the force field was set to be evenly decremented, and is reduced to zero in the center
of the scene. The segmented external force field for ball i is as follows:

exe _ [ 104 1% 11 11 11< 300

i (8)
3000 300 <[] x; ||
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where || x; || is the distance from ball i to the center of simulation scene.

Bond interactions

Bond interactions involve two type of constraint: bond stretching and angle stretching. As
seen in Fig. 3, they are used to describe the 2-body and 3-body interaction of covalency
bonded atoms respectively. The bond potential could be written as:

b bond 1
uy =Yy uprt 4y ugse 9)
j ik

For a pair of bonded particles i and j, their bond harmonic vibrational motion is
described by spring bond potential:

2
Uy = ey (11 11 = 11 %0 l) "

where kj, is the spring constant and it was set to 2000, || x;; ||=[| x; — x; || is the distance
between particle i and j, ||xp|| is the equilibrium distance of this particle pair. In this paper,
|| %o || of two specific bonded balls is set as the initial distance between two ball centers.

For three bonded particle i, j and k, their angular vibrational motion is described by
angular bond potential:

I 2
LS = ey (1011 = 1160]1) (1)

Where ky is the angle constant , 6;; is the angle formated by vectors xj; = x; — x; and
Xk = Xk — X, 6p is the equilibrium angle. In this paper, 6y of is set as the initial angle of
three ball centers.

Given the atomic coordinates and topology, the bonded constraint is the mainly influ-
ence factor of the deformation properties of macromolecules and ultrastructures. For a
macromolecule, its topological structure is relatively stable because there are chemical
bonds between any two balls in it. This means macromolecules do not deform during
simulation as long as the length of the chemical bond is not changed. Therefore, &, in the
bond potential function is set to 2000, which is a very large value, to effectively ensure the
rigidity of the macromolecule. In this paper, filament and membrane are set to deformable
and non-stretchable structures. Therefore, kj, for filament and membrane is also set to
2000 to ensure the non-stretch feature, and kg is set to zero to enable the deformability of
the angle.

It is obvious that the deformability of a structure is determined by its topological struc-
ture and bond constraint. The stability of the topological structure can determine the

(a) before bond stretching (b) after bond stretching (c) before angle stretching (d) after angle stretching

Fig. 3 The bonded interactions. Subfigure (a) and (b) is the bond between ball i and ball j before and after
streching. This interaction is constrict by Eq. 10 and plays a major role in the length change of chemical
bonds. Subfigure (¢) and (d) shows the angle streching of two bond between ball j, j and k. This interaction is
constrained by Eq. 11 and is used to describe the bending of a structure
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feasibility of the stretching and bending feature; the bond constraint is used to adjust the
difficulty of the deformation.

Nonbond interactions

For particles pair i and j without chemical bond, van der Waals force play the main role
of the interaction between them. There is a strong core repulsion between particle i and
particle j if they are too close together, while there is a weak dipole attraction between
them if they are a little far apart. The potential function of van der Waals force is described
by Lennard—Jones potential:

R \12 R \6
ugf:g ( m’”) —2< ”“”) (12)
[l 1EA1

where ¢ is the depth of potential wall with the value —Ug}“” (Ruin), Rmin is the dis-
tance at which the potential reach its minimum. This potential approaches 0 rapidly as

[lx;]| increases, so a switchdist and a cutoff point are chosen to save the computational
resource. In this paper, the switchdist and cutoff are set to S = 600nm and C = 610nm
respectively. This is a piecewise force field function. When the distance between the two
particles is smaller than S, L[i;fb = L[i?] . Then, it starts to drop evenly from point S and
become zero at point C.

In biomelecules system, the electrostatic force is also an important part of interactions.
In this paper, since all the balls represent (0,5000] atoms, it is hard to say which sign
of charge does it have. Besides, the goal of this paper is to pack a number of macro-
molecules into a limited space. Under the given external force, there is no need to calculate
the inter-molecular forces accurately. Van der Waals force is enough to describe non-
bond interactions and prevent particles form overlapping. In order to save computing
resources, the charge of all balls is set to zero, and the electrostatic force is ignored.

Generating simulated cryo-electron tomograms

To generate a simulated cryo-electron tomogram, we need to obtain the displacement
vector and rotation angle of all the structures first. In this paper, each structure is approxi-
mated by multiple balls and represented by multiple vectors. For a structure S with k balls
B = {by, by, ..., by}, its position coords = (xs, s, zs) could be calculated by the arithmetic
mean of k balls:

xs = (xp1 +xpp + - - +xp1) /K
ys = Op1 +yp2 + -+ e /k (13)
zs = (zp1 +zp2 + - +zp) /k

where b; = (xp;, ypi» zp;) is the coordination of the iy ball center. The displace-
ment vector is the vector from the initial position to the final position, that is
by init inal
V4 = coordg™ — coord

The rotation of a point can be uniquely determined by a Euler angle which is repre-
sented by a triple array [31]. As shown in Fig. 4, the rotation accordance in this paper is

ZYZ sequence, and the final rotation can be represented by a rotation matrix:
R = R (0)Ry(B)R:(y) (14)

where @, 8 and y are the rotation angle in three sub-process.
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Fig.4 The Euler angle. In the three-dimensional space, vector AgBy is rotated to the vector A1 8. In order to
obtain the Euler angle , the coordinate system is rotated in accordance with the ZYZ format. The blue
coordinate system is the initial state XYZpje. The XYZpe axis is rotated by an angle o around the Z axis to
obtain an intermediate coordinate system XYZgreen. Then XYZgreen is rotated around its own Y-axis by an
angle B to obtain the intermediate coordinate system XYZq4, at which time the blue Z-axis moves to the red
Z-axis, and the X-axis and Y-axis are on the red plane. Rotate XYZ,¢ around its Z axis by angle y to obtain the
final coordinate system XYZyejion, Which is the red coordinate system in this figure. The rotation angle of the
vector AgBp to A1B1 is (&, B, y)

For a rigid body in three-dimensional space, its rotation states can be uniquely deter-
mined by two linearly independent vectors inside it, and the rotation angle is obtained
from the rotation matrixes of two vectors. Therefore, at least three points within each
macromolecule need to be labeled, which is why each macromolecule need to consist of
at least three clusters in the coarse graining process.

As shown in Fig. 5, macromolecule P is rotated from (Pp) to subfigure P; during time
8t. Three points Ag, By, Cyp move to the point Aj, By, C; via the above transformation. The
rotation matrix R4p of ApBp to A1B; can be obtained, which represents the rotation of
macromolecule P except the rotation with AB as an axis. To solve the rotation with AB
as the axis, it is necessary to consider the motion of point Cy. The intermediate vector
A1C is solved by AgCy and R4p, then the second rotation matrix R4c of A1C'p to A1Cy
is obtained. The final rotation matrix Rp is calculated by superimposing R4p and Ryc,
which is the rotation matrix of macromolecule P.

For each complex, density maps are generated at 4 nm resolution and with pixel size
of 1 nm using the PDB2VOL program of the Situs 2.0 package [32].Then based on the
coordinate,orientation and the density map of single macromolecule, the overall density
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Fig. 5 The rotation angle of a macromolecule. The left subfigure is the initial status, and the right subfigure
shows the macromolecule P after rotating. The middle one is the intermediate rotation state which is only
used to calculate the rotation matrix. Two linearly independent vectors can uniquely determine the angle of
rotation of a macromolecule. First, the rotation angle of AgBp to A1 B; is solved. The rotation of the
macromolecule around the A; By axis is then determined by the vector A1C’g and A1C’y . The rotation angle is
obtained by superimposing the above two angles. In our simulation, since the overall size of the
macromolecule is mostly concentrated around 120, the diameter of filaments and membranes is set to 40,
and 80 respectively

map could be generated. As for a deformable structure, it density map is generated based
on the final shape after packing, and the rotation angle is set to zero.

Experiment of packing subcelluar structures together and generating
simulated cryo-electron tomogram

In order to verify the effectiveness of our method, four experiments with different type
of Macromolecules and ultrastructure are carried out. The first one is a packing of 400
macromolecules with 20 types which is used to compare the crowded level of our method
and single-ball method. The second one is the packing of five macromolecules to show
the process and result clearly. The third one is the packing of six macromolecules, one
filament and one membrane which is used to show the ability of packing deformable and
undeformable sturcture under a unified framework. The fourth experiment shows the
deformation process of a single deformable structure. All the rendering result is visu-
alized by Visual Molecular Dynamics(VMD) [33]. The PDB view of all experiments are
visualized by Chimera [34]. The video of the above experiments could be found in the
Additional file 2.

Crowded packing of macromolecules

Packing of 400 macromolecules. As shown in Fig. 6, 20 x 20types = 400 macro-
molecules are packed in a box of 120mm x 120nm x 120nm. It could be seen in Subfig. 6a
and Fig. 6¢, all macromolecules gradually squeeze together from the initial dispersed state,
forming a sphere-like structure under a force pointing to the scene center. Subfigure 6b
shows the PDB view of the final result with different types of macromolecules in different
colors. A slice in the volume is also shown in Subfig. 6d. In Fig. 7, the simulated cryo-
electron tomography of this packing result is shown. In this experiment, macromolecules
are tightly packed together, and the gaps between each other are very small.

Including 1A1F shown in Fig. 1, 20 kinds of different macromolecules which are vary-
ing in structure, size and shape were selected and approximated with multiple balls. In
order to model them more reasonable, the number of balls was determined by macro-
molecule’s size using Eqs. 4 and 3. Atoms in a specific macromolecule are divided into k
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(c) multiple-ball view of packing process (d) slice inside the volume

Fig. 6 Packing process of 400 macromolecules with 20 types. Subfigure (a) and (c) shows wireframe view
multiple-ball view of the packing process, respectively. In subfigure (a), each fully-linked body represents a
macromolecule. The chemical bonds belong to the same macromolecule are marked in the same color. In
subfigure (c), each macromolecule is represented by a cluster of balls in the same color. The macromolecules
are initialized randomly in the scene, and they are far from each other. After packing, all macromolecules are
brought together to form a tight cluster. Subfigure (b) is the 3D visualization of final PDB file, 20 types of
macromolecules are marked in different colors. Subfigure (d) is a slice in this simulated volume

clusters according to their coordinates. The radius of each cluster is determined by the
most distant atom in this cluster to the cluster center.

In a macromolecule, each pair of balls are linked by a chemical bond to form a stable
topology. The length stretching and angular stretching of a chemical bond are constrained
by the bonding potential function. Due to the high spring constant of the chemical bond,
the relative position of balls in a macromolecule is hard to change, and the stability of the

structure can be ensured.

53.7 nm

(a) density map (b) simulated cryo-ET with SNR = 1000 (c¢) simulated cryo-ET with SNR = 200

Fig. 7 The density map and simulated cryo-electron tomogram of 400 packed macromolecules. Subfigure
(@)shows the real states of packing result by a density map. Subfigure (b) and (c) are the simulated
cryo-electron tomogram images under 1000 and 200 Signal-to-Noise-Ratio (SNR), respectively
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The PDB view, clustering results, coarse-grained multiple-ball model, ball stick repre-
sent of 20 selected macromolecules are shown in Figs. S1, S2, S3, S4 in supplementary
document, respectively.

Volume comparison. As shown in Fig. 8, the PDB point cloud model isosurface vol-
ume, multi-ball model volume and single-ball model volume of the 20 macromolecule
models were determined. The volume of the PDB point cloud isosurface is the smallest
one, which can be regarded as the true volume of each macromolecule. The atoms in a
macromolecule form a point cloud, and the isosurface of the point cloud of all 20 macro-
molecules are shown in Fig. S5 in supplementary document. The calculation method is
illustrated in supplementary document (Section S3) as well. Compared to the single-ball
model, there is much less empty space in the multi-ball model, which means it is eas-
ier to achieve a tightly packed result. For 75% macromolecule, the multi-ball model is
able to save 11%-72% volume, and our model has obvious advantages over the single-ball
model in modeling macromolecule 1BXR, 1GYT and 1QO1. However, for some special
macromolecules, our method does not show an advantage, which is also our follow-up
research.

Small scene with 5 macromolecules. To show the packing process clearly, an
experiment with only five macromolecules is conducted. As shown in Fig. 9, five
macromolecules (1KY1, 1VPX, 1W6T, 2BO9, 2GHO) are put in the scene with
50nm x 50nm x 50nm. The wireframe view (see Fig. 9a) and the multiple-ball view (see
Fig. 9b) display the packing process clearly. Five macromolecules are moving from dis-
tance to center and eventually squeeze together. The final PDB view (see Fig. 9c) and
inside slice (see Fig. 9d) demonstrate that the macromolecules are indeed tightly packed.
The density map and Cryo-electron tomogram 2D slice image corresponding to this
packing result are shown in Fig. 10.

Unified packing of non-deformable macromolecules and deformable ultrastructure

Unified packing of non-deformable and deformable structures. Our method can
simulate non-deformable structures (macromolecules) and deformable structures (fila-
ments, membranes) under a unified framework. In order to show the simulation results

clearly, a small scene packing process including six macromolecules, a filament, and a

The volumn comparison of 20 proteins under
PDB Point cloud model, multiple-ball model and single-ball model

I NI,
| | | [ — a0

lals  1bxr  leqr  1flb  lgyt  1kp8  1kyi  1qol  lvpx  lwg  1w6t 1yg6  2bo9 2byu  2gho  2gls  2h12  2ldb  2rec  3dy4

A

PBD point cloud model m multiple-ball model m single-ball model

Fig. 8 The volume comparison of the isosurface of PDB point cloud model, our multiple-ball model and
single-ball model. The point cloud isodurface could be regarded as the true volume of a macromolecule. The
calculation method is illustrated in supplementary Document section S3. This result shows that our
multiple-ball model has a rather small volume the single-ball model. For 75% macromolecules, our model
can save space for 11%-72% comparing with the single-ball model, especially 1BXR, 1GYT and 1Q0O1
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(a) wireframe view

(c) PDB view (d) slice inside the volumn

Fig. 9 The packing process of 5 macromolecules. To show the packing process clearly, a small scene with
only five macromolecules (1KY1, 1VPX, TW6T, 2BO9, 2GHO) is set. Subfigure (a) and (b) are the wireframe
view and multiple-ball view of the packing process, respectively. It could be seen clearly that five
macromolecules moving toward each other and finally squeeze together. Subfigure (c) is the PDB view of the
final status. Subfigure (d) shows the slices inside the volume

membrane was performed. The names of the selected macromolecules are 1A1S, 1BXR,
1EQR, 1F1B and 1GYT. As shown in Fig. 11, the wireframe view and the multi-sphere
view of the packing process are shown separately. It can be clearly seen that under the
external forces, structures are gathering toward the center, and the membrane (sky blue
wireframe and small ball) and the filament (bright blue wireframe and small ball) are
deforming. The corresponding density map and the cryo-electron tomography are shown
in Fig. 12.

For single-ball model, since the size of the minimum bounding ball changes as these
structures deforming, it is not able to reasonably simulate the filament and membrane
structures with deformable properties. In contrast, our method represent the deformation

(a) density map (b) simulated cryo-ET

Fig. 10 The density-map and simulated cryo-electron tomogram of 5 macromolecules (1KY1, 1VPX, TW6T,
2B09, 2GHO). Subfigure (a) is the selected density map slice of the packing volume corresponding to Fig. 9.
Subfigure (b) is the simulated cryo-ET image with SNR = 1000
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(a) wireframe view

(b) multiple-ball view

Fig. 11 The packing process of six macromolecules, one filament and one membrane. There are six kinds of
macromolecules in this scene: TA1S,1BXR,1EQR,1F1B and 1GYT. During this process, macromolecules are
moving toward each other and the membrane and filament are deforming. Subfigure (a) is the wireframe
view of the packing process, in which the membrane is represented by sky blue lines, the filament is
represented by yellow lines. Subfigure (b) is the multiple-ball view with membrane marked by sky blue and
filament marked by bright blue

of filaments and membranes by changing the relative position between multiple balls.
The deformable topology of filament and membrane are shown in Fig. 2, this structure
ensures their flexibility.

Deformation of single deformable structure. In order to verify the capability of the
deformation process simulation, we simulated the deformation of a single filament and
a single membrane. As shown in Fig. 13, a filament made up by 9 small balls is deform-
ing under the applied force. The 3D deformation process is shown in Fig. 13b. In order
to better show the shape of the filament during the deformation process, 36 slices cor-

responding to each state are generated (see Fig. 14). Figure 14 shows the deformation

24 nm

(a) density map with no de- (b) simulated cryo-ET with (c) final density map (d) final simulated cryo-ET
formable structure no deformable structure

Fig. 12 The density map and simulated Cryo-electron tomogram of six macromolecules, one filament and
one membrane. A membrane is recorded in selected slice. Subfigure (a) is the density map without
membrane. In this slice, three macromolecules could be seen. Subfigure (b) is the simulated Cryo-electron
tomogram 2D slice corresponding to (a). Subfigure (c) is the final density map with a membrane in it, the
membrane is shown in dark grey. Subfigure (d) is the final simulated cryo-electron tomogram with a
membrane in it
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(a) deformation process of a single filament

(b) density map of a filament

Fig. 13 The deformation of a filament. In this figure, a single filament deforms under force field. Subfigure (a)
shows the 3D ball-stick view, and subfigure (b) shows the corresponding 2D density map slice with 36 pieces.
During deformation, the angle between two bonds is flexible, so that the filament can curl effectively and
change its shape. Limited by the chemical bonds’ length, the filament cannot be stretched

process of a single membrane, in which Fig. 14a and Fig. 14b are the 3D deformation pro-
cess and the slice image, respectively. Due to having more chemical bonds, the membrane

deforms much less than the filament.

Image processing method testing

Test of DoG reference free particle picking method

The first step to any analysis done on the cryo-ET is to identify the locations of existing
particles and structures in the image. In the past, several machine learning algorithms
have been proposed for reliable and efficient particle picking in a cryo-ET, but the per-
formance of such methods still remain unconvincing due to the lack of labelled data for
testing. The simulated tomograms can serve as the ground truth for this exact purpose.

) deformation process of a single surface

b) density map of a surface

Fig. 14 The deformation of a membrane. Subﬁgure (@) shows the deformation process of a single
membrane under our force field in 3D ball-stick view. Subfigure (b) shows the corresponding 2D density map
slices with 20 pieces each. During this process, a membrane is able to change its shape but cannot be
stretched. Since a membrane has more bonds than a filament, it is a little constructed than filament
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Specifically our study focused on the performance of the Difference of Gaussian (DoG)
reference free particle picking method. The method generates two different Gaussian fil-
tered images and take the subtraction of the two. Then predicted locations of potential
particles are then determined by detecting peaks in the resulting map.

The Gaussian filtered image is obtained using the Gaussian function G(o) for a given
o value. More specifically, the filtered image Ig(c) iszobtained by multiplying the original

1
21
transformation is obtained by subtracting two such filtered images using two different o,

image and the Gaussian function G(o) = - e_Zth. The difference of Gaussian image
hence the name DoG. Typically, the ratio of the two ¢ is set to 1.1 for cryo-ET.

After the DoG image transformation is generated, local density peaks are detected
to identify the possible particle locations. Such local peaks are filtered using a density
threshold T to remove those resulted by noise.

M —m

T= t-
m —+ 2

where M is the maximum density value of all local peaks, m is the minimum density value
of all local peaks, and ¢ is the threshold level at which we wish to filter the noise. The
threshold level ¢ is set to 5 for this particular performance evaluation.

Evaluating the performance of particle picking

To evaluate the Difference of Gaussian method mentioned above, there need to be a met-
ric to identify true positives along with other useful information such as false negatives
and false positives, and this process requires knowledge of the exact molecules and the
locations in the cryo-ET.

Fortunately, we could use the simulated tomograms as the ground truth for this task.
The labels of the particles, their locations, angles, radius, and other information are gen-
erated and embedded within the simulation process itself, eliminating the need for human
annotation or other predictive measures.

Knowing the correct location and radius information, we could determine the true pos-
itives if there exist a detected local density peak close to the center of the particle. In
other words, given the center and the radius of a particular particle, we consider it to be
accurately labelled if one density peak is detected within the radius of the particle.

Precision and recall are effective method for performance analysis, and F score is used
for overall particle picking performance defined by

2 - precision - recall

F — score = —
precision + recall

Test results of particle picking
Considering the following equations for precision and recall:

. P
precision = ————
TP + FP

TP
recall = ———
TP + FN

where TP is the number of true positives (see true positive definition above), FP is the
number of false positives, and FN is the number of false negatives.
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Table 1 Performance test of Different of Gaussian particle picking method at different scaling factors

F-Score
oy =2 0.08 = 32/400
o1 =3 0.08 = 32/400
o1 =4 0.0825 = 33/400
oy =5 0.075 = 30/400
o1 =6 0.085 = 34/400
o1 =7 0.075 = 30/400

The simulated tomogram contained 400 particles which was then used as the ground
truth, and the Difference of Gaussian particle picking method predicted potential loca-
tions for 400 particles. Note that TP + FP is the total number positive predictions the
method make, which equals to 400, and TP + FN is the total number of true positives the
tomogram had, which also equals to 400. Therefore, the precision and recall values would
be exactly the same. Now consider the F-score, notice that the value of the F-score would
also equal to the precision and recall. Below in the table, we only present the F-score value,
but keep in mind that this would also be the precision and recall value.

Difference of Gaussian particle picking method at different o; value was performed on
the simulated tomogram and the particle picking results were analyzed giving the F-score.
The experiment result is shown in Table 1.

Figure 15 illustrates the simulated tomogram as well as the center of predicted particle
locations given by the Difference of Gaussian particle picking method where the centers
of the predictions are marked with black dots.

Test of semantic segmentation method using fully convolutional network

After identifying locations of potential particles, another useful method to be applied for
Cryo-ET analysis is semantic segmentation. Being able to decode the structural infor-
mation stored in a tomogram requires divide the tomogram in separate pieces for each
structure for better analysis. However, one problem that still exists in the research field of
Cryo-ET semantic segmentation is the trade-off between model accuracy and the amount
of required training data. Models with high accuracy are typically deep learning models

(a) centers of predicted structures (b) centers of all structures

Fig. 15 Ground truth and the result of DoG particle picking method. Subflgure (a) shows the centers of
actual particles in this tomogram where as subfigure (b) shows the centers of predicted particles picked by
DoG algorithm
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that require a large amount of high quality labelled training data. And because of the chal-
lenging and time-demanding nature of image segmentation and labeling, such training
data is very scarce. Other methods that do not have as high demand for training data usu-
ally do not have comparable results as the deep learning models. To resolve this issue, our
simulated data can serve as the labelled training data for high performing deep learning
models.

Fully Convolutional Network (FCN) is one of the most popular neural network model
due to its ability to learn both higher level patterns and low level details. Specifically,
the FCN will make predictions of a tomogram by analyzing every pixel. The network
contains 3D convolutional layers to capture high-level patterns as well as upsampling
and pooling layers for finer segmentation information. The exact architecture of the net-
work is given in supplementary material Section S4 and Fig. S6. This encoder-decoder
variant of the FCN adds skip connections in the upsampling phase that combines the
higher layers with the lower pooling layers to fully utilize global context information while
integrating the local information to accurately map low-resolution images to voxel-wise
predictions. In a previously published paper, it is found that this model has consistently
outperformed other similar variants of FCNs for the segmentation task [7]. Our simula-
tion provides 3D simulated cryo-ET data that can serve as the training data for EDSSN3D
network and reduce the amount of training data preparation required of this model
and thus successfully break the originally thought trade-off between accuracy and data
preparation.

Evaluation of image segmentation method

To evaluate this network model, the annotated data was split into two sets: 90 percent of
the prepared data was used as the training data for the network, and the remaining 10
percent of data was held back for evaluation purposes. After the training is done, the 10
percent held out data would then be fed into the trained network and predictions would
be generated with the real labels hidden from the network. The predictions would then
be compared to the real label.

Pixel accuracy accuracy = was calculated by counting the number of pixels

TP
all data points
the network made the correct predictions, where TP is the number of true positives. In
our experiment, the final accuracy of this method is 0.7015. The simulation results pro-
duced by the method proposed in this paper pose a greater challenge to existing image
segmentation methods. There is an urgent need to develop new algorithms to enable

better experimental results.

Discussion

In this paper, we proposed the first framework to generate realistic simulated
cryo-electron tomograms including non-deformable macromolecular complexes and
deformable ultrastructures under a crowded status. The simulated cryo-ET can be
regarded as labeled data to assist sub-sequence analysis methods.

To achieve this goal, we approximated a macromolecules using multiple balls with fixed
relative positions, and approximated ultrastructure (membranes, filaments) using multi-
ple balls with flexible relative positions. Compared to the traditional method [18] in which
each macromolecule is approximated by a single minimum boundary sphere, small square
or small cylinder, our multi-ball model can achieve a higher spatial compression ratio. We
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selected 20 representative macromolecules for experiments, taking 5000 atoms as a unit
and dividing the atoms into near clusters based on coordinates. Taking the cluster center
as the ball’s center, the distance of the farthest atom in this cluster as the ball’s radius, a
multi-sphere model is obtained. Compared to the single-ball model, our method reduces
the volume by 11%-72%.

Besides, it is difficult for the single-ball model to dynamically represent the change of
minimum bounding sphere size due to the shape change, while our multiple-ball model
can effectively express the deformability of the structure through the relative displace-
ment of the inner balls. In this paper, different typologies are designed to describe macro-
molecules, filaments and membrane with different deformability. In macromolecule, all
balls are chemically linked. In the initial model of filament, the balls are col-linear and
are connected end to end in order. Balls in the initial model of the membrane are co-
planar and are connected to their neighbors in the eight directions of up, down, left,
right and four diagonal directions. For macromolecules, the topology determines that
the structure does not deform as long as the bond length does not change. For fila-
ments and membranes, the topology determines that they can deform flexibly. Compared
to the single-ball model, the bonding force is need to be considered in addition to the
non-bonding force and external force. The elasticity of the bond length determines its
stretching capability, and the angle elasticity determines its bending capability. A sin-
gle filament and membrane simulation experiment proves that the multi-ball model can
effectively represent the deformation process of the structure in space. For the multi-
ball model, since one macromolecular complex or ultrastructure is described by multiple
points, the rotation angle during motion is achievable. In contrast, traditional single ball
model does not require this step and the angle of rotation is randomly set which not fit the
physical law. In this paper, the rotation angle of a macromolecule is uniquely determined
by three non-col-linear points in it, which is why the minimum cluster number is set to 3.

In this paper, six non-deformable macromolecules and two deformable filaments and
membranes are placed in the same scene, and the object with different propertied could
be distinguished easily. Experiments show that the proposed method can obtain realistic
and highly crowded simulated cryo-electron tomogram, including deformable objects and
non-deformable objects.

Our simulation data can be used to evaluate existing image processing methods.
Machine learning methods can deliver high accuracy in various tasks, sometimes outper-
forms humans. One major shortcomings of machine learning and deep learning methods
is the need for large quantity of accurately labelled data. In the field of Cryo-ET analysis,
the lack of labelled data has resulted in unconvincing and sometimes inconclusive algo-
rithm searching. By generating realistic simulated tomograms, we can bridge the gap by
providing benchmarks for various algorithms [35-40] for cryo-ET analysis.

The accuracy and performance of Difference of Gaussian particle picking method is
highly dependent on the hyperparameter o1. With real tomograms, the performance eval-
uation can be quite challenging and error prune as the particles in the image needs to be
manually identified. In a simulated image, the exact locations of every particle are known,
allowing the true precision and recall to be calculated. Simulated tomograms gives more
accurate evaluation schemes. For supervised deep learning methods, the availability of
correctly labelled data is even more important. By using this simulation framework, we
can generate large quantities of tomograms with the correct label which can then serve
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as the training and testing data. The Cryo-ET data generated by our method is closer to
the real state, so that its analysis is more difficult than previous simulated cryo-ET. The
existing image processing methods still have much room for improvement on our simula-
tion data, and new algorithms are expected to be proposed to obtain better experimental

results.

Conclusions

In this paper, we proposed a unified framework to simulate cryo-ET with both deformable
and non-deformable subcelluar structures, including macromolecules, filaments and
mambranes. Our multiple-ball model makes it possible to achieve more crowded status
than sinlge-ball model, which is more close to real status in cell. The proposed packing
algorithm is combined with the Molecule Dynamics, which makes the simulated cryo-ET
results more reliable. The experiment results shows that our method can pack subcel-
luar structures more tightly. The simulated cryo-ET data is easy to be labeled and able
to improve DoG particle picking method and bioimage processing methods based on
Machine Learning.

In the future, we will generate cryo-ET datasets using this method to provide help of all
the researchers in this research field. At the same time, we will focus on improving the
Molecule Dynamics model to make it more accurate. Futhermore, We will try to improve
the density map merging process of deformable structures and nondeformable structures
to make the simulated result clearer.
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