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Germany treatment. A key algorithmic challenge in this process is to decide if a given peptide

(necepitope) binds with the major histocompatibility complex (MHC). This is an active
area of research and there are many MHC binding prediction algorithms that can
predict the MHC binding affinity for a given peptide to a high degree of accuracy.
However, most of the state-of-the-art approaches make use of complicated training
and model selection procedures, are restricted to peptides of a certain length and/or
rely on heuristics.

Results: We put forward USMPep, a simple recurrent neural network that reaches
state-of-the-art approaches on MHC class | binding prediction with a single, generic
architecture and even a single set of hyperparameters both on IEDB benchmark
datasets and on the very recent HPV dataset. Moreover, the algorithm is competitive for
a single model trained from scratch, while ensembling multiple regressors and
language model pretraining can still slightly improve the performance. The direct
application of the approach to MHC class Il binding prediction shows a solid
performance despite of limited training data.

Conclusions: We demonstrate that competitive performance in MHC binding affinity
prediction can be reached with a standard architecture and training procedure without
relying on any heuristics.
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Recurrent neural networks, Language modeling

Background

Immunotherapy is a promising route towards personalized cancer treatment with a vari-
ety of possible realizations, see [1-4] for recent reviews. One path is the administration of
nanoparticle vaccines customized with neoantigens. The major histocompatibility com-
plex plays a central role in this process as it is supposed to bind to peptides derived
from proteins of the cell or from pathogens in order to display them on the surface of
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the cell for recognition by T-cells. There are three classes of MHC molecules, where
MHC class I and II are most important due to their involvement in the targeted immune
response. Due to the special nature of the MHC protein, it can bind to peptides that
are potentially structurally very different from each other. Therefore, the prediction if
a MHC molecule binds to certain peptide is a very challenging task that is, however, a
crucial sub task for neoantigen identification for practical realizations of personalized
immunotherapy [1].

MHC binding prediction is a well-established problem in bioinformatics with a large
number of existing algorithmic solutions. Although many of these algorithms show an
excellent performance, they typically rely on complicated training procedures to achieve
this performance, such as pretraining on prediction tasks for related alleles or training
with artificial negative peptides. In addition, existing solutions use complicated model
selection procedures to select a small number of well-performing models from potentially
hundreds of trained models to eventually construct an ensemble classifier. Most of the
existing approaches are restricted to peptides of fixed length, where shorter sequences
are padded or longer sequences are trimmed to an appropriate length by well-motivated
but still heuristic rules to identify so-called binding regions. The most prominent MHC I
prediction algorithms are summarized in Table 1. We refer to dedicated reviews for more
detailed comparisons [5, 6].

Table 1 Comparison of MHC | prediction tools

Architecture

SMMPMBEC [7]
consensus [8]
NetMHC4 [9]

NetMHCpan4 [10]

One-hot encoding, linear model (scoring matrix)
Linear model (scoring matrix), median rank as prediction

Input: 9mer fixed length blocks substitution matrix (BLOSUM) encoding plus additional
features; multilayer perceptron with one hidden layer

Input: 9mer fixed length BLOSUM encoding for peptide, pseudo-sequence for MHC
molecule plus additional features; multilayer perceptron with one hidden layer

MHCFlurry [11] Input: 15mer fixed length BLOSUM62 encoding, missing residues filled with wildcard
amino acid (AA); feedforward neural network (NN) with 0 to 2 locally connected and one
fully connected hidden layer

USMPep (this work)  Learned embedding layer; AWD LSTM with one hidden layer

Training procedure

SMMPMBEC Ridge regression with modified regularization, peptide MHC binding energy covariance
(PMBEC) similarity matrix as Bayesian prior

consensus Four scoring matrices from existing algorithms

NetMHC4 Training on non 9mer peptides by insertion of wildcard AA or deletion at all possible
positions; augmented training set with natural peptides for each length assumed to be
negative

NetMHCpan4 Same insertion/ deletion procedure as NetMHC4; augmented training set with random
artificial negatives

MHCFlurry Pretraining on BLOSUM62 similar allele for alleles with little training data; augmented
training set with artificial negative peptides

USMPep Optional: language model pretraining on unlabeled sequences

Model selection

SMMPMBEC Single model

consensus Single model

NetMHC4 Ensemble of 4 NNs

NetMHCpan4 Ensemble of 100 NNs

MHCFlurry Ensemble of 8-16 NNs selected from 320 models on a validation set

USMPep Optional: ensemble of 10 NNs with identical architectures and hyperparameters
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Finally, not all binding prediction tools are evaluated on standard benchmark datasets,
which reduces the comparability, and, even where this is the case, it is often hard
to disentangle algorithmic advancements from improvements due to larger amounts
of training data. In addition, statements about the generalization in the sense of the
algorithm’s performance when applied to unseen data are often difficult due to poten-
tial overlaps between train and test sets, in particular as training sets often remain
undisclosed. This urges for the creation of benchmark repositories, where the exist-
ing data are processed in a standardized fashion and split into training, validation and
test sets.

In this manuscript, we demonstrate that state-of-the-art performance can be reached
with a straightforward approach: We use a single-layer recurrent neural network that is
trained end-to-end on a regression task without any task-specific prior knowledge such
as fixed embeddings in the form of amino acid similarity matrices. By construction, this
model is able to incorporate input of variable length without the need for heuristics, such
as for the identification of binding regions. The model is trained using standard train-
ing procedures without any artificial data or pretraining on related classification tasks.
Even single models are very competitive. Ensembling or language model pretraining only
slightly improve this performance. We fix hyperparameters only once and use standard
benchmark datasets to assess the model performance. We provide, amongst others, eval-
uation results on the recently published HPV dataset [12], demonstrating an excellent
performance, which strongly suggests that the measured model performance generalizes
to unseen peptide data.

Recurrent architectures have already been used previously for MHC binding pre-
diction [13, 14] and we discuss in more detail how USMPep stands out from these
approaches. MHCnuggets [13] is rather similar to the proposed approach (apart from
the use of fixed embeddings), but relies on a complex transfer learning protocol to
achieve its performance. Only limited benchmarking results are available, which makes
it difficult to realistically assess its prediction performance. The very recent MHCSe-
qNet [14] also uses a recurrent architecture, again with pretrained rather than learned
embeddings, incorporating both peptide and allele sequence to train a single prediction
model for all alleles. However, the paper frames the prediction task as a classification
task, which makes it difficult to align the results with the large number of existing
benchmark datasets that are predominantly targeted at regression tasks. Neverthe-
less, the inclusion of the allele sequence represents an exciting opportunity for MHC
binding affinity prediction in particular in the light of recent advances in natural lan-
guage processing on tasks involving two input sequences such as question answering
tasks.

Implementation

USMPep: universal sequence models for peptide binding prediction

The approach builds on the UDSMProt-framework [15] and related work in natural lan-
guage processing [16]. We distinguish two variants of our approach, either train the
regression from scratch or employ language model pretraining. A language model tries
to predict the next token given the sequence up to this token, on unlabeled sequence
data, here: of simulated proteasome-cleaved peptides. The architecture of the language
model is, at its core, a recurrent neural network regularized by different kinds of dropout,
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and more specifically an averaged stochastic gradient descent weight-dropped long short-
term memory (AWD LSTM) model [17]. After the language model pretraining step, the
model is finetuned on the regression task of MHC binding prediction by replacing the
output layer with a concat pooling layer and two fully connected layers, see Fig. 1 for
a schematic representation. The setup closely follows that used in [15], where protein
properties were predicted. The smaller dataset sizes and shorter sequence lengths in the
peptide setting (in comparison to protein classification) do not allow for building up large
contexts and were accounted for by the reduction of the number of layers from 3 to 1, of
the number of hidden units from 1150 to 64 and of the embedding size from 400 to 50.

Similar to [15], the training procedure included 1-cycle learning rate scheduling [18]
and discriminative learning rates [16] during finetuning. Target variables for the regres-
sion model were log-transformed half-maximal inhibitory concentration (/Csp)-values
and a modified mean-squared error loss function [11] that allows to incorporate qualita-
tive data.

Dropout rate, the number of training epochs, hidden layers, hidden units and embed-
ding dimensions, were set based on selected alleles of a particular MHC class I dataset
(Kim14 [19], see the detailed description below) by using the score on one of the provided
cross-validation folds. The learning rate was determined based on range tests [18]. After
this step, the aforementioned hyperparameters were kept fixed for all datasets and alleles
both for MHC class I and class II prediction. In particular, neither hyperparameters nor
models were selected based on test set scores.

For later convenience, the following acronyms refer to the prediction tools introduced
in this work:

e USMPep_FS_sng single prediction model trained from scratch

e USMPep_FS_ens ensemble of ten prediction models trained from scratch

e USMPep_LM_sng single prediction model with language model pretraining
e USMPep_LM_ens ensemble of ten prediction models with language model

pretraining

For simplicity, we consider ensembles of models with identical architectures and hyper-
parameters and average the final individual predictions.

MHC binding prediction datasets
For the downstream task of peptide MHC binding prediction, we benchmarked our model
on three MHC class I and one MHC class II binding affinity datasets (details listed
in Table 2). These datasets comprise peptide sequences and the corresponding binding
affinities to specific MHC alleles.

Eauenc
embedding concat pooling

@(—{fixed mapping ](—[ sigmoid ](—[ dense layers ]

Fig. 1 Schematic representation of the model architecture
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Table 2 Details of training and test datasets

Dataset Usage Total size Share of binders # alleles Median size Share of quant. meas. Sequence length
MHC class |

BD2009 train 117326 0.25 53 1971 0.58 8-11
Blind test 27680 033 53 470 0.58 8-11
MHCFlurry18 train 120720  0.25 32 3659 0.68 8-15
IEDB16_I test 2827 0.54 32 73 1.0 9
MHCFlurry18 train 68117 0.26 7 6884 0.64 8-15
HPV test 743 0.34 7 125 037 8-11
MHC class I

Wang10 train 23203 037 24 999 1.0 15-37
IEDB16_II test 15691 0.33 24 641 1.0 15

The threshold for MHC class | binders is 500nM, except for the HPV dataset, where the threshold is 100 000nM. For MHC class Il
binders, the threshold is 1000nM

Kimli4 is a commonly used binding affinity dataset compiled by [19], available on
the Immune Epitope Database (IEDB)! [20], and is split into a non-overlapping train-
ing (BD2009) and test set (Blind). Similar peptides (of same length with at least 80%
sequence identity) shared by training and test set were removed from Blind. For BD2009,
we selected the provided cross-validation split without similar peptides between the sub-
samples (’cv_gs”). There are 53 class I alleles (human and mouse/ macaque alleles) with
respectively 117326 and 27680 affinity measurements in BD2009 and Blind. For compa-
rability with recently developed systematical benchmarks [5, 12], we tested USMPep on
two further MHC I datasets, which we refer to as HPV and IEDB_16. The training data
of the tools reported in the literature vary in size and compilation.

We trained our models on data provided by [11] and refer to this dataset as
MHCFlurryl8. It is assembled from an IEDB snapshot of December 2017 and the Kimi4
dataset.

HPV is a recently published dataset of 743 affinity measurements of peptides derived
from two human paillomavirus 16 (HPV16) proteins binding to seven human leuko-
cyte antigen (HLA) class I alleles [12]. Peptides were considered as binders if they
had ICsp-values below 100000nM. For peptides classified as non-binders, quantitative
measurements are not available.

IEDBI6_I is made up of an IEDB snapshot of October 2016 [5]. It was filtered for quan-
titative measurements with ICsp < 50000nM and 9mer peptides. Training sequences of
other tools were removed from the dataset. It consists of 2827 affinity measurements
across 32 class I alleles. We removed any sequences occurring in the test dataset from our
training data MHCFlurryl8.

In addition, we trained and tested USMPep on MHC class II binding data: Wangl0 is
an experimental binding affinity dataset from the IEDB site based on the dataset by [21].
We used it to train our prediction tools.

IEDBI16_II is a MHC II test dataset provided by [5] from the same IEDB snapshot
as the MHC I [EDBI6_I test set above, filtered for quantitative measurements with
IC50 < 50000nM and 15mer peptides. After removing sequences present in the training
data, 15034 affinity measurements covering 24 alleles remained in the test dataset. We
benchmarked our models on this dataset.

Uhttp://tools.iedb.org/main/datasets/
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Evaluation metrics

For performance evaluation, we consider two evaluation metrics that are most frequently
considered in the literature [5, 11]: The area under the receiver operating characteristic
curve (AUC ROC) measures the performance of binary classifying binders and non-
binders. While AUC ROC is straightforward to evaluate, it comes with the disadvantage of
having to specify a threshold to turn the targets into binary labels, which discards valuable
label information during the evaluation procedure. Commonly applied threshold values
exist for the datasets under consideration, as discussed in the previous section, but the
simplicity of this procedure neglects a possible allele dependence of these threshold values
[22]. Ranking metrics such as Spearman r evaluate the correlation between the rankings of
measured and predicted affinities and circumvent this issue. Spearman r can only be eval-
uated for quantitative measurements, which discards information on test sets that contain
also qualitative measurements. For both metrics, we calculated error bars based on 95%
empirical bootstrap confidence intervals. For single models, we report the mean perfor-
mance across 10 runs and the maximal deviation of the point estimate compared to the
lower and upper bounds provided by the respective confidence intervals as a conservative
error estimate. An alternative approach, which is taken for example in [14], is to frame the
problem as a classification rather than a regression problem i.e. to predict the probabil-
ity of binding of a peptide to a given allele and to use AUC ROC as performance metric.
In principle, the raw prediction of our models before transforming back to /Csp-values
could also be interpreted as probabilities and are also available from our code reposi-
tory to ensure straightforward comparability, even though the results between regres-
sion and classification models are only partially comparable due to different training
objectives.

The prediction performance across different alleles that make up a single MHC bench-
mark dataset can be quantified in different ways. Overall performance measures can
be calculated across multiple alleles by concatenating all target and prediction results
and evaluating the respective metrics on this set. This predominantly used but rarely
discussed method has to be contrasted with reporting the mean or the median of
the respective performance measures across all alleles, which is the default evaluation
metric for related tasks such as remote homology detection [23] or transcription fac-
tor binding site prediction [24]. The difference between both evaluation approaches is
related to the discussion about micro vs. macro averages for the evaluation of multi-
class classification problems [25]. In particular, there are two fundamental differences
between both evaluation approaches: First, the datasets enter the overall score with
different weights determined by the size of the respective test sets, which is a weight-
ing based on the experimental availability of binding affinities whereas the mean score
assigns equal weight to all test sets. Second, the overall performance measure implic-
itly assumes that prediction scores are directly comparable across different alleles, which
seems slightly questionable in the light of the discussion of allele-dependent binding
thresholds [22]. To give the reader a complete picture of the prediction performance,
we will report overall as well as mean scores. In any case, we advocate to provide
individual prediction for all peptides, which allows to possibly redo the analysis using
a different performance metric at a later point in time. To this end, the peptide-
wise binding affinity predictions for our tools are provided in the accompanying code

repository.
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Results

The results section is organized as follows: In “MHC class I binding prediction” section,
we present a detailed evaluation of the performance of UUSMPep for MHC class I binding
affinity prediction. Three different benchmark datasets highlight different performance
characteristics. In “MHC class II binding prediction” section, we investigate the applica-
bility of our methods for MHC class II binding affinity prediction. Finally, we discuss lan-
guage modeling on peptide data and its impact on downstream performance in “Language
modeling on peptide data and its impact on downstream performance” section.

MHC class I binding prediction

IEDB16 dataset

We open the assessment of MHC class I binding prediction with results on the IJEDB16
dataset that showcases the excellent predictive performance of USMPep. We compare to
literature results that were evaluated in a recent comprehensive benchmark [5] on this
dataset. This benchmark includes evaluation metrics testing not only accuracy of binder
classification, but also accuracy of binding affinity ranking and of direct binding affin-
ity prediction accuracy. Covering 32 HLA alleles, the JEDBI6 dataset reflects a broad
spectrum of MHC molecules.

In Fig. 2, we show overall AUC ROC and overall Spearman r as reported by [5] for the
latest versions of the NetMHC tools, MHCFlurry, SMMPMBEC and consensus and our
scores for the different versions of USMPep. This is supplemented by mean AUC ROC
and mean Spearman r compared to results provided in the data repository accompany-
ing [5]. For mean AUC ROC and Spearman r error bars could not be calculated for the
literature approaches due to the fact that only allele-wise scores but no peptide-wise pre-
dictions were provided. In the light of the issues discussed in “Evaluation metrics” section,
we advocate the use of mean scores rather than overall scores. For easy comparability, we
also provide overall scores as they are used predominantly in the literature. It turns out
that an ensemble of ten predictors with language model pretraining (LUSMPep_LM_ens),
reaches the highest scores in both mean evaluation metrics. In this respect, the results of
all four USMPep-variants are consistent with each other and similar (within error bars)
to the result of MHCFlurry, the best-performing method in the benchmark [5]. This
result stresses the claims of excellent prediction performance even for a single model
trained from scratch. Interestingly, the performance of all proposed prediction tools is
slightly worse when considering overall scores. The error boundaries of our tools barely
touch those of MHCFlurry with regard to overall Spearman r. In particular, in terms
of overall AUC ROC none of our predictors is consistent with MHCFlurry within error
bars. We further investigated the origin of this performance deficiency and found that
it could be traced back to a single allele, HLA-B-3801, which is peculiar in the sense
that 172 of the 176 test set samples fall into a single Hobohl cluster [19] of sequences
with more than 80% sequence similarity, i.e. show a particularly high sequence identity
that is not seen in other test datasets. These 172 samples constitute a sizable amount
of the overall 2827 test samples and strongly influence the predictive performance when
using overall performance metrics. With the exceptions in terms of the overall metrics
for the IEDBI6 dataset, our proposed methods are consistent with the best-performing
methods for all MHC I benchmark datasets both for overall and mean performance
metrics.
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Fig. 2 Comparison of MHC class | predictors. AUC ROC and Spearman r are evaluated on predictions for the
IEDB16_] test set (AUC ROC could not be evaluated for alleles HLA-B-2704, HLA-B-1503 and HLA-B-1501,
whereas Spearman r could not be computed for alleles HLA-B-1503 and HLA-B-1501. These alleles are
therefore not included in the scores.)

HPV dataset

As the training data is not publicly available for some MHC I prediction tools, a possi-
ble overlap between training and test datasets and correspondingly an overestimation of
the predictive performance cannot be excluded. The same applies to the most common
procedure of reducing the overlap between training and test set by merely remov-
ing sequences from the test set that are also contained in the training set in identical
form rather than using more elaborate measures for sequence similarity. These issues
can be circumvented by a performance evaluation on a dataset of different origin that
has so far not been used to train MHC prediction tools. This applies to the recently
released HPV binding affinity data [12]. However, in this benchmark, it is not possi-
ble to disentangle superior prediction performance due to larger amounts of training
data from algorithmic advances since size and compilation of the training set of the
algorithms vary.

There are only quantitative measurements available for the peptides considered as
binders and we therefore chose to evaluate the predictive performance with AUC ROC.
We report the performance of all models considered in [12] and our tools measured by
AUC ROC in Table 3, where we used the predictions provided by [12]. Our USMPep tools
show an excellent prediction performance. For three out of seven alleles, an USMPep-
model even reaches the highest AUC ROC. All neural-network-based predictors show a
similar AUC ROC evaluated across all measurements in the dataset, while the ensem-
ble with language model pretraining (LSMPep_LM_ens) shows the highest mean and
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Table 3 Benchmarking MHC class | predictors on recently published binding affinity data (HPV16),
see also Table 4 for allele-wise scores

allele mean AUC ROC overall AUC ROC
USMPep_FS_ens 0.824(3) 0.814(3)
USMPep_FS_sng 0.818(4) 0.808(4)
USMPep_LM_ens 0.831(4) 0.815(3)
USMPep_LM_sng 0.813(5) 0.802(4)
MHCFlurry 0.817(4) 0.809(4)
NetMHC 3.4 0.831(3) 0.794(3)
NetMHC 4.0 0.803(4) 0.780(3)
NetMHCpan 2.8 0.818(4) 0.792(3)
NetMHCpan 3.0 0.815(4) 0.787(3)
NetMHCpan 4.0 0.820(3) 0.792(4)
SMM 0.684(5) 0.695(4)
SMMPMBEC 0.722(6) 0.723(4)
Pickpocket 1.1 0.760(5) 0.708(4)
consensus 0.751(5) 0.766(4)
IEDB recommended 0.756(5) 0.772(4)
NetMHCcons 1.1 0.827(4) 0.799(3)

Predictive performance is evaluated by AUC ROC (threshold for binders < 100 000nM) on single alleles and across all alleles
(mean and overall). The scores for literature approaches were calculated based on peptide-wise predictions provided in [12].
Numbers in brackets in the table concisely denote the corresponding bootstrap confidence intervals. For instance, 0.824(3)

stands for a mean AUC ROC of 0.824 + 0.003

overall scores among all prediction tools. As for the [EDB16 dataset, even the single model
USMPep-tools are very competitive.

It is instructive to investigate the performance of the different MHC prediction tools
restricted to peptides of a certain length, which is only possible for the HPV dataset,
where peptide-wise predictions for all literature approaches are provided. The result of
such an analysis is shown in Fig. 3. Our tools outperform the other models on only the
11mer peptides. This observation can be explained by the fact that the internal state of
the recurrent neural network has to build up over the sequence. The longer the peptide,

Table 4 Allele-wise results on (HPV16), see also Table 3 for mean and overall scores

Allele HLAAT1 HLAATT HLAA2 HLAA24 HLAA3 HLAB15 HLAB7
USMPep_FS_ens 0.793 0.885 0.830 0.807 0.768 0.803 0.884
USMPep_FS_sng 0.785 0.883 0.822 0.798 0.764 0.799 0.883
USMPep_LM_ens 0.848 0.880 0.809 0.821 0.766 0.824 0.871
USMPep_LM_sng 0813 0.869 0.805 0.802 0.755 0.805 0.854
MHCFlurry 0.816 0.850 0.833 0.755 0.793 0.797 0.867
NetVMHC 3.4 0.841 0.867 0.793 0.765 0.840 0.825 0.884
NetMHC 4.0 0.823 0.855 0.792 0.730 0.779 0.825 0.801
NetMHCpan 2.8 0.756 0.863 0.787 0.778 0.794 0.857 0.880
NetMHCpan 3.0 0.841 0.848 0.781 0.739 0.778 0.876 0.825
NetMHCpan 4.0 0.839 0.854 0.805 0.742 0.784 0.891 0.836
SMM 0476 0.828 0.730 0.643 0.788 0.704 0.646
SMMPMBEC 0.593 0.846 0.777 0.639 0.799 0.716 0.670
Pickpocket 1.1 0.744 0.773 0.757 0.709 0.731 0.808 0.802
consensus 0.570 0.870 0.772 0.687 0.767 0.832 0.756
IEDB recommended 0.566 0.877 0.769 0.702 0.772 0.852 0.755

NetMHCcons 1.1 0.807 0.872 0.797 0.777 0.819 0.847 0.889

Page 9 of 16
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Fig. 3 Evaluating MHC class | predictors on recently published binding affinity data (HPV16) grouped by
peptide length. Predictive performance is evaluated by mean AUC ROC. For allele-wise and overall
performance comparisons see Tables 4 and 3. Percentages in brackets indicate the proportion of peptides of
that particular length. For example, bars at 8(15%) show results for peptides that are eight amino acids long,
which had a share of 15% of all peptides in total

the more context is available, which is why USMPep generates comparably more accurate
predictions for long sequences than for shorter ones.

Kim14 dataset

As final benchmark dataset for MHC class I prediction, we consider the Kim14 dataset
that is interesting for a number of reasons. In order to investigate how the predictive
power of our approach depends on the size of the training data set, we trained and tested
our model on the Kim14 BD2009 and Blind data. The authors of [11] kindly provided
us with the Blind predictions of their tool trained on BD2009, which allow for a direct
comparison with a state-of-the-art tool. Corresponding training routines are by now also
available in the code repository accompanying [11].

First, we compare the prediction success measured by AUC ROC and Spearman r
computed across all alleles (Fig. 4). No MHCFlurry predictors exist for alleles HLA-B-
2703, HLA-B-0803 and HLA-B3801 with rank 45, 49 and 52 due to insufficient training
data. These alleles were therefore also excluded for the scores of our tools. The predic-
tors perform very similarly with regard to all metrics. Due to the different scales of the
metrics, the minor performance variations appear to be more pronounced for Spear-
man r in comparison to AUC ROC. Nevertheless, the ranking of the almost equally
performing predictors remains consistent. Our pretrained tool USMPep_LM_ens per-
forms only slightly better than USMPep_FS_ens trained from scratch. This also holds
for the single model versions. Both UUSMPep ensemble predictors are compatible with
MHCFlurry.
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Fig. 4 Performance of USMPep and MHCFlurry on MHC class | binding prediction. Both models were trained
on the Kim14 BD2009 data AUC ROC and Spearman r were evaluated on the predictions for the Blind test set
(AUC ROC could not be evaluated for allele HLA-B-4601, whereas Spearman r could not be computed for
allele HLA-B-4601 and HLA-B-2703. These alleles are therefore not included in the scores.)

Second, to examine the impact of the training set size, we report allele-wise Spearman r
scores in Fig. 5 for our predictors and MHCFlurry. The alleles are ranked by the size of
the corresponding training set. While 9528 training sequences exist for the rank 0 MHC
molecule HLA-A-0201, there are only 136 training peptides for allele HLA-B-3801 with
rank 52. Spearman r is only shown for alleles with more than 25 quantitative measure-
ments. The variance of the allelwise performances of the different tools becomes more
pronounced the less training data are available. However, none of the models outper-
forms the others for the subset of alleles with less than 1000 training data points (rank
range33 to 52). When averaging over the alleles with rank 33 to 52, the mean Spearman r
scores of 0.54(5), 0.57(4), 0.57(5) for USMPep_FS_ens, USMPep_LM_ens and MHCFlurry,
respectively, remain consistent within error bars. This observation is interesting consid-
ering the fact that for alleles with fewer than 1000 training measurements, MHCFlurry
was pretrained on an augmented training set with measurements from BLOSUM simi-
lar alleles, UUSMPep_LM_ens was pretrained on a large corpus of unlabeled peptides and
USMPep_FS_ens in contrast only saw the training sequences corresponding to one MHC
molecule. These results stress that further efforts might be required to truly leverage the
potential of unlabeled peptide data in order to observe similar improvements as seen for
proteins [15] in particular for small datasets.

MHC class Il binding prediction
Turning to MHC Class II binding prediction, we aim to demonstrate the universality of
our approach beyond its applicability to different MHC I alleles. Here, we stress again
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Fig. 5 Performance of our MHC | prediction tools compared to MHCFlurry on single alleles. Spearman r was
calculated for predictions on the Kim 14 Blind data for alleles with more than 25 quantitative measurements.
The predictors were trained on Kim14 BD2009. The alleles are ranked by the size of the corresponding training
set (9528 peptides for rank 0 to 136 peptides with rank 52). No MHCFlurry predictors were provided for alleles
HLA-B-2703, HLA-B-0803 and HLA-B-3801 with rank 45,49 and 52

that we use the same model architecture, the same pretrained language model in case of
pretraining, and even the same set of hyperparameters for all MHC class I and class II
alleles. The main difference between and MHC class I and class II binding prediction is
the typically larger length of 15 amino acids for MHC class II compared to at most 11
for MHC class I. The analysis of the prediction performance in dependence of the length
of the peptide in the previous section suggests that this setting is particularly suitable for
the USMPep prediction tools. Unfortunately, the reported literature results vary widely
concerning the selection of training data, which makes it difficult to distinguish between
algorithmic improvements and improvements due to larger amounts of training data.
The USMPep prediction tools, and in particular the ensemble variants, show a solid

performance compared to literature results, see Fig. 6. Whereas the USMPep-predictors

always provided the best-performing method for MHC class I prediction, it is outper-

formed for MHC class II by NetMHClIIpan and nn_align. We deliberately decided to

train on WanglO instead of a more recent IEDB snapshot to work on a well-defined

published dataset. However, this makes it hard to assess if the performance differences

between our results and the best-performing methods can be attributed to the fact that
the USMPep-predictors were trained using IEDB data up to 2010 whereas in particular
the best-performing tools were trained on larger amounts and more recent data or if there
a particular intricacies inherent to the MHC class II prediction task.

Language modeling on peptide data and its impact on downstream performance
As final analysis, we analyze language modeling on peptide data and its impact on MHC
binding affinity prediction as downstream task. To this end, we constructed a dataset

of simulated proteasome-cleaved peptides to pretrain USMpep on a large corpus of
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Fig. 6 Comparison of MHC class Il predictors. AUC ROC and Spearman r were evaluated on predictions for
the IEDB16_II test set

unlabeled sequences. We filtered the SwissProt release 2018_10 for the human proteome
and employed NetChop [26] to obtain proteasome cleavage sites for these proteins. The
stochastic process of protein slicing was modeled by cutting with the cleavage probabil-
ity provided by NetChop. We discarded sequences of less than eight and more than 20
amino acids length and obtained 6547641 peptides. We compare the performance of a
peptide language model to that of a language model trained on human protein data using
prediction accuracy as metric.

The results in terms of language model performance along with the corresponding
downstream performance (MHC) on the regression task are compiled in Table 5 and allow
a number of interesting observations: First, the language model performance increases
considerably when training on (proteasome-cleaved) peptide data in accordance with
expectations. It is crucial to remark, that the language modeling task on peptide data
poses additional difficulties compared to language modeling on protein data as the
sequences are comparably short and the model thus cannot build up a lot of context.
Additionally, the model does not only have to learn the normal language model task for
protein data but implicitly has to learn to stochastically predict cleavage sites. Second,
even we evaluated on protein data, the protein language model only reaches an accuracy
of 0.137, which is considerably lower than the accuracy of 0.41 reported in the literature
[15]. This effect is a direct consequence of the considerably smaller model size (1 instead
of 3 layers; 64 instead of 1150 hidden units; embedding size of 50 instead of 400).

The details of the language model pretraining directly impact the downstream perfor-
mance and show a consistent trend across all experiments described above even though
the differences in downstream performance stay small and mostly remain consistent
within error bars. In line with the general trend, the most downstream-task-adapted

Page 13 of 16



Vielhaben et al. BMC Bioinformatics (2020) 21:279 Page 14 of 16

Table 5 Language model and MHC class | binding affinity prediction performance

Model LM Downstream (mean)

perpl. acc. AUC ROC Spearman r
LM (protein) 393 0.083 0.90(2) 0.55(4)
LM (peptide) 134 0.206 0.89(2) 0.57(4)
From scratch - - 0.89(2) 0.55(3)

Language model metrics perplexity (perpl.) and accuracy (acc.) were in all cases evaluated on peptide data. The downstream
performance corresponds to an ensemble of 10 predictors trained on the MHCFlurry18 and evaluated on the IEDB16_| test set

pretraining on peptide data performs best, generally performing slightly better than the
corresponding model trained from scratch. In contrast, pretraining on protein data in
general even leads to a loss in performance compared to training from scratch.

Conclusions

In this work, we put forward USMPep, a recurrent neural network that consistently shows
excellent performance on three popular MHC class I binding prediction datasets as well
as a solid performance on MHC class II binding prediction, see Table 6 for a performance
summary. Most remarkably, this is achieved with a standard training procedure with-
out incorporating artificial negative peptides, complicated transfer learning protocols or
ensembling strategies and without relying on heuristics.

A central issue that prevents a true comparability of algorithmic approaches to the
problem is the fact that the datasets that were used to train the prediction models differ
between different literature approaches and are often not publicly available. This entan-
gles the predictive power of a given algorithm with the data it was trained on. This urges
for the creation of an appropriate benchmarking repository along with standardized eval-
uation procedures to allow for a structured benchmarking of MHC binding prediction
algorithms. As a first step, we advocate to provide binding affinity predictions for all pep-
tides to allow fine-grained comparisons of the overall predictive performance even at
a later stage as opposed to reporting just a single score summarizing the performance
across all datasets.

Availability and requirements

Project name: USMPep

Project home page: https://github.com/nstrodt/USMPep
Operating system(s): Platform independent

Table 6 Performance summary: Rank of USMPep compared to competitors across the different

datasets
Dataset mean overall
AUC ROC Spearman r AUC ROC Spearman r

MHC class |

IFDB16_| 15t 15t 3d 3d

HPV 15t - 15t _

Kim14 2nd 2nd 15t 2nd
MHC class Il

IEDB16_lI 4th 4th 3d 4th

Scores marked in bold face are best-performing or consistent with the best-performing result within error bars
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Programming language: Python
Other requirements: see project homepage
License: BSD

Any restrictions to use by non-academics: as permitted by BSD License
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MHC: Major histocompatibility complex; AWD LSTM: Averaged stochastic gradient descent weight-dropped long
short-term memory; IEDB: Immune Epitope Database; AUC ROC: Area under the receiver operating characteristic curve;
BLOSUM: Blocks substitution matrix; AA: Amino acid; NN: Neural network; PMBEC: Peptide MHC binding energy covariance
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