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Abstract

Background: Random forest based variable importance measures have become
popular tools for assessing the contributions of the predictor variables in a fitted
random forest. In this article we reconsider a frequently used variable importance
measure, the Conditional Permutation Importance (CPI). We argue and illustrate that
the CPI corresponds to a more partial quantification of variable importance and
suggest several improvements in its methodology and implementation that enhance
its practical value. In addition, we introduce the threshold value in the CPI algorithm as
a parameter that can make the CPI more partial or more marginal.

Results: By means of extensive simulations, where the original version of the CPl is
used as the reference, we examine the impact of the proposed methodological
improvements. The simulation results show how the improved CPI methodology
increases the interpretability and stability of the computations. In addition, the newly
proposed implementation decreases the computation times drastically and is more
widely applicable. The improved CPI algorithm is made freely available as an add-on
package to the open-source software R.

Conclusion: The proposed methodology and implementation of the CPl is
computationally faster and leads to more stable results. It has a beneficial impact on
practical research by making random forest analyses more interpretable.

Keywords: Conditional permutation importance, Random forest, R

Background

Although they were originally developed for prediction purposes, Random Forests (RFs)
[1] have become a popular tool for assessing the relevance of predictor variables in
predicting an outcome’. Rather than applying a RF merely as a black-box prediction algo-
rithm, so-called variable importance measures have been proposed and implemented to
obtain an importance ranking of the predictors in fitted RFs, or to identify (or recur-
sively select) a set of important predictors (i.e., variable selection). This article mainly

!Predictors or predictor variables are also commonly referred to as features, explanatory or independent variables, and
the outcome is also often referred to as dependent variable, criterion or response. Throughout this paper we will
consistently use the terms predictor(s) and outcome.
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focuses on identifying and ranking the predictors that play a role in achieving the
prediction accuracy of a fitted RF, in the spirit of interpretable machine learning. How-
ever, the methods discussed below can in principle also be applied in variable selection
algorithms.

Originally Breiman and Cutler [1, 2] proposed two variable importance measures: the
Mean Decrease in Impurity (MDI) and — the focus of this article — the Mean Decrease
in Accuracy, which we will refer to as the Permutation Importance (PI). During the last
decade various alternative RF-based importance measures followed, resulting in a variety
of possible measures [3—6]. Every proposed RF-based importance measure aims to quan-
tify the contribution of the predictors in the RF, but different strategies are used. Generally
a distinction can be made between importance measures that are based on the struc-
ture of the trees within a RE, such as the Intervention in Prediction Measure proposed by
Epifanio [6] or the Minimal Depth measure by Ishwaran and colleagues [4], and measures
that rely on the comparison of the prediction accuracy before and after noising up the
predictor of interest, such as Breiman’s PI [1], or the importance measures proposed by
Ishwaran [3] and Strobl et al. [5]. Many of the proposed measures have been empirically
applied and have proven their practical value in a variety of different research fields. Some
examples can be found in [7-11].

Marginal vs. partial importance

Despite the practical value, and in contrast with their often clearly stated mathemati-
cal formulas and algorithms, it is generally unclear what the proposed measures exactly
measure. That is, there is no consensus about what variable importance means theoreti-
cally, nor about how it should be operationalized [12]. Consequently, there is no general
agreement on how a variable importance measure should ideally behave. This debate is
not limited to RF-based importance measures. Even for the more basic case of linear
regression, researchers hold different and opposing views on the interpretation and oper-
ationalization of variable importance. One example of this debate in linear regression can
be found in the ongoing disagreement on the variable importance measure proposed by
Hoffman [13]. It is advocated by some [14, 15], but strongly rejected by others [16—18].
Note that in the regression literature, variable importance is more commonly referred to
as relative importance [12].

Summarized briefly, two extreme positions on variable importance can be discerned.
First, there is marginal importance, which can be interpreted as the impact of a pre-
dictor for predicting the outcome without taking any other predictors into account. In
linear regression this marginal importance corresponds to the (squared) zero-order cor-
relation. Second, there is what we call partial importance, sometimes also referred to
as conditional importance, which can be interpreted as the impact of a predictor on
top of all the other predictors in the model. In linear regression the partial impor-
tance corresponds to, for instance, the (squared) semi-partial correlations. When all
the predictors are independent, there is no difference between marginal and partial
importance. However, in cases where there is some dependence structure between the
predictors — in linear regression this implies that at least some predictors are cor-
related — the marginal and partial importance will differ. In these cases, marginal
and partial importance can be seen as two extremes on one continuum. All the
variable importance measures that have been proposed within the linear regression
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framework can be placed somewhere on this marginal-partial importance dimension (for
an overview, see [12]), corresponding to a more partial, or more marginal perspective.
Various authors [19, 20] have argued that any reasonable variable importance mea-
sure should incorporate parts of both the marginal and partial perspective, and hence,
should correspond to some intermediate position on the marginal-partial importance
dimension.

Because there is no consensus about what variable importance is or what it should
be, it is impossible to identify the true or the ideal position for a variable importance
measure on this dimension. Moreover, each researcher can subjectively decide which
position on the dimension — and hence which proposed importance measure — best
corresponds to his or her perspective on variable importance and to the current research
question.

For a simplified example, consider the situation where a pharmaceutical company has
developed two new screening instruments (Test A and Test B) for assessing the presence
of an otherwise hard to detect disease. A study is set up, where the two screening instru-
ments are used on the same persons. Due to time/money restrictions, only one screening
instrument can be chosen for operational use. In this case, a more marginal perspective
will be the preferred option to select either Test A or Test B. For instance, the test that has
the strongest association with the presence of the disease (e.g., in the spirit of a zero-order
correlation) can be chosen.

In contrast, let’s assume there already is an established screening instrument (Test X),
and that the pharmaceutical company has developed two new screening instruments
(Test A and Test B) of which only one can be used in combination with the established
instrument Test X. In this case, a more partial perspective has our preference, as it
assesses the existence and strength of a contribution of either Test A or Test B on top of
the established Test X. For instance, the test that shows the highest partial contribution
on top of the established Test X (e.g., in the spirit of a semi-partial correlation) can be
chosen to use in combination with Test X.

For an alternative example, consider a screening study on genetic determinants of a dis-
ease. A variable importance measure in the spirit of the marginal perspective would give
high importance values to all genes or single-nucleotide polymorphisms (SNPs) that are
associated with the disease. Each of these genes or SNPs can be useful for predicting the
outbreak of the disease in future patients. A variable importance measure in the spirit of
the partial perspective, however, would give high importance values to the causal genes or
SNPs but lower importance to genes or SNPs associated with the causal ones due to prox-
imity. This differentiation can be useful to generate hypotheses on the biological genesis
of the disease. Hence, the question whether the marginal or partial perspective is more
appropriate depends on the research question.

Note that the lack of consensus and the multitude of importance measures does
not imply that one should not use these measures. Rather the contrary, by applying
multiple variable importance measures that differ in the extent to which they reflect
marginal/partial importance, one can get a better understanding of the predictive rele-
vance of the predictors?.

2In a similar spirit, from Breiman’s 2002 Wald lecture ([21], p.12-14) it is evident that during their work on the original
RF algorithm Breiman and Cutler already suggested that, in order to better understand the impact of dependencies
among predictors, the predictors should be examined both individually and in combination, as well as in careful
conjunction with the respective prediction accuracy [21, 22].
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Variable importance in random forests

Translating this view on partial and marginal importance to RFs is not straightforward
because RFs are inherently different from linear regression models. Linear regression
models assume a specific statistical model for the outcome with linear additive predictor
effects and independently and identically normally distributed residuals. In contrast, a RF
is an algorithmic ensemble method that does not impose any statistical model on the out-
come. Predictor effects can be non-linear and highly interactive, which generally makes
them impossible to disentangle or describe in a closed form.

In addition, due to the lack of a statistical population model, variable importance mea-
sures in RFs cannot be interpreted with respect to characteristics of the population
or the true data generating mechanism. Rather, they should be seen as quantifications
of the extent to which a predictor plays a role in obtaining the prediction accuracy.
Thus, their scope is limited to the fitted RF3. In contrast, when the model is correctly
specified, variable importance measures in linear regression can be interpreted as per-
taining to the relevance of the predictors in the assumed data generating model in the
population.

While it is clear what marginal and partial effects or contributions are in linear regres-
sion models, this is not the case for RFs. Nevertheless, the 2008 article of Strobl and
colleagues [5] can be seen as an attempt to introduce the concepts of marginal and par-
tial importance into the RF-based variable importance measures. More specifically, the
authors argued that in some cases a more partial perspective may be more relevant than a
marginal perspective, also when applying RFs. They argued that the original PI should not
be interpreted as a partial importance measure, but rather as a more marginal importance
measure. In addition, they introduced the Conditional Variable Importance — which we
will refer to as the Conditional Permutation Importance (CPI) — as a tool for quantifying
a more partial importance in RFs.

Since its proposal, the CPI, which was implemented in the party package for the sta-
tistical software R [23], has become a popular variable importance measure in RFs. It has
been applied in numerous studies across different research fields, from marine ecology [9]
over neurology [7] and geography [10] to linguistics [11]. The broad use of the CPI illus-
trates its relevance and shows that there is an interest in RF-based importance measures
with a more partial perspective.

In this manuscript we reconsider the CPI. Although we support the rationale behind the
CPI, we believe its implementation can be improved. Several studies [6, 24] have reported
computational issues (i.e., long computing times and error messages in certain cases).
Although we resolved these issues in an update of the party package in 2018, we argue
that there are still other aspects of the party CPI implementation* that can be further
improved. We will propose a new CPI implementation that is faster and more stable. In
addition, its application is not limited to RFs that were fit using the party package, but
also includes CPI computation for RFs fit using the randomForest package [25]. For
reasons of avoiding additional dependencies in the existing party implementation, this
new implementation has been placed in a separate R-package named permimp (short for

permutation importance).

3This view is in line with the notion of Cutler [22], that variable importance is “an attribute of the fitted forest, not the
data (except in so far as the forest was fit to the data)”.

e use “party implementation” to refer to the current implementation in the party package (version >1.2-4), in
which we have already resolved the reported computational issues [6, 24].
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The remainder of this manuscript is organized as follows. In the next section we first
discuss the original PI [1, 2] and subsequently the CPI as introduced by Strobl and col-
leagues [5]. In the section thereafter we explain and illustrate some of the issues with the
CPI in its current party implementation. Then we propose the new implementation,
which we will refer to as the permimp implementation, as an attempt to mitigate these
issues. Subsequently, we will focus on the threshold value in the CPI algorithm and intro-
duce it as a parameter that can be modified to make the CPI less or more conditional,
which, we argue, corresponds to moving the CPI along the marginal-partial importance
dimension. Finally, using specifically simulated data, the impact of the threshold value is
investigated and the performances of the permimp and the party implementation are
compared.

Original permutation importance (PI)

The original PI [1, 2] can be applied to the original RFs based on impurity reduction
[1], to RFs based on the conditional inference framework [26], as well as to RFs grown
using alternative algorithms [27, 28]. For a discussion of RF methods, see for instance [29]
as well as the original publications. The rationale behind the PI is the following. When
an outcome Y and a specific predictor X; have some dependency structure, so called
“noising-up”[3] Xx should destroy this dependency structure. Note that it is assumed that
a relevant dependency between X; and Y results in multiple splits with respect to Xi
in the trees of the RF, thereby contributing to the prediction accuracy of the RF. How-
ever, when in a fitted RF the splits with respect to Xj are changed into random splits (i.e.,
noised-up), this contribution to the prediction accuracy will be lost. A random permuta-
tion of the values of Xj within a set of observations is one way to noise-up X, i.e., to make
the splits in a RF with respect to X random. Therefore, the difference in prediction accu-
racy of a RF before and after permuting the Xj-values can be seen as a quantification of
the importance of X in predicting the outcome Y. When there is practically no difference
in the prediction accuracy before and after permuting Xy, Xj is said to be unimportant.
However, a lower prediction accuracy after permuting Xy, and hence a positive difference
indicates that the splits in the RF based on X were not just random, implying that Xj is
important for predicting Y°.

The PI applies this rationale and computes the difference in prediction accuracy before
and after permuting the values of X;. However, the permutation scheme is applied tree-
wise, using only the out-of-bag (OOB) sample. The benefit of this is twofold. First, by
using a different permutation for every tree and by averaging the prediction accuracy
differences over the trees, the results become more reliable. Second, by using the OOB
sample rather than the in-bag (IB) sample, the prediction accuracy before permuting is
less likely to be overly optimistic. Thereby, positively biased PI-values for predictors that
do not have any contribution are avoided. Note that recently OOB-based versions of the
MDI have also been proposed [30, 31].

More formally, let R) and RE?) be the prediction error of tree ¢ in a RF with p predictors
and ntree trees, based on OOB sample S, respectively before and after permuting the
OOB values of X}. For classification trees,

>Small negative differences are possible. This happens when the prediction accuracy after permutation is higher by
chance.
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where ntree is the number of trees in the RF.

Strobl and colleagues [5] related the PI to permutation tests [32], and argued that the
hypothesis under which the permutation of one predictor X; would not affect the pre-
diction accuracy is the hypothesis of marginal independence between X and both the
outcome Y and the other predictors Z_x) = X1,..., Xg—1, Xpy1, .- -, Xp:

Y X, Z(_w Y X, Z(_x)
Y1 Tp(1)k Z(—k)1 Y1 Tp(k R(-k) = a
Y2 Lp2)k R(—k)2 Y3 Lp3)k  2(—k) — @
Y3 Lp(3)k Z(—k)32 Y27 Tp@nk ~(—k) = a
Yi-1 | Tp(i—Dk  Z(—k)i—1 Yo  Tpe)k  A(—k) = Db
Yi Tp(i)k 2(—k)i Yia  Tp(ak  F(—k) =0
Yitl  TplitDk  2(—k)it+1 Y21 Tpenk  Z(—k) =D
Fig. 1 Permutation scheme for the original PI (left) and for the CPI (right). In the permutation scheme of the
original Pl (left) the values of Xk are permuted against both ¥ and Z(_yy. In the permutation scheme of the CPI
(right) the values of X are permuted against Y conditionally on the values of Z(_y,

Page 6 of 30
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Xe LY,Z or Xp LY AXe L Z_p. (5)

A PI value close to zero then corresponds to the marginal independence hypothesis. A
large positive value, however, corresponds to a deviation from the hypothesis, which can
be either a violation of the independence between X; and Y, a violation of the inde-
pendence between Xj and Z(_yy, or both. Simulation studies [24] have indeed shown
that even when there is no dependence between the outcome and any of the predictors
(Xx L Y holds for all Xi), highly correlated predictors (i.e., Xk L Z_jy does not hold)
have a positive PIL.

Although often useful, researchers may not always be interested in this more marginal
dependence (see, e.g., the examples presented above). Often the partial or conditional
dependence between predictor and outcome is of interest. That is, the dependence
between a predictor and the outcome conditionally upon the values of other predictors:

X L V)Z—py. (6)

Therefore, Strobl and colleagues [5] proposed a permutation importance measure that
applies a conditional permutation scheme, namely the CPL

Conditional permutation importance (CPI)

The CPI can also be formulated using Egs. 1 to 4, with the difference that for each tree the
OOB values of X are permuted conditionally on the values of Z_,. To be more precise,
the predictor space is partitioned based on Z_x) and within each partition Z_z) = z,
the OOB values of Xy are conditionally permuted. Figure 1 illustrates the difference
between the original and the conditional permutation scheme. In the left panel of Fig. 1
(cf. PI) the values of X are permuted unconditionally. In contrast, in the right panel
(cf. CPI), the values of X are only permuted within groups of observations for which
Z—k) = 2(k)-

Deciding a reasonable and computationally feasible partitioning for the conditional per-
mutation is not straightforward. Therefore, Strobl and colleagues [5] proposed to define
the partitions for the conditional permutation based on the predictor-space partitioning
induced by the tree-growing algorithm. The main advantage of this approach is that the
tree-growing-based partitioning (a) is already learned from the data and, hence, easily
accessible; (b) does not depend on the OOB values, and thereby avoids creating the per-
mutation scheme and computing the prediction accuracy using the same observations;
and (c) also contains clear splits in non-categorical predictors. Strobl and colleagues pro-
posed the following two-step strategy, which was implemented as a function in the party
R-package®.

Step 1.

In the first step, for each predictor X} it is determined which other predictors are included
in Z(_), which is the set of predictors to base the conditional permutation on. Rather than
including all the predictors (except Xj) in Z(_x) — which would be over cautious, severely
restrict the size of the partitions, and, therefore, limit the impact of the permutation —
only those predictors that are, to a certain extent, related to Xy are included. To be more
precise, the association between Xj and the other predictors in Z_y, is tested by applying

®party: :varimp (RFobject, conditional = TRUE)
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X1 X1

Fig. 2 Tree-growing (left) and conditional permutation (CPI; right) predictor space partitioning. In the
tree-growing partitioning (left), only one split completely splits the predictor space, all the other splits are
conditional on the previous split(s). In the partitioning that is used for permutation scheme in the CPI, where
the predictor of interest is Xy = X; and Z(“_)k) = X; (right), the splits with respect to X, are extended to
completely split the predictor space (dashed lines) while the splits with respect to X; are ignored (gray lines)

the conditional inference framework of Hothorn and colleagues [33] to the complete data
set’. Only those predictors for which the association with X is strong enough, i.e., for
which the p-value of the used statistical test is small enough, are selected. That is, when
1— the p-value for the association test between X and another predictor X; is bigger than
a user-defined threshold value s (0 < s < 1), X] is selected as a predictor to condition on.
When (1 — p) < s, X; is not selected. The result is a subset of Z_x), which we refer to as

(s
Z(—k)'

Step 2.
Once the set of predictors to condition on Zfi)k) is selected, a second step is repeated
for every tree ¢ individually. All the split points in the tree ¢ for the predictors in ZES_) o
are combined to create a (multi-dimensional) grid that partitions the predictor space. It
is important to note that in this grid each split completely bisects the predictor space.
This is in contrast with the original tree-growing partitioning, where a split is always
based on the previous split(s) so that most splits only bisect a limited subspace of the
predictor space. Figure 2 illustrates the difference between the original tree-growing
partitioning (left panel) and the partitioning that is used for permutation scheme in
the CPI where the predictor of interest is X; = X; and ZES—)k) = X (right panel).
The splits pertaining to X in the tree-growing partitioning (left panel) are extended
for the CPI partitioning (right panel; dashed lines) so that they completely bisect the
predictor space.

Although ZES_)k) (decided using the complete data in the first step) is the same for
every tree, the determined permutation schemes differ across trees. Because each tree is
grown on different IB samples, it can be assumed that each tree has different splitting

7Note that the term “conditional” in the conditional inference framework of Hothorn and colleagues [33] and in the
context of the CPI are not related and refer to completely different things. Unfortunately, this double use of “conditional”
seems to have led to some confusion among readers and package users. In the conditional inference framework, which is
used for unbiased variable selection in the tree and forest algorithms implemented in the party package, the term
“conditional” refers to statistical inferences drawn by means of permutation conditionally on the given data set (rather
than based on a model for the population). In contrast, the term “conditional” in the context of the CPI refers to
permutation conditionally on a grid formed by the other predictors in the RF. In short, the CPI can be computed both for
RFs grown using the conditional inference framework, as for RFs grown using other tree-growing algorithms.
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variables and split points. In addition, the OOB-values also differ across trees, thereby
also determining the range of possible permutations.

In summary, for a predictor X, the implementation of the CPI in the party package
can be described as follows:

I. (Step 1) Using the complete data:

Choose a threshold value s (the default in the party package is s = .20).
2 Select the predictors to condition on Z((S_) Ky by applying the conditional
inference framework, and including those predictors for which 1 - the p-value of

the used test is bigger than s.
II. (Step 2) Repeat for each tree ¢ in the RF:

Collect all the split points for the predictors in Z((S_) "

Create a partitioning grid by completely bisecting the predictor space using the
collected split points.

Compute the OOB prediction error R®.

Within each partition of the partitioning grid, permute the OOB values of Xj.
Recompute the OOB prediction error RE,?)

AN Ul b W

Compute the tree-wise CPI ((,?)

III. Average the tree-wise CPI ((,'?) across all the trees to obtain CPI(y

Simulation studies [5, 24] have shown that, in comparison with the original PI, the CPI
can indeed be interpreted as a measure that determines a more partial impact on the
prediction accuracy. In addition, when the outcome is independent from the predictors,
the CPI does not show the preference for correlated predictors that has been observed in
the PI [24].

In addition, Strobl et al. and others [5, 34, 35] have indicated that the mt ry hyperparam-
eter in the RF-algorithm affects the pattern of variable importance measures. However,
because the scope of RF-based variable importance measures is limited to quantifying
predictor contributions in the fitted RF, we argue that one should use that mt ry-value —
and by extension, those hyperparameter values in general — that optimize the prediction
accuracy. Finding those optimal hyperparameter values can, for instance, be done using
cross-validation. When the RF with the best prediction accuracy is found, variable impor-
tance measures can be applied to quantify the predictor contributions in obtaining these
optimal predictions. In practice one should also check whether the prediction accuracy of
the RF is satisfactory, or at least better than chance, because quantifying the contribution
of a predictor in a bad prediction machine is useless®.

Four issues

Due to its wide use in applied research, several issues related to the party implemen-
tation of the CPI have been discovered. In the following we discuss four issues, all of
which we attempt to mitigate in the permimp implementation. The four issues pertain
to (a) the computation speed, (b) a restriction to linear dependencies, (c) the sample-
size dependency of the selection criterion, and (d) the instability of the CPI across

80r, in the words of Breiman in his 2002 Wald lecture: “The better the model fits the data, the more sound the
inferences about the black box are.” ([21], p. 4).
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simulated data. We will already compare the party and the new permimp implementa-
tion of the CPI with respect to these issues, before explaining the specifics of the new CPI
implementation in the subsequent section: “permimp CPI Implementation”

Computational speed

Several authors have reported the CPI implementation in the party package to be slow
for larger sample sizes. Moreover, in some cases the algorithm failed due to its high stor-
age needs [6, 24]. In a recent update of the party-package, we have already resolved
the memory problems in the CPI algorithm, which also made the computation faster for
bigger data sets. Nevertheless, we believe that an even faster computation would be bene-
ficial for practical use, especially when dealing with larger sample sizes and a high number
of predictors.

After inspecting the current CPI party implementation, we found several instances
that could be further optimized. For instance, it is possible that, within the partition-
ing grid, there are partitions for which all observations end up in the same endnode.
Permuting the Xj-values of observations that fall within such a partition cannot affect
the prediction accuracy, since the observations simply cannot end up in different end-
nodes. One way to reduce the computing time of the CPI is to omit these redundant
permutations. Further reorganizing and recoding the CPI algorithm in the permimp
implementation resulted in a significant gain in speed compared to the current party
implementation.

To illustrate the gain in computation speed, the old party implementation (i.e., ver-
sion <1.2-4), the current party implementation, and the permimp implementation of
the CPI were applied to the peptide-binding data from the empirical example in [5]. The
data set includes 105 variables for a total of # = 310 amino acid sequences. The outcome
to be predicted is a binding property that can be coded as a binary variable (binding/no
binding). More information about this data set can be found in [5] and [36]. Fifteen RFs
with ntree = 1000 trees and mtry = 10 were fit to the data and the CPI in the three
implementations was computed for each RF. Figure 3 presents the average speed across
the 15 RFs for the three implementations, using threshold values s = .2 (the default
in party) and s = .95 (the default in permimp). Although similar CPI values were
obtained across all implementations for both threshold values, the permimp implemen-
tation was on average more than ten times faster than the old and the current party
implementation.

Linear association limitation

As described above, rather than conditioning on all the other predictors Z(_y), only the
predictors X; that are associated with X are considered for the conditional permutation
scheme of Xy, leading to the set ZES_) oy To select the predictors to condition on in ZES_) Ky’
the party implementation uses the conditional inference framework [33] to test the sta-
tistical independence between X and every X;. However, some of the tests within the
conditional inference framework, such as its independence test for two continuous vari-
ables, are only sensitive to linear associations. As a result, for two continuous predictors
X; and X, the party implementation of the CPI will not select X; in Zéi)k)’ even when

there is, for example, a strong U-shaped dependence® between X; and Xj.

Or any other non-linear association that corresponds to a zero correlation.
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Fig. 3 Computation speed: party vs. permimp implementation. Fifteen RFs (using ntree = 1000 and
mtry = 10) were fit to a peptide-binding data set [5, 36]. The data set includes 310 observations of 105
predictors for a binary outcome. CPl according the old and the current party implementation as well as the
permimp implementation were computed for two threshold values: s = .20 and s = .95. The average
computation speed for the three implementations are given as respectively blue and red bars

Violations of statistical independence are of course not limited to linear associations,
there can also be a non-linear dependency between two predictors. Given the inherent
non-linear nature of RFs, we argue that it would be an advantage if the procedure that
selects the X; to be in ZES_) 8 is sensitive to both linear and non-linear associations. As
will be explained below, the new permimp CPI implementation uses a different strat-
egy for testing the independence between predictors, which was specifically chosen to be
sensitive to both linear and non-linear associations.

Figure 4 compares the proportion of p-values below .05 according to the indepen-
dence tests applied in the party and the permimp implementation to select predictors
to condition on, for two predictors that are perfectly quadratically related. The party
implementation, which relies on linear associations is not sensitive to the quadratic
association between the predictors. In comparison, the permimp implementation con-
sistently results in very small p-values in almost all cases'”.

Sample size dependence
A second issue related to the selection of the predictors to condition on (Zgi) k)) pertains

to the sample size dependence of the applied methodology. Ideally, the predictors in Zfi) X
should be selected based on the strength of their association with Xj. However, the pre-
dictors in a RF can be of different variable types (i.e., categorical, ordinal or continuous),
and there is no universal measure for association strength that is applicable to all pairs
of Xj and Xj, regardless of their variable types. Hence, combinations of different variable
types require different association measures (e.g., correlation, rank-order correlation).
Because these measures do not necessarily share the same scale, the effect sizes are not

10Note that the restriction to linear associations (for continuous variables) also applies to the tree-growing algorithm of
the conditional inference trees [26]. However, in practice this is not problematic because of the recursive nature of the
tree-growing algorithm. That is, non-linear associations can be picked up and approximated by multiple binary split
points.
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Fig. 4 Non-linear dependencies: party vs. permimp implementation. Data sets were sampled with five,
nine or seventeen uniformly distributed (min = -3, max = 3) predictors. An additional predictor was created
by squaring one of the uniform predictors, so that all but two predictors were independent, and two showed
a perfect quadratic relation. This resulted in two quadratically related predictors plus either four, eight or
sixteen independent predictors. Sample size was either N = 500, 1000, or 2500, and either no, half or all the
predictors had a linear impact on the continuous outcome variable. The dependence tests within the party
and the permimp implementation (ie, a x’-test based on the tree-growing split points) were applied only
to the two predictors with the perfect quadratic relation. The proportion of p-values lower than .05 within the
party and permimp implementation are indicated in blue and pink respectively. The dashed line
corresponds to a proportion of .05

directly comparable. For instance, an effect size for the association between two categor-
ical variables cannot be compared easily with an effect size for the association between
two continuous variables. To overcome this issue, the party CPI implementation uses
p-values, rather than raw effect sizes to decide whether or not to include a predictor X;
in ZES_) oy Regardless of the combination of variable types, the p-values are always on the
same scale.

There are, however, two downsides to this strategy. First, within a tree, only the loca-
tion of the observations with respect to the split-points plays a role. That is, not the
raw observation, but rather the tree-induced partition in which the observation falls is
important. The tests to select the predictors to condition on, however, are based on the
raw observations. In addition, each tree relies only on the IB data, while the applied
tests use the complete data. Note that a dependency between the raw values in the com-
plete data does not necessarily lead to a dependency in the tree-based partitioning based
on the IB observations. As a result, despite a dependency between the raw values of
Xy and Xj, including X; in ZES_) o could be redundant and inefficient when computing
the CPL

Second, p-values do not depend on the effect size solely, but also on the sample size.
Although this is a valuable feature when applying significance testing in general — as
well as when selecting the next split in the binary tree building algorithm [26] — it is
inconvenient when the purpose is to select the other predictors ZES_) K to condition the
permutation of the Xj values on. As a consequence, higher sample sizes lead to a more
greedy selection of the predictors to condition on.

Figure 5 illustrates that, when using the party implementation, the proportion of p-
values lower than .05 rapidly increases with sample size, even when the effect size of the
linear dependence is very small. As described above, only those predictors for which 1
minus the p-value of the independence test with Xj is higher than the threshold s are



Debeer and Strobl BMC Bioinformatics (2020) 21:307

500 1000 2500 500 1000 2500
Il Il Il Il Il Il Il Il Il Il Il Il
rho =.00 rho = .05 rho =.10 rho = .25
u A—— A A |
109 A—a—A party:
®—8—® permimp:

0 08 o L
Q
o
\%
3

$ 06 =
©
it
[e%

§ 04 -
S
Q.
o

o 024 F

0.0 4 L

T T T T T T T T T T T T
500 1000 2500 500 1000 2500

Sample size

Fig. 5 Sample size dependence: party vs. permimp implementation. Data sets were sampled with
pairwise correlations of either p = .00, .05,.10, or .25 between 18 normally distributed predictors. Sample size
was either N = 500, 1000, or 2500, and either no, half or all the predictors had a linear impact on the
continuous outcome variable. The dependence tests within the party (correlation t-test) and the
permimp implementation (x?-test based on the tree-growing split points) were applied. The proportion of
p-values lower than .05 within the party and permimp implementation are indicated in blue and pink
respectively. The dashed line corresponds to a proportion of .05

included in ZES_) o Consequently, the probability that a predictor is selected as a predic-
tor to condition on increases rapidly with sample size, despite that predictor being only
slightly associated to Xj. In comparison, the permimp implementation seems to be less
sensitive to the sample-size effect.

Instability

When repeatedly computing the CPI using simulated data, we noticed that the CPIs
computed according to the party implementation can be unstable. In general, when
sampling multiple data sets according to the same data generating mechanism it is normal
that the sampling process causes some variation in the results. However, the instabil-
ity demonstrated by the party CPI implementation seems to go beyond this sampling
variation. As an illustration, Fig. 6 presents the distribution of the CPI of 12 continuous
predictors across 1000 replications. Data were generated according to a linear model with
the same regression coefficients as in the study of Strobl and colleagues [5]. All predic-
tors were independent (cf. the p = 0 condition in part 1 of the simulation study in the
“Methods” section). In each replication, 1000 observations were sampled, and a regres-
sion RF with 1000 trees was fit to every generated data set, after which the CPI was
computed with a threshold value of s = .5, along with the original PI, which corresponds
to a CPI with a threshold value of s = 1. Figure 6 displays both the mean CPI for every
predictor, as well as the region between the first and third quartile of the CPI distribu-
tion across the 1000 replications. For the predictors with non-zero regression coefficients,
the variability in CPI values (according to the party implementation) was clearly higher
than the variability observed in the CPI values according to the permimp implementa-
tion and also higher than the variability observed in the unconditional PI values. Both CPI

Page 13 of 30
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Fig. 6 Stability of the CPl: party vs. permimp implementation. Data were generated according to a linear
model with 12 uncorrelated normally distributed predictors, the regression coefficients were 5, 5, 2, 0, -5, -5,
-2,0,0,0,0,and 0. In each of the 1000 replications 1000 observations were sampled, and a regression RF with
1000 trees was fit, after which the CPI was computed with a threshold value of s = 0.5. The mean CPI (lines)
as well as the region between the first and third quartile (shaded area) of the CPI distribution across the 1000
replications are depicted for every predictor, both for the party and the permimp implementation of the
CPI, in blue and red, respectively. As a reference, the unconditional P, which corresponds to the CPI with a
threshold value of s = 1 regardless of the implementation, is depicted in black. Because all predictors are
independent, the Pl and the CPI have demonstrate the same pattern

implementations, however, lead to about the same mean values, but the permimp
implementation demonstrated better stability.

Further analyses indicated that this difference in stability between the two implemen-
tations is not limited to the raw CPI values, but is also observed when the order of
the CPI values are considered, a common practice when working with variable impor-
tance measures [6, 29]. We believe that the instability of the party implementation can
be explained (at least in part) by the way the predictors to condition on are selected.
First, because the selection procedure is based on the whole data, it is the same for
all trees in the forest. Second, for Fig. 6 the used threshold value was s = .5, which
implies that predictors that are actually independent were nevertheless selected to con-
dition on in about 50 percent of the replications. Therefore, across the replications, it
is likely that there were both RFs for which multiple predictors were selected to condi-
tion on, as well as forests for which no predictors were selected to condition on. In other
words, the number of predictors to condition is likely to differ strongly across the repli-

cations. Consequently, the differences between the CPI-values across replications were
considerable.

permimp CPlimplementation
In this section we present the new permimp CPI implementation, which can be seen as
an attempt to mitigate the above-raised issues pertaining to the party implementation.

Besides more efficient coding, the permimp implementation differs from the party
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implementation in two main respects. Both differences pertain to the first step in the CPI
algorithm, which selects the predictors to condition on ZES,) Iy

First, rather than using the complete data, we propose to select the predictors to condi-
tion on ZES_) o for every tree independently: ZE?,((S)). To be more precise, for every tree ¢ the
selection procedure is repeated using only the IB data for that tree. This strategy is more
in line with the rationale behind RF as an algorithmic ensemble method, where a specific
algorithm is executed repeatedly on bootstrapped or sub-sampled data, after which the
results are aggregated.

In addition, the tree-wise strategy can protect against the instability of the party
implementation observed in simulated data, because the randomness (and inherent insta-
bility) in the selection of the predictors to condition on is transferred from the forest-level
to the tree-level. By combining a large number of trees in one forest, the permimp
implementation averages out this inevitable randomness, and more stable results across
replications are observed (cf. Fig. 6). Note that, based on our simulation study results, we
also propose a more strict default threshold-value (s = .95).

The second difference between the permimp implementation and party implemen-
tation of the CPI relates to the values that are used to decide whether or not to select
a predictor X; in Zgi),((s)) Rather than using the raw observed predictor values, we pro-
pose to use discretized versions of the predictors. To be more precise, we propose to split
every predictor Xj using its split-points in tree ¢, thereby creating discretized versions of
the predictors: X,Ed), Xl(d) etc. For instance, a continuous predictor with two split points
in tree ¢, would result in a categorical predictor with three levels. As a consequence, the
x? independence test can be applied to all predictor combinations, rather than apply-
ing different tests depending on the variable types, such as in the conditional inference
framework [33].

The benefit of this strategy is twofold. First, x2-tests are sensitive to any violation of
independence between categorical variables, and are therefore not restricted to linear
associations (cf. Fig. 4). Second, this strategy seems to reduce — but not entirely solve —
the sample-size dependence (cf. Fig. 5), thereby ensuring that the association strength is
a more decisive factor when selecting the predictors to condition on.

One reason why one could object against the proposed implementation is related to the
discretization. Because it leads to a reduction of the available information, discretizing
non-categorical predictors is generally considered a bad practice [37]. We argue, however,
that discretizing predictors is an inherent part of the decision tree methodology. Once a
tree has been established, the raw predictor values are redundant, only whether the raw
value is smaller or bigger than the selected split points is relevant. Hence, when discretiz-
ing a predictor according to its split points in the tree, all the information that is relevant
within that tree is maintained.

For a predictor X, the permimp implementation of the CPI can be described as
follows:

I. (Step 1) Repeat for each tree ¢ in the RF:

1 Choose a threshold value s (the default in the permimp package is s = .95).
2 Discretize all the predictors with split points in tree ¢ according to the split
points in tree ¢.
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3 Select the predictors to condition on th_),((s)), by applying x2-tests using the

discretized IB values of tree ¢, and including those predictors for which 1 - the
p-value of the x2-test is bigger than s.

II. (Step 2) Repeat for each tree ¢ in the RF:

1  Create a partitioning grid by completely bisecting the predictor space using the
discretized version of the predictors in Z((i),(f))
Compute the OOB prediction error R®.

Within each partition of the partitioning grid, permute the OOB values of Xy.
()

2
3
4 Recompute the OOB prediction error Ry
5

)

Compute the tree-wise CPLy)-

III. Average the tree-wise CPI((,?) across all the trees to obtain CPl(y

Additional technical remarks
In the permimp implementation, regardless of the variable type, only one testing pro-
cedure is applied to select the predictors to condition on ZE?]((S)) Nevertheless, it is still
impossible to compare the effect sizes (i.e., x 2-values) across the predictors. To be more
precise, in a tree the number of split points differs across the predictors, implying that
the discretized versions of the predictors will have different numbers of categories, which
makes the raw x2-values incomparable. Therefore, like the party implementation, the
permimp implementation also relies on the associated p-values to include a predictor X;
inZ).

Note that in the permimp implementation, for each predictor Xj the set of predic-

tors to condition on is made for every tree separately: ZE?;{S)), while in the party CPI

implementation the selection is only made once for all trees: ZES_) oy Of course, repeat-
ing this selection for every tree increases the computational burden. Yet by applying
more efficient coding, the permimp implementation is generally faster than the party
implementation, especially when the number of predictors grows (cf. Fig. 3).

Finally, the CPI as implemented in the permimp-package can be applied to RFs grown
using the conditional inference framework (through the R-package party) [26], as well
as to RFs that are grown according to the impurity reduction principle (through the
randomForest package) [25]!!. The party CPIimplementation, in contrast, is limited
to RFs fit using the party-package.

Interpreting the threshold value: from marginal to partial

In this section, we argue that the threshold value in the permimp implementation can,
to some extent, be viewed as a parameter that determines the position of the CPI on the
marginal-partial dimension (cf. above)!?. Because the CPI quantifies the impact of the
predictors conditionally on the relevant other predictors in the RF, we assume it corre-
sponds with a more partial perspective on variable importance. However, as explained
above, the conditional permutation scheme depends on the chosen threshold value s. A

UEor RFs grown according to the impurity reduction principle, we expect to see the same results that hold for the
unconditional PI, namely that the CPI is unbiased with respect to the average importance, but that the sampling
variability is higher for variables with more possible split points when bootstrap sampling is used to fit the random forest
[38]. Note that for RFs fit using an unbiased tree-growing algorithm like the one proposed by Hothorn and colleagues
[26] and when sub sampling rather than bootstrap sampling is used, this issue is avoided.

12 Although we focus on the permimp implementation of the CPI, a similar rationale can be followed pertaining to the
party implementation.
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lower threshold value increases the number of predictors X; that are included in
thereby making the permutation scheme — and the CPI — more conditional. Therefore,
following the rationale that the CPI can be seen as a more partial RF-based impor-
tance measure, we argue that the threshold value can be interpreted as a parameter that
determines how partial the CPI is.

If the threshold indeed determines the position of the CPI on the marginal - partial
continuum, we can expect the following behavior. First, when all predictors are indepen-
dent, the chosen threshold should not affect the results. Likewise, in regression marginal
and partial importance measures have similar results when all predictors are uncorre-
lated [12]. Second, when there is some dependency structure between the predictors,
CPI patterns should differ for different threshold values, which would correspond to the
observed differences between more partial and more marginal importance measures in
linear regression with correlated predictors [12]. Finally, and ideally, the transition from
more marginal to more partial CPI patterns should be monotone and somewhat smooth.

Before using simulated data to investigate whether and how the threshold value affects
the CPI patterns, the following considerations about the impact of the threshold value
on the CPI pattern can already be derived from the algorithm. First, when the threshold
s = 1, no predictors to condition on are included in ZE?;{S)), which corresponds to an
unconditional permutation scheme. Therefore, the original PI can be seen as a special
case of the CPIL.

Second, when s = 0, all other predictors X; are included in Zét_),(:)) , so that ZEt_);f)) = Zét_) oy
making the permutation scheme as conditional as possible. Although it may seem appeal-
ing to interpret this most conditional case as corresponding with the CPI that is as partial
as possible, there is an important caveat. The most conditional permutation scheme
may lead to meaningless CPI values. Because all split-points from all predictors in the
tree are used, the permutation scheme can become very elaborate and fragmented, with
a high number of small partitions. Because in the permutation scheme all splits com-
pletely bisect the predictor space (cf. Fig. 2), the number of partitions can be larger than
in the tree-based partitioning. In overly fragmented permutation schemes, each OOB
observation can only be permuted with a limited set of other observations — if at all —
thereby reducing the potential prediction accuracy reduction caused by permuting the
predictor values. Consequently, all CPI values will be arbitrarily close to zero, and hence
meaningless for quantifying the predictor contributions in the prediction.

Moreover, threshold values s < 0.5 imply that even when two predictors X; and X;
are independent, each has a probability of > .5 of being selected in Z((S_)l) and ng_)k),
respectively. Because conditioning on independent predictors will not have any meaning-
ful impact on the CPI patterns, we expect that these threshold values will have limited
practical relevance. Only the predictors that are associated with the predictor of interest
should be selected to condition on. In other words, for s < 0.5 the selection of predictors
to condition on may be too greedy. Consequently and in hindsight, the default threshold
value of s = .2 in the party implementation can be considered a too liberal choice.

A final consideration about the impact of the threshold value pertains to the sample size.
Because the selection of the predictors to condition on is based on a testing approach (i.e.,
p-values), unavoidably there is some sample size dependence. For instance, even when
both the effect size of the association between two predictors and the applied thresh-
old value are kept constant, increasing the sample size will increase the probability of
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including predictor X; in th_)lgs)), and may thus lead to different CPI patterns. This implies
that the impact of the threshold value on the CPI pattern will depend on the sample size.
Therefore, when choosing the threshold-value, the sample size should be taken into con-
sideration: the bigger the sample size, the faster high threshold values may lead to a more
greedy selection of the predictors to condition and thereby a more partial importance
quantification.

Results

A simulation study was set up to (a) investigate and illustrate the impact of the thresh-
old s on the CPI values, and (b) compare CPI-results according to the party with the
permimp implementation. The complete description of the design and the result can be
found in the Methods section below. In addition, all results can be graphically browsed
through using a shiny app'.

Briefly summarized, the results of the simulation study supported our claim that the
threshold value can be interpreted as a parameter that makes the CPI more partial or more
marginal. In the cases where all predictors were independent — and where the marginal
and partial perspectives should lead to similar importance rankings — the PI and the
CPI demonstrated similar patterns. That is, decreasing the threshold decreased the raw
CPI values, but did not change the pattern of (C)PI values. In contrast, when there were
dependencies between the predictors, decreasing the threshold did change the CPI pat-
tern. In addition, in these cases — and in contrast to the PI patterns — the CPI patterns
corresponded to what one would expect from a more partial importance measure.

The most important differences in the relative CPI pattern were observed for threshold
values close to one. Decreasing the threshold value after s = .80 only reduced the raw CPI
values, without meaningful changes in the CPI pattern. That is, the raw CPI values were
decreasing (because more fragmented permutation schemes reduced the possible impact
of permuting), but the relative CPI pattern stayed unchanged. There was, however, no
evidence for too fragmented permutation schemes when s > 0, and only limited evidence
when s = 0.

In addition, the results confirmed that the permimp implementation of the CPI is
more stable than the party implementation, and that it is also sensitive to non-linear
dependencies between predictors. Overall, the simulation study results indicate that the
permimp implementation mitigates the above described issues pertaining to the party
implementation of the CPL

Discussion

In this section, first practical recommendations related to the CPI and its threshold value
are discussed. Subsequently, we critically discuss the limitations of our study and provide
suggestions for future extensions.

Practical reccommendations

Often, after fitting a RF, researchers or practitioners want explore their “black-box”
prediction machine. In many cases a more partial perspective on variable importance
will be of interest, like for instance in the studies of [7, 9-11]. The CPI provides this

Bhttps://simulations-and- statistics.shinyapps.io/CPI-revisited/
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perspective. Yet which threshold value should be used? We hold that there is not one
optimal threshold value that corresponds to the “true” CPIL. Indeed, the results from the
simulation study show that the impact of the threshold value depends on the data (i.e.,
sample size, data generating mechanism, etc.). Therefore, when feasible, we recommend
computing the CPI multiple times, using different threshold values (including the CPI
with s = 1, since this correspond to the unconditional PI). This will make it possible to
detect changes in the CPI pattern, and discern between the importance of a predictor
according to a more partial and a more marginal perspective. In addition, we believe that
the changes in the CPI pattern when going from less to more conditional may be more
informative than one single CPI pattern.

Based on the results of the simulation study, we chose a threshold value of s = 0.95
as the default in the permimp package. We would advise against using a threshold value
smaller than s = 0.8, because these threshold values do not change the pattern of the
CPI any more but only decrease the raw CPI values. Finally, users should be aware of the
sample size dependence and consider using higher threshold values (i.e., closer to one)
when dealing with larger sample sizes (cf. above).

Limitations and extensions

Like the party implementation, the permimp implementation of the CPI can only be
applied to data sets without missing data. To deal with missing data, many RF algorithms
apply surrogate splits while growing the trees and while predicting the outcome [26].
However, these surrogate splits are problematic when defining the grid for the conditional
permutation scheme. Hapfelmeier and colleagues [39] proposed an alternative to the PI
that, by relying on the splitting proportions, does not require surrogate splits. A similar
approach for the CPI, however, seems infeasible because it would require the computation
of the conditional split proportions for every partition in the conditional “permutation”
scheme, and this for every tree, which would increase the computational cost expo-
nentially. From a practical perspective, we would propose to use (multiple) imputations
to deal with missing data, and then apply the CPI to the data sets with the imputed
observations. Moreover, applying multiple imputations has been found to be a good alter-
native for the surrogate split strategy, sometimes even leading to a better prediction
accuracy [40].

As in any simulation study, only a limited set of conditions was included. Future
research could investigate the behavior of the CPI for different data generating processes,
with (a) different variable types for the outcome (cf. classification), (b) different variable
types for the predictors, (c) other sample sizes, (d) higher numbers of predictors, and (e)
different dependency structures between the predictors.

Previous research [5, 34] has shown that the values of both the (unconditional)
PI and the CPI are affected by the mtry-value in the tree-growing algorithm. How-
ever, the mtry-value also affects the prediction accuracy of the RE. We argue that the
mtry-value that optimizes the prediction accuracy of the RF should be used (cf. the sim-
ulation study in the Methods section), so that the used importance measures quantify
the contributions of the predictors in the optimal RF. Otherwise one risks quantify-
ing and ranking the relevance of the predictors based on a RF that does not predict
accurately (or as accurately as possible). Likewise, other hyper parameters in the RF
algorithm should preferably also be optimized with respect to prediction accuracy [35],
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before computing the (C)PI. Future research should investigate the impact of optimizing
other hyper parameters on the (C)PI computation and on RF-based variable importance
measures in general.

In light of optimizing prediction accuracy, the ntree parameter is not a tuning
parameter in a classical sense. Yet it should be sufficiently high to obtain a sta-
ble prediction accuracy [29, 35, 41-43]. Moreover, for specific prediction accuracy
measures such as the mean squared error (in case of regression) or the Brier score
(in case of classification), Probst and Boulesteix [42] have theoretically proven that
more trees are always better. However, generally more trees are required for sta-
ble variable importance estimates than for prediction purposes [35, 44, 45]. Hence,
a sufficiently high ntree-value with respect to prediction accuracy may not suf-
fice for stable (C)PI values. To assess the stability, Strobl and colleagues [29] pro-
posed to fit several RFs with a fixed ntree-value using different random seeds and
check whether the rankings of the variables by importance are different between the
forests.

Although not observed in the simulation study, the CPI algorithm suggests that under
certain conditions the fully conditional permutation scheme (s = 0) may be too frag-
mented and thereby lead to meaningless CPI values. Preliminary analyses suggest this may
happen when trees are fully grown (combined with large IB/OOB ratios). However, both
fully grown trees and using a threshold value of s = 0 are not recommended in practice.
First, literature suggests that fully grown trees do not necessarily lead to optimal predic-
tion accuracy in RFs [35, 46]. Moreover, for larger sample sizes, preventing the trees from
fully growing reduces the computing time without substantial loss in prediction accuracy
[35,47]. Second, threshold values of s < .5 have limited practical value, because they make
the selection of the predictors to condition on too greedy (cf. above). In addition, higher
threshold values make this selection more cautious, and thereby automatically reduce
the fragmentation of the permutation scheme. Therefore, we believe that — like in our
simulation study — overly fragmented permutation schemes are not a practical problem,
even when trees are grown deep. Nevertheless, future research should investigate whether
and under which conditions the issue of too fragmented permutation schemes could be
present.

As an alternative strategy to limit the split points in the permutation scheme, rather
than limiting the depth of the trees in the tree-growing algorithm, the depth up to which
split points are utilized in the CPI algorithm could be controlled. That is, only split points
up to a certain tree depth could be considered for the permutation scheme, a strategy that
was suggested by one of the reviewers. Future research could also investigate the potential
of this strategy.

In this manuscript we focused on the application of the CPI to identify and rank
important predictors in a fitted RF in the spirit of interpretable machine learning.
Yet, variable importance measures are also applied in variable selection algorithms,
where recursively the most important predictors are selected (or the least important
predictors are dropped). Especially in cases were the number of predictors is substan-
tially bigger than the number of observations (p >> n), such as in gene expres-
sion [41] or genome-wide association studies (GWAS) [45], variable selection methods
are popular. Although in principle the CPI could also be applied in variable selec-
tion algorithms, in practice this may not be feasible because the CPI computation is
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inevitably slower than computing the PI, or other variable importance measures such as
the MDI',

Despite the success of multiple variable importance measures, there is no consensus
about the exact meaning of “variable importance” Although a clear answer may exist for
the simple and elementary case where the outcome is a linear combination of indepen-
dent predictors, in more complex cases (e.g., interaction effects, dependent predictors,
non-linear effects, etc.) defining variable importance is far from straightforward. We have
made a distinction between a more partial and a more marginal perspective, arguing
that the most relevant perspective depends on the research questions at hand. Therefore,
when researchers are choosing a variable importance measure, we recommend that they
consider which importance perspective corresponds to their research questions.

Finally, the permimp implementation of the CPI is currently applicable to RFs grown
using the party or the randomForest R-package. However, in principle, the function-
ality of the permimp R-package can be extended to RFs fit using other packages as long
as (a) the information about the split points and OOB values are available per tree in the
RF object, and (b) prediction based on the OOB values is possible per tree.

Conclusion

In this article we reconsidered the Conditional Permutation Importance [5]. We proposed
a new implementation (with an accompanying R-package: permimp) that is generally
faster and more stable than the current party implementation. In addition, the new
permimp implementation is in accordance with the ensemble-method rationale that
characterizes RFs. At the same time, it stays loyal to the original purpose and idea behind
the CPI [5].

Using simulated data we illustrated that the issues we identified with the CPI in the
party implementation (cf. above) are mitigated in the permimp implementation. From
a practical viewpoint the permimp implementation is also more widely applicable, as it is
not limited to RFs that are grown using the cforest-function from the party package,
but also applies to RFs grown using the randomForest package.

We introduced the threshold-value in the CPI algorithm as a parameter that determines
how partial or marginal the CPI is. Depending on the research question, a more partial or
more marginal perspective on variable importance may be more adequate.

Finally, the practical relevance of a more partial perspective and the advantage of
the new CPI implementation is illustrated in the recent publication of Bierbauer and
colleagues [49], in which the CPI was used to identify which variables contribute to
the prediction of improvements in exercise capacity of older adults during cardiac
rehabilitation.

Methods

A simulation study was set up to (a) investigate and illustrate the impact of the threshold
value s on the CPI values, and (b) compare CPI-results according to the party imple-
mentation with those from the permimp implementation'®. Data were generated using

4Eor RFs grown according to the original impurity reduction principle [1, 2, 25], there is a variable selection bias in favor
of variables with many distinct values or categories that caries over to MDI values [38]. De-biased variants were recently
suggested [30, 48]. In addition, for RFs grown using an unbiased tree-growing algorithm like the one proposed by
Hothorn and colleagues [26], there is no such bias.

151n contrast to the party CPI implementation, the permimp implementation is not limited to RFs that are fit using
the party R-package. The permimp implementation can also be applied to the original impurity-reduction based RF
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Table 1 Regression Coefficients in the Data Generating Process With Only Linear Dependencies

Simulation Xk X1 Xz X3 Xa X5 X@ X7 Xg Xg X}o XH XQ
Part 1 Br 5 5 2 0 =5 -5 —2 0 0 0 0 0
Part2 Br A 0 A 0 A 0 A 0 Al 0 Al 0

three types of data generating processes (DGPs). Hence, for ease of reading, the descrip-
tion of the simulation study is split into three parts. In part 1, we replicated and extended
the simulation study of Strobl and colleagues [5], which only includes linear dependencies
in the DGP. Because we noticed that this DGP always lead to a very high signal-to-noise
ratio (cf. explained variance), we developed an alternative DGP with only linear depen-
dencies in part 2 that always has a 50/50 signal-to-noise ratio. Finally part 3 applied a DGP
that also included non-linear (i.e., quadratic) dependencies between the predictors.

Part 1 - DGP based on the simulation from Strobl and colleagues [5]

Within the first DGP, data sets were generated according to a linear regression model
with twelve continuous predictors: Y; = BX; + ¢;. The twelve predictors X were sampled
form a multivariate normal distribution X ~ N(0, ¥), with four conditions for X. In
each condition, all predictors had unit variance (ok,k = 1,forallk =1,..., 12). The four
correlation structures X were based on the correlation structure described by Strobl and
colleagues [5]: the first four predictors were block-correlated with either pr; = 0, .1,
.5 or .9 for k # | < 4, and the other predictors were independent. When pr; = 0,
all predictors were independent, and when p;; = .9 this corresponds to the correlation
structure applied by Strobl and colleagues.

Like in the simulation study of Strobl and colleagues [5], only six of the predictors were
influential. The used regression weights are given in Table 1. The error term was sampled
from a normal distribution: &; ~ N(0,.5), which lead to a very high signal-to-noise ratio
in all conditions.

Part 2 - alternative DGP with linear dependencies

In addition to a lower signal-to-noise ratio, we also wanted to reduce the impact of differ-
ently sized regression coefficients on the (C)PI-patterns in part 2. Therefore, a DGP was
used in which there are only two possible values for the regression weights (see Table 1).
In addition, different correlation structures between the predictors were implemented.
Within the second DGP, data sets were generated according to a linear regression model
with twelve continuous predictors: Y; = BX; + ¢;. The twelve predictors X were sampled
form a multivariate normal distribution X ~ N(0, X), with three conditions for X. In
each condition, all predictors had unit variance (o4 = 1, for all k = 1,...,12). Inspired
by the simulation design applied by Gromping [34], correlations between the predictors

were set to o (X, X;) = p(H[ﬂ_HD for k < [ < 9 and to zero for 8 < k < [, where
[ ] is the ceiling operator. Three values for p were selected: p = 0,.5, and .9, resulting
in three correlation structures. In each correlation structure, the predictors were divided
into pairs. Each pair had exactly the same correlation structure with the other predictors.

Like in Part 1, only six of the predictors were influential. The used standardized regres-
sion coefficients are given in Table 1. Note that within each pair of predictors based on

[1], as implemented in the randomForest R-package [25]. Yet because a comparison of the party and permimp
implementations was the main aim of the simulation study, only RFs fit using the party-package were applied.
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the correlation structure, one predictor had a regression coefficient equal to 0, while the
other predictor had a regression coefficient equal to .1. The error term was sampled from
a normal distribution with mean zero, and a standard deviation chosen so that the theo-
retical explained variance was equal to R = .5, which corresponds with a signal-to-noise
ratio of one.

Part 3 - DGP with non-linear dependencies
The third DGP included ten continuous predictors X with a non-linear dependency struc-
ture. Values for the ten predictors were sampled as follows. Predictors X; and X3 followed

a mixture of a standard normal and a uniform distribution:

NO,1) ifZ;=0

Xk
U(=2,2) if Z = 1

with Z; ~ B(1, .5), for k € {1,3)}. )
Predictors X, and X, were equal to the square of X; and X3, respectively, with additional

uniform noise:
X~ Xg_, +U(-1,.1) for k € {2,4}. (8)

X5 and X were bivariate normally distributed with both means px, = ux, = 0, standard
deviations ox;, = ox, = 1, and a high correlation ox; x, = .9. Finally, predictors X7 to X1¢
were independently standard normally distributed.

There were three conditions (A, B, and C), and in each condition the outcome Y was
generated according to a different regression model, as presented in Table 2. In all con-
ditions there was both a linear as well as a quadratic effect of X; on Y and the error
term was normally distributed: ¢ ~ N(0,.5). Condition A only included the linear and
quadratic effects of X;. Condition B had an additional effect of X3, while condition C had
an additional effect of X5s.

Because of the design (i.e., the quadratic effect of X; on Y combined with the quadratic
dependence between X, and X1), it can be expected that both X; and X, have a (relatively)
high PI value. In addition, since X; and X are linearly independent, we expected that the
party implementation would not include Xj in Zéi)xz) and (vice versa), so that the CPI
patterns for higher threshold values would generally be similar to the unconditional PI
patterns. In contrast, the permimp implementation, which is also sensitive to non-linear
dependencies, should generally include X; in th_)gg) (and vice versa), and therefore lead
to a different CPI patterns compared to the PI. To be more precise, we expected that using
the permimp implementation, the CPI value for X, would be relatively lower compared
to the unconditional PI pattern, even for higher threshold values. Similar observations
were expected for X4 in condition B and for Xg in condition C.

To sum up, there were three types of DGPs — two with only linear dependencies (i.e.,
part 1 and part 2), and one with non-linear dependencies between the predictors (i.e.,
part 3) — each with three or four conditions for the data generating process. Combined

Table 2 Regression Models in the Data Generating Process With Non-Linear Dependencies Between
The Predictors

Option Formula
Option A Vi= X+ X+ e
Option B Yi=Xii+ X5+ Xai + g

Option C Yi =Xy + X2+ Xsi + &
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with a number of observations that could be either » = 200 or » = 1000, there were
2 X (4 + 3 + 3) = 20 conditions in total.

Further simulation specifications

In each condition 1000 data sets were generated, and each data set was used to fit a
RF using the cforest-function in the party R-package, which applies the conditional
inference framework for tree-growing [26, 50].

Previous research has indicated that the number of predictors that are randomly pre-
selected to be considered for the next split in the tree-growing algorithm (i.e., mtry),
has an impact on the pattern of PI and CPI values [5, 34]). However, because we
believe that the PI and CPI should be interpreted as methods to quantify the contri-
bution of the predictors to the prediction in a fitted RF, we argue that the mtry-value
should be chosen so that the (OOB- or cross-validated) prediction accuracy is opti-
mized. Therefore, for each of the 16 conditions, we compared the prediction accuracy
on test data for all possible mtry-values, over 1000 replications'®. The mtry-value
that lead to the average best prediction accuracy was considered as the optimal mtry-
value for that condition. This optimal mtry-value was applied to fit the RFs in the
simulation study.

In summary, the following specifications were used: ntree = 1000 and mtry =
optimal mtry. In the tree-growing algorithm, when there were (a) less than 20 obser-
vations in a node (cf. minsplit = 20), or (b) an new node would have less than
seven observations (cf. minbucket = 7) further splitting was prevented. The latter
specifications are suggested for fitting unbiased RFs in the party-package [38].

To investigate the impact of the threshold value s on the CPI pattern, 16 different thresh-
old values were applied to both implementations!”. Hence, based on the fitted RF for
each data set (a) 16 CPIs according to the party, (b) 16 CPIs according to the permimp
implementation, as well as (c) the original PI were computed. When analyzing the results,
we mainly focused on the pattern of average CPI values, averaged over the replications.
In addition, we also inspected the variability of the CPI values across the replications, by
means of the inter-quartile range.

Results

All the results can be browsed through using a shiny app'®. In addition to the results,
visual representations of the correlation structures applied in part 1 and 2, as well as a
scatter plot visualizing the non-linear association between two predictors in part 3 can
also be found in the shiny app.

Part 1 - DGP based on the simulation from Strobl and colleagues [5]

Because there should be no difference between a more partial and a more marginal
perspective on variable importance when all predictors are independent, we expected
no impact of the threshold value s in the condition where all predictors were uncor-
related (p = 0). In contrast, differing CPI patterns depending on the threshold value
were expected when p > 0. We expected bigger pattern changes for higher p-values.

161n practice, when the exact data generating process is unknown, cross-validation can be used to find the optimal mt ry
value.

7The 16 values were: s € {0,0.1,0.2,0.3,0.4,0.5, 0.6, 0.7,0.8,0.9,0.925,0.95,0.975,0.99, 0.995, 1}.
8https://simulations-and-statistics.shinyapps.io/CPI-revisited/
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In addition, we did not expect big differences between the party and the permimp
implementations because the DGP only included linear dependencies.

Impact of the threshold value. As expected, in the condition without dependencies
between the predictors (p = 0), the threshold value s does not affect the CPI pattern. At
least not relatively: the raw CPI values decrease for lower threshold values, but the rela-
tive differences between CPI values (i.e., the pattern of CPI values) stay unchanged. The
decreasing CPI values can be explained by the conditional permutation scheme becom-
ing more elaborate and fragmented as the threshold value decreases. In very fragmented
permutation schemes, each observation can only be permuted with a limited set of other
observations, thereby reducing the potential prediction accuracy reduction caused by
permuting the values of a predictor Xj. Because there are no dependencies between the
predictors, the CPI values for all predictors are equally affected by this mechanism.

Meaningless CPI values are not observed, even when s = 0. This could imply that the
hyper parameters in the tree-growing algorithm minsplit = 20 and minbucket =
7 prevent the permutation scheme form becoming too fragmented. However, especially
when # = 1000 the raw CPI values decrease drastically when s < .5, while for threshold
values .8 < s < 1, the raw CPI values are in the same range of the unconditional PI values.
This illustrates that threshold values s < .5 lead to a too greedy selection of the other
predictors to condition on.

In the conditions with predictor dependencies (p > 0), when the threshold decreases
froms = 1tos = 0 (i.e, when the CPI becomes more conditional), in addition to the
above described decrease in raw CPI values, also changes in the relative CPI pattern are
observed. This implies that the CPI (with a threshold s < 1) can lead to different patterns
and interpretations than the PI, which is in line with the well known finding that corre-
lated predictors in linear regression lead to different patterns for more partial and more
marginal importance measures. And, as expected, higher p-values lead to bigger pattern
changes.

For both implementations, the most relevant CPI pattern changes take place when
0.80 < s < 1. Decreasing the threshold value even more only affects the raw CPI val-
ues, without relevant changes in the CPI pattern. Only when p = .1 and n = 1000 small
changes were observed when the threshold value was .5 < s < .8. Furthermore, in the
condition where p = .9 only the CPI values of the correlated predictors change when
decreasing the threshold from s = 1 to s = 0.95, while the CPI values of the uncorrelated
predictors stay constant. These observations contributed to our decision to set s = 0.95
as the default threshold value in the permimp-package.

party vs. permimp implementation. As can be expected, when the threshold s = 0
the party and the permimp implementation of the CPI lead to the same results'®
in all conditions. The most conditional permutation scheme is, by definition, the same
in both implementations. Likewise, when the threshold s = 1 the results of the two
implementations are equal, as well as equal to the original PI (cf. above).

In the condition where p = 0, there are no practical differences between the two
implementations, regardless of the threshold value. Also in the conditions with correlated
predictors (o > 0), the two implementations demonstrate very similar patterns. Only

19\e only observe some random noise, caused by the random permutation.
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when p = .1 and the sample size is bigger (» = 1000), and when p = .5 and the sam-
ple size is smaller (n = 200) the transition from more to less conditional is slower for the
permimp implementation than for the party implementation. This slower transition
could be explained by the fact that the permimp implementation selects the other pre-
dictors to condition on for every tree separately, so that decreasing the threshold values
corresponds with increasing the number of trees for which Xj is included in Zéi),(:)) .

A second difference between the two implementations does not relate to the average
CPI values, but to the variability in CPI values across the replications. Regardless of the
dependency structure between the predictors, when » = 1000 and 0.1 < s < 0.8, the
party CPI values show considerably more variability than the permimp CPI values.
The sampling noise across the replications seems to substantially affect the party CPI
computation, leading to more unstable and hence, less reliable CPI values and rankings.
Although generally an increased sample size leads to more stable data analytic results,
the opposite is observed for the party CPI implementation. A possible explanation for
this counter-intuitive result is given in the “Instability” section above. The permimp
implementation does not demonstrate this instability issue.

Other observations. There are two additional observations that do not relate to (a) the
used threshold value or (b) the difference between the CPI implementations, but that are
relevant for the CPI and PI in general. First, although the same regression weights are
used in the different conditions, the CPI patterns consistently differ across the different
p-values, for all applied thresholds. This indicates that the dependence between the pre-
dictors does not only affect the PI (cf. [5, 24]), but also the CPI. Even when the CPI is
as conditional as possible, the patterns still differ across the four predictor dependency
structures. This illustrates that the CPI should be interpreted as a quantification of the
contributions of the predictors in a fitted forest and indicates that it does not directly
correspond to a parameter in the DGP, even when the DGP is a linear additive model.

Second, the sample size affects not only the raw CPI values, but also the CPI pattern.
For instance, in the conditions with p = .5 or p = .9 when # = 200 the CPI values
of the two first (correlated) predictors are still higher than the CPI values of the fifth
and sixth (uncorrelated) predictors despite their equal absolute regression weights. When
n = 1000, however, the opposite is observed: higher CPI values for the uncorrelated than
for the correlated predictors with equal absolute regression weights. This indicates that
the finding that the CPI still leads to higher variable importances for correlated predictors
[5] cannot be generalized, since it is not observed for bigger sample sizes.

Further research should investigate the cause of the sample size impact. One possibil-
ity may be an interaction between the sample size and the tree-growing specifications
that prevent further splitting. It could be that for the smaller sample size (n = 200) the
applied (default) specifications (i.e., minbucket = 7 andminsplit = 20) were too
restrictive, resulting in an insufficient tree-depth for obtaining optimal prediction accu-
racy. However, as noted in the discussion section, when tuning hyper parameters, the first
aim should be to find the optimal prediction accuracy.

Part 2 - alternative DGP with linear dependencies
In general, the obtained results in part 2 were very similar to the results in part 1.
Therefore, we focus only on the results that extend the results obtained in part 1.
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Impact of the threshold value. Like in part 1, when there are no dependencies between
the predictors (i.e., p = 0), the threshold does not affect the (C)PI pattern (relatively).
However, when most predictors are correlated (i.e., p = .5 or p = .9), decreasing the
threshold from s = 1 to s = 0 changes the (relative) CPI pattern, with the most relevant
CPI pattern changes taking place when 0.90 < s < 1. In addition, for threshold values
s > .9 the CPI values of the uncorrelated predictors don’t demonstrate any changes, but
for lower threshold values their raw CPI also start to decrease.

When p = .5 and n = 1000 the CPI pattern suddenly jumps when decreasing the
threshold value form s = .1 to s = 0. In addition, in the most conditional permutation
scheme (s = 0) the CPI pattern does not correspond to what we would expect from a
more partial importance measure. Closer inspection revealed that in this specific condi-
tion the partitions in the conditional permutation scheme typically contain only one OOB
observation, which makes conditionally permuting the OOB values impossible. Thus, the
permutation scheme in the CPI algorithm is too fragmented, which makes the CPI values
small and random, and the CPI pattern meaningless. However, in other conditions and
for other threshold values (s > 0) no indications for too fragmented permutation schemes
are observed.

party vs. permimp implementation. When the sample size is # = 1000, the instability
issues with respect to the party implementation are observed again. When p = 0 or
p = .9 both implementations lead to very similar average results over the replications.
However, when p = .5, considerable differences between the average CPI patterns of the
two implementations are observed when n = 1000. The CPI computed according to the
permimp implementation displays a gradual transition from completely unconditional
to as conditional as possible. The CPI according to the party implementation, however,
changes drastically when the threshold decreases from s = 1 to s = .995. But then it stays
practically unchanged for all 0 < s < 0.995.

The fact that in this condition the CPI according to the party implementation is simi-
lar to the most conditional CPI as soon as s < 1 is explained as follows. First, when p = .5
some of the theoretical pairwise correlations in the correlation structure X are small to
very small (i.e., .125 and .0625). However, for a sample size of # = 1000 and s = 0.995
the correlation corresponding to the critical value for the test statistic in the conditional

inference framework [33] is equal to |y ,0.995|= \/% = 0.089. Therefore, the probabil-
ity that the pairwise correlations in a specific replication are larger than this critical value,
and hence the probability that many other predictors ZEt_) x) are included in ZE?]((S)) for the
first eight predictors X is very high, even for s = 0.995, which can be considered a higher
threshold value. We consider this to be a disadvantageous side effect of the party imple-
mentation. Especially for higher sample sizes the selection of the predictors to condition
on becomes too greedy too fast, so that even practically independent predictors have a
high probability of being included in the permutation scheme. The CPI in the permimp
implementation mitigates this issue (cf. Fig. 5).

Other observations. Like in part 1, there are differences between the P1and CPI patterns
between the conditions where # = 200 and the conditions where » = 1000. When n =
1000 the PI patterns and CPI patterns correspond to what we would expect from a more
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marginal and a more partial perspective on variable importance, respectively, with clear
differences when p # 0. When n = 200, however, these differences are less pronounced,
which may be related to the signal-to-noise ratio, the sample size, and the applied stopping
criteria in the tree-growing algorithm.

Part 3 - DGP with non-linear dependencies

Under the DGP with non-linear dependencies between the predictors, we expected that
in all conditions the predictor X, would have a high PI value due to the combination of its
strong quadratic dependence with X; and the quadratic effect of X; in the DGP. Ideally,
we argue, the CPI of X, should drop considerably as soon as s < 1. Similarly, in con-
dition B and condition C, we expected the PI of respectively X4 and X to be non-zero
due to its strong dependence with respectively X3 and Xs. Ideally the CPI of X4 would
drop to zero as soon as s < 1. However, we expected that for X4 in condition B only the
CPI in the permimp implementation would display this behavior. The CPI according in
the party implementation was expected to require lower threshold values for a similar
behavior, because it is only sensitive to linear dependencies between continuous predic-
tors. The drop for the CPI of Xg in condition C, however, is expected to be observed in
both implementations.

Impact of the threshold value. As expected, the PI of X5 is high in all conditions A, B,
and C, despite the fact that its regression coefficient in the DGP is zero. Its PI is even
higher than the PI of X;. Decreasing the threshold form s = 1 to s = 0 changes the
pattern of CPI values: Generally the CPI of X, drops faster and lower than the CPI of X;.
However, there are big differences between the two implementations (see below).

Similar to the results obtained for the DGP with only linear dependencies, from a cer-
tain threshold value (s = .5) no more relative pattern changes occur, while the raw CPI
values keep decreasing. Finally, in condition C the CPI of X5 and X¢ demonstrate similar
behavior as was observed in the condition with only linear dependencies.

party vs. permimp implementation. Due to the very strong dependence between X3
and X, there is an immediate change in the CPI pattern according to the permimp imple-
mentation, as soon as s < 1. For X, the CPI decreases considerably (but does not become
zero) while the CPI of X; demonstrates only a minor change. The party implementation,
in contrast, displays a more gradual pattern change, indicating that X; is not included in
ZES*)Xz)’
condition B drops to zero more quickly when decreasing the threshold in the permimp

despite the very strong dependence between X; and X;. Similarly, the CPI of X4 in

implementation, compared to the party implementation, especially when n = 1000.
Note that given the DGP, we believe that permimp behavior should be preferred over the
party behavior.

Similar to the results based on the DGP with only linear dependencies between the pre-
dictors, the two implementations lead to the same results when s = 0 or s = 1, and when
s = 1 the CPI corresponds with the PI. Under the DGP with non-linear dependencies
between the predictors, however, the instability demonstrated by the party implemen-
tation is not limited to the bigger sample size conditions (n = 1000). To some extent it is
also observed when n = 200. In contrast, the permimp implementation does not display
any instability. Moreover, the variability of the results across replications becomes smaller
with sample size.
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